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Abstract

:

With the recent and rapid development of concrete technologies and the ever-increasing use of concrete, adapting concrete to the specific needs and applications of civil engineering is necessary. Due to economic considerations and care for the natural environment, improving the methods currently used in concrete design is also necessary. In this study, the author used principal component analysis as a statistical tool in the concrete mix design process. Using a combination of PCA variables and 2D and 3D factors has made it possible to refine concrete recipes. Thirty-eight concrete mixes of different aggregate grades were analyzed using this method. The applied statistical analysis showed many interesting relationships between the properties of concrete and the content of its components such as the clustering of certain properties, showing dependence between the properties and the quantities of certain ingredients in concrete, and reducing noise in the data, which most importantly simplifies interpretation. This method of analysis can be used as an aid for concrete mix design.
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1. Introduction


With the progression of civilization, a primary concern in civil engineering is building modern infrastructures for the industry and human housing needs. Concrete is still a commonly used material in construction all over the world [1,2,3,4], with its use in many applications and a variety of compositions and production technologies [5]. The concrete industry consumes the second greatest amount of natural resources [6]; thus, proper concrete design is important for environmental [7,8] and economic reasons [9,10]. Decisive initiatives should be taken today towards optimizing mix designs by taking into account its environmental impact such that the use of natural resources can be reduced [7]. Concrete mix design is a complex process, and to achieve concrete with desirable properties, many methods have been developed. Nowadays, various types of by-products, such as fly ash, silica fume, and rice husk ash, have been widely used as pozzolanic materials in concrete [11]. Additionally, chemical admixtures are essential materials and the core technology for manufacturing modern concrete in high-tech fields [12]. However, the more components there are in concrete, the more complex the design process becomes. The difference between poor-quality and good-quality concrete rests not so much on the choice of ingredients but mainly on the proportions [13]. In 1968, Powers [14] noticed that, at the macro-scale, successive filling of voids by smaller particles can increase the packing density of the aggregate [15]. Increasing the packing densities of the aggregate and cementitious materials allows the manufacturer to produce a high-performance concrete [15,16]. The most popular are methods derived from the three equations method [17,18], which allows a user to design concrete characterized by well-packed ingredients. Currently, the most popular mix design methods are the maximum density method, the fineness modulus method, the American Concrete Institute (ACI) mix design method, the Road Research Laboratory (RRL) method, and the Department of Energy (DOE) method [19]. There have been also some efforts to develop computer-aided approaches for mix design, such as an artificial neural network (ANN)-based method [11,20].



Principal component analysis (PCA) is a powerful tool that finds internal correlations within a set of data and develops a statistical representation of these datasets [21]. Moreover, it is central to the study of multivariate data [22]. In PCA, a set of factor axes in n-dimensional space is created by a rotation of the original set describing multidimensional objects in an attempt to achieve a simple structure [23]. The zero value in factor axes is the focal point represented by mean values of all variables. The main goals of PCA are to identify hidden patterns in a data set, to reduce the dimensionality of the data by removing the noise and redundancy in the data, and to identify correlated variables [24]. PCA has gained popularity by showing strong patterns especially in complex datasets [25]. The areas of application of PCA include biology [26,27], medicine [28,29], pharmacy [30], climatology [31], civil engineering [32,33], and many others. There were also some attempts to use PCA in concrete mix design; e.g., Deepika [34] used PCA variables to improve concrete mix design, while Boukhatem [35] used them to predict concrete properties. In this paper, the author proposes using a combination of PCA variables and 2D and 3D factors to refine the concrete design process.




2. Materials Used, Preparation of Specimens, and Testing Methods


The data used for the analysis are based on the author’s previous test results [36]. The concrete mixes used in the tests consisted of Portland Cement CEM I 32.5N manufactured in Kujawy cement plant located in Bielawy, Poland; three fractions of the aggregate, namely 0–0.5 mm, 0.5–2 mm, and 2–4 mm; and tap water (see Table 1). No additives were applied to the concrete to achieve test results based mainly on the influence of the aggregate graining on the concrete properties. The tested points from the experimental plan were plotted using three-dimensional coordinates [37] in relation to the percentage of specific fractions.



The aggregate fractions 0–0.5 mm and 0.5–2 mm were assessed within a scale from 0 to 100%, with steps equal to 10%, and the fraction 2–4 mm was assessed within a scale from 0 to 30%, with the same steps (see Figure 1). The water-to-cement ratio was constant and equal to 0.53 for all 38 mixes. All of the components were mixed in a concrete mixer for 2 min starting from the moment the dosing process of the ingredients ended. During molding, the concrete was compacted for 1.5 min using a vibration table characterized by 50 Hz frequency. The concrete specimens were in the form of cubes that were 150 × 150 × 150 mm. Afterward, the specimens were cured for 28 days in laboratory conditions at a temperature of +20 °C and a relative humidity of over 90%.



The research program was divided into two stages. During the first stage, the properties of fresh mixes, such as consistency, apparent density, and air content, were tested. During the second stage, the properties of the hardened concrete, namely density, compressive strength, and splitting tensile strength, were examined. The test procedures were based on European standards (see Table 2).




3. Test Results, Analysis, and Discussion


The test results of the fresh concrete mix (see Table 3) showed that its consistency ranged from 4.5 s, which characterizes consistency V4, to 9.2 s, which characterizes consistency V3, according to the EN 206 standard. The apparent density ranged from 2090 to 2280 kg/m3, and the air content ranged from 2.5 to 9.0%.



The test results for concrete in a hardened state showed that the apparent density ranged from 1996 to 2217 kg/m3, that the compressive strength ranged from 15.30 to 25.60 MPa, and that the splitting tensile strength ranged from 1.9 to 2.7 MPa (see Table 4). The compressive strength in relation to the percentage of the three aggregate fraction groups (see Figure 2) shows that concrete characterized by the highest values of compressive strength also contained the most aggregate, 2–4 mm (up to 30%), and that concrete characterized by the lowest values contained the finest aggregate, 0–0.5 mm (up to 50%); this also applied to splitting tensile strength (see Figure 3).



In order to determine the number of factors used in PCA [38], a scree plot of eigenvalues was constructed. One can see that the “elbow” of the graph where the eigenvalues appear to level off is found at eigenvalue 3, which means that factors to the left of this point should be retained as they are significant. The first two factors explain 74.35% of the variance, while the first three factors explain 84.47% of the variance (see Figure 4). Two or three factors can be visualized in 2D or 3D plots.



In the PCA analysis (see Table 5), the variables taken into account were concrete ingredients (designated as 1 to 5), the properties of the fresh concrete mix (designated as 6 to 8), and the properties of the hardened concrete (designated as 9 to 11). The variables characterized by the highest contributions of the three factors are marked with red in the table: in factor 1, they were cement, water content, and concrete density; in factor 2, they were aggregates 0–0.5 mm and 0.5–2 mm and air content; and in factor 3, they were consistency, aggregate 0.5–2 mm, and air content.



In the PCA projection of the variables set in the 2D factor loading space (see Figure 5), one can see that variables 4 and 5 (cement and water content, see Table 5) were plotted along the same direction, which is justified because the water/cement ratio was equal for all concrete mixes in the experiment; thus, those variables