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Abstract: With the recent and rapid development of concrete technologies and the ever-increasing
use of concrete, adapting concrete to the specific needs and applications of civil engineering is
necessary. Due to economic considerations and care for the natural environment, improving the
methods currently used in concrete design is also necessary. In this study, the author used principal
component analysis as a statistical tool in the concrete mix design process. Using a combination of
PCA variables and 2D and 3D factors has made it possible to refine concrete recipes. Thirty-eight
concrete mixes of different aggregate grades were analyzed using this method. The applied statistical
analysis showed many interesting relationships between the properties of concrete and the content
of its components such as the clustering of certain properties, showing dependence between the
properties and the quantities of certain ingredients in concrete, and reducing noise in the data, which
most importantly simplifies interpretation. This method of analysis can be used as an aid for concrete
mix design.
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1. Introduction

With the progression of civilization, a primary concern in civil engineering is building
modern infrastructures for the industry and human housing needs. Concrete is still a
commonly used material in construction all over the world [1–4], with its use in many
applications and a variety of compositions and production technologies [5]. The concrete
industry consumes the second greatest amount of natural resources [6]; thus, proper
concrete design is important for environmental [7,8] and economic reasons [9,10]. Decisive
initiatives should be taken today towards optimizing mix designs by taking into account its
environmental impact such that the use of natural resources can be reduced [7]. Concrete
mix design is a complex process, and to achieve concrete with desirable properties, many
methods have been developed. Nowadays, various types of by-products, such as fly
ash, silica fume, and rice husk ash, have been widely used as pozzolanic materials in
concrete [11]. Additionally, chemical admixtures are essential materials and the core
technology for manufacturing modern concrete in high-tech fields [12]. However, the more
components there are in concrete, the more complex the design process becomes. The
difference between poor-quality and good-quality concrete rests not so much on the choice
of ingredients but mainly on the proportions [13]. In 1968, Powers [14] noticed that, at the
macro-scale, successive filling of voids by smaller particles can increase the packing density
of the aggregate [15]. Increasing the packing densities of the aggregate and cementitious
materials allows the manufacturer to produce a high-performance concrete [15,16]. The
most popular are methods derived from the three equations method [17,18], which allows
a user to design concrete characterized by well-packed ingredients. Currently, the most
popular mix design methods are the maximum density method, the fineness modulus
method, the American Concrete Institute (ACI) mix design method, the Road Research
Laboratory (RRL) method, and the Department of Energy (DOE) method [19]. There have
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been also some efforts to develop computer-aided approaches for mix design, such as an
artificial neural network (ANN)-based method [11,20].

Principal component analysis (PCA) is a powerful tool that finds internal correlations
within a set of data and develops a statistical representation of these datasets [21]. Moreover,
it is central to the study of multivariate data [22]. In PCA, a set of factor axes in n-
dimensional space is created by a rotation of the original set describing multidimensional
objects in an attempt to achieve a simple structure [23]. The zero value in factor axes
is the focal point represented by mean values of all variables. The main goals of PCA
are to identify hidden patterns in a data set, to reduce the dimensionality of the data by
removing the noise and redundancy in the data, and to identify correlated variables [24].
PCA has gained popularity by showing strong patterns especially in complex datasets [25].
The areas of application of PCA include biology [26,27], medicine [28,29], pharmacy [30],
climatology [31], civil engineering [32,33], and many others. There were also some attempts
to use PCA in concrete mix design; e.g., Deepika [34] used PCA variables to improve
concrete mix design, while Boukhatem [35] used them to predict concrete properties. In
this paper, the author proposes using a combination of PCA variables and 2D and 3D
factors to refine the concrete design process.

2. Materials Used, Preparation of Specimens, and Testing Methods

The data used for the analysis are based on the author’s previous test results [36]. The
concrete mixes used in the tests consisted of Portland Cement CEM I 32.5N manufactured
in Kujawy cement plant located in Bielawy, Poland; three fractions of the aggregate, namely
0–0.5 mm, 0.5–2 mm, and 2–4 mm; and tap water (see Table 1). No additives were applied to
the concrete to achieve test results based mainly on the influence of the aggregate graining
on the concrete properties. The tested points from the experimental plan were plotted
using three-dimensional coordinates [37] in relation to the percentage of specific fractions.

Table 1. Composition of concrete mixes used in the experiment.

No.
Aggregate (kg/m3) Cement

(kg/m3)
Water

(kg/m3) No.
Aggregate (kg/m3) Cement

(kg/m3)
Water

(kg/m3)0–0.5
(mm)

0.5–2
(mm)

2–4
(mm)

0–0.5
(mm)

0.5–2
(mm)

2–4
(mm)

1 0 1570 0 358 189 20 1141 143 143 472 248
2 157 1417 0 397 209 21 1279 0 142 457 241
3 309 1235 0 394 207 22 0 1285 321 370 194
4 480 1121 0 384 202 23 167 1167 333 350 184
5 614 921 0 422 222 24 331 996 331 375 198
6 755 755 0 429 226 25 512 853 341 376 198
7 878 585 0 452 238 26 628 628 314 429 226
8 1007 432 0 488 257 27 810 491 327 410 216
9 1107 277 0 487 256 28 904 302 302 439 231

10 1225 136 0 478 251 29 1065 152 304 425 224
11 1362 0 0 492 259 30 1226 0 306 420 221
12 0 1480 164 380 200 31 0 1209 518 354 186
13 163 1303 163 360 190 32 168 1008 504 346 182
14 319 1118 160 398 210 33 344 860 516 341 180
15 479 958 160 405 213 34 522 696 522 343 181
16 617 771 154 419 221 35 670 502 502 379 200
17 751 601 150 403 212 36 817 327 490 378 199
18 850 425 142 474 249 37 948 158 474 403 212
19 1025 293 146 418 220 38 1084 0 465 431 227

The aggregate fractions 0–0.5 mm and 0.5–2 mm were assessed within a scale from
0 to 100%, with steps equal to 10%, and the fraction 2–4 mm was assessed within a scale
from 0 to 30%, with the same steps (see Figure 1). The water-to-cement ratio was constant
and equal to 0.53 for all 38 mixes. All of the components were mixed in a concrete mixer
for 2 min starting from the moment the dosing process of the ingredients ended. During
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molding, the concrete was compacted for 1.5 min using a vibration table characterized by
50 Hz frequency. The concrete specimens were in the form of cubes that were 150 × 150 ×
150 mm. Afterward, the specimens were cured for 28 days in laboratory conditions at a
temperature of +20 ◦C and a relative humidity of over 90%.
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Figure 1. Plan of the experiment: percentage of three aggregate fractions: 0–0.5 mm, 0.5–2 mm, and
2–4 mm for 38 types of tested concrete mixes.

The research program was divided into two stages. During the first stage, the prop-
erties of fresh mixes, such as consistency, apparent density, and air content, were tested.
During the second stage, the properties of the hardened concrete, namely density, com-
pressive strength, and splitting tensile strength, were examined. The test procedures were
based on European standards (see Table 2).

Table 2. Composition of concrete mixes used in the experiment.

Subject of Test Tested Property Standard Number Stage

Fresh concrete mix
Consistency EN 12350-3:2001

IApparent density EN 12350-6:2011
Air content EN 12350-7:2011

Hardened concrete
Apparent density EN 12390-7:2011

IICompressive strength EN 12390-3:2011
Splitting tensile strength EN 12390-6:2011

3. Test Results, Analysis, and Discussion

The test results of the fresh concrete mix (see Table 3) showed that its consistency
ranged from 4.5 s, which characterizes consistency V4, to 9.2 s, which characterizes con-
sistency V3, according to the EN 206 standard. The apparent density ranged from 2090 to
2280 kg/m3, and the air content ranged from 2.5 to 9.0%.
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Table 3. Fresh concrete mix properties—stage I of the tests.

No. Consistency Apparent
Density Air Content No. Consistency Apparent

Density Air Content

(-) (s) (kg/m3) (%) (-) (s) (kg/m3) (%)

1 9.0 2117 9.1 20 4.5 2147 5.1
2 7.0 2180 5.8 21 8.8 2119 6.5
3 9.0 2145 7.2 22 7.0 2170 6.9
4 9.0 2187 4.8 23 7.5 2201 6.2
5 9.0 2178 5.2 24 8.0 2231 4.3
6 8.5 2165 5.5 25 8.0 2280 2.5
7 6.0 2152 5.3 26 8.0 2225 3.2
8 8.0 2184 3.3 27 9.2 2262 2.6
9 8.0 2127 5.5 28 8.0 2178 4.7
10 7.2 2090 7.2 29 7.0 2170 5.4
11 9.0 2113 5.8 30 9.0 2173 5.5
12 7.5 2224 4.5 31 7.2 2267 3.6
13 8.0 2179 6.8 32 9.0 2208 6.0
14 7.0 2205 4.8 33 8.2 2241 4.9
15 7.5 2215 4.2 34 9.0 2264 3.9
16 6.0 2182 5.1 35 8.0 2253 3.4
17 8.2 2117 8 36 8.5 2211 5.1
18 7.0 2140 5.3 37 7.5 2195 5.5
19 8.5 2102 8.2 38 7.0 2207 3.8

The test results for concrete in a hardened state showed that the apparent density
ranged from 1996 to 2217 kg/m3, that the compressive strength ranged from 15.30 to 25.60
MPa, and that the splitting tensile strength ranged from 1.9 to 2.7 MPa (see Table 4). The
compressive strength in relation to the percentage of the three aggregate fraction groups (see
Figure 2) shows that concrete characterized by the highest values of compressive strength
also contained the most aggregate, 2–4 mm (up to 30%), and that concrete characterized by
the lowest values contained the finest aggregate, 0–0.5 mm (up to 50%); this also applied to
splitting tensile strength (see Figure 3).

Table 4. Hardened concrete properties—stage II of the tests.

No. Apparent
Density

Compressive
Strength

Splitting Tensile
Strength No. Apparent

Density
Compressive

Strength
Splitting Tensile

Strength
(-) (kg/m3) (MPa) (MPa) (-) (kg/m3) (MPa) (MPa)

1 2058 15.8 2.09 20 2080 18.1 2.19
2 2112 17.2 2.23 21 2071 17.8 2.08
3 2108 19.6 2.34 22 2151 23.2 2.30
4 2116 19.1 2.18 23 2141 20.6 2.28
5 2117 16.6 2.20 24 2157 22.0 2.37
6 2109 18.5 2.37 25 2173 22.7 2.58
7 1996 18.0 2.19 26 2144 22.3 2.43
8 2092 15.8 2.16 27 2111 21.5 2.61
9 2077 15.5 2.16 28 2123 19.9 2.39
10 2036 15.7 2.00 29 2136 18.4 2.48
11 2040 15.3 1.95 30 2129 18.5 2.00
12 2155 18.3 2.29 31 2178 24.9 2.49
13 2158 21.1 2.20 32 2217 21.8 2.63
14 2135 21.8 2.17 33 2200 22.6 2.53
15 2127 20.7 2.05 34 2179 21.7 2.68
16 2105 21.7 2.25 35 2184 22.5 2.61
17 2100 18.6 2.39 36 2154 25.6 2.44
18 2096 19.9 2.29 37 2118 20.2 2.23
19 2093 18.7 2.26 38 2110 16.0 2.15
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In order to determine the number of factors used in PCA [38], a scree plot of eigen-
values was constructed. One can see that the “elbow” of the graph where the eigenvalues
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appear to level off is found at eigenvalue 3, which means that factors to the left of this
point should be retained as they are significant. The first two factors explain 74.35% of the
variance, while the first three factors explain 84.47% of the variance (see Figure 4). Two or
three factors can be visualized in 2D or 3D plots.
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In the PCA analysis (see Table 5), the variables taken into account were concrete
ingredients (designated as 1 to 5), the properties of the fresh concrete mix (designated as 6
to 8), and the properties of the hardened concrete (designated as 9 to 11). The variables
characterized by the highest contributions of the three factors are marked with red in
the table: in factor 1, they were cement, water content, and concrete density; in factor 2,
they were aggregates 0–0.5 mm and 0.5–2 mm and air content; and in factor 3, they were
consistency, aggregate 0.5–2 mm, and air content.

Table 5. Contribution of the variables in PCA factors.

Variable
Designation

Designation Assignment Contribution of the Variables (%)
F1 F2 F3

1 aggregate 0–0.5 mm 9.2 15.7 6.5
2 aggregate 0.5–2 mm 5.4 23.1 8.3
3 aggregate 2–4 mm 8.8 10.8 2.7
4 cement 13.7 5.3 1.2
5 water 13.7 5.4 1.2
6 consistency 0.5 1.2 66.1
7 air content 2.2 23.9 8.1
8 mix density 11.7 7.2 2.6
9 compressive strength 11.4 1.9 0.5
10 concrete density 13.7 1.0 1.1
11 splitting tensile strength 9.7 4.5 1.7

In the PCA projection of the variables set in the 2D factor loading space (see Figure 5),
one can see that variables 4 and 5 (cement and water content, see Table 5) were plotted
along the same direction, which is justified because the water/cement ratio was equal for
all concrete mixes in the experiment; thus, those variables are strongly correlated.
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Figure 5. PCA projection of variables set in a 2D factor loading space (for the variable designations,
see Table 5).

Placing variables 4 and 5 in the same direction is an example of reducing the noise of
the data using PCA. Variables 8, 9, and 10 (mix density, compressive strength, and concrete
density, respectively) are strongly correlated with each other because their projections lie
close to each other. These variables are also strongly correlated with variable 3 (aggregate
2–4 mm), which indicates that a high content of this aggregate is correlated with high
densities of the fresh mix and the hardened concrete and high compressive strengths.
Variable 7 (air content in the fresh mix) is almost directly located on the side opposite to
variable 3, which means that a high content of the coarsest fraction (aggregate 2–4 mm) is
correlated with low values of air content in the fresh concrete mix.

PCA with object grouping in a two-dimensional space shows that most cases char-
acterized by a compressive strength of 22 MPa or above (see Figure 6) and a splitting
tensile strength over 2.5 MPa (see Figure 7) are located in the bottom left of the two charts.
Variables 3, 8, 9, 10, and 11 (see Figure 5)—assigned to aggregate 2–4 mm, mix density,
compressive strength, concrete density, and splitting tensile strength—are also located
in this area of the chart. One can conclude that a high volume of the coarse aggregate is
correlated with higher densities of the concrete in the fresh and hardened states and with
higher compressive and splitting tensile strengths.

Most cases characterized by a compressive strength of 16 MPa or below (see Figure 6)
and a splitting tensile strength over 2.5 MPa are located in the bottom right of the two
charts (see Figure 7). Variables 1, 4, and 5—assigned to aggregate 0–0.5 mm, cement, and
water content—are also located in this area of the chart (see Figure 5). One can conclude
that a high volume of fine aggregates is correlated with higher contents of water+cement
paste because of the high specific area of very fine aggregates; however, due to the constant
w/c ratio, it did not improve with regard to compressive and splitting tensile strengths.

Variables 8, 9, and 10—mix density, compressive strength, and concrete density in the
hardened state, respectively (see Table 5)—are located at positions similar to those of the
points of highest compressive and splitting tensile strengths (see Figures 8–10). Variable
1—aggregate 0–0.5 mm—is located at a position on the chart similar to that of the points of
lowest compressive and splitting strengths.
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Figure 10. PCA with object grouping in a three-dimensional space on the basis of concrete composi-
tion in relation to properties. Splitting tensile strength: red represents a strength over 2.5 MPa, and
blue represents a strength below 2.10 MPa.

Taking into account the third factor and adding the third dimension to the 2D chart
(compare Figures 5 and 8) resulted in consistency being an important property of concrete,
largely influencing the statistical model created using PCA. The contribution of consistency
(variable 6) is high, at 66.2% (see Table 5). This phenomenon was not visible in the 2D
chart (compare Figures 5 and 8). In the 3D model (see Figure 8), cases characterized by
consistency of 8.5 s or above were plotted at the top of the chart and cases characterized by
consistency of 7 s or below were plotted at the bottom of the 3D chart (see Figure 11).

The PCA provided in the experiment described above showed a strong tendency to
group cases with similar properties. The positions of cases characterized by desirable
properties, i.e., high compressive strength (see Figures 6 and 9), splitting tensile strength
(see Figures 7 and 10), or consistency (see Figure 11) are situated along the same direction
as the variables that influenced the properties the most (see Figures 5 and 8). A proper
change in these values influences a change in the desirable properties of concrete. This
is a tool useful for better understanding the concrete design process. This tool is also an
excellent aid in refining the composition of a concrete mixture.
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4. Conclusions

The principal component analysis method was used as a concrete mix design tool to
obtain the following conclusions:

• Clustered cases of certain properties were grouped together; i.e., cases characterized
by high compressive and splitting tensile strength were plotted together.

• A dependence between the properties and quantities of certain ingredients in concrete
was observed; for instance, a high compressive strength corresponded to a high
content of coarse aggregate fractions, and a low compressive strength corresponded
to a high content of fine aggregate fractions.

• Noise was reduced in the data, which simplified the interpretation of most of the
important factors influencing the model: due to the water/cement ratio being constant
in the experiment, these variables were plotted together on the chart; other correlated
variables such as mix density and concrete density were plotted close to one another.

• Elements that influenced the model to a large extent were recognized; in factor 1, they
were water and cement content and concrete density.

• PCA was found to be useful as an aid for concrete mix design.
• It is also an excellent aid in refining the composition of a concrete mixture with certain

properties using a combination of PCA variables and 2D and 3D factors to refine the
concrete design process.

• It could also be useful for designing other types of concretes by relying on the test
results of these concretes.
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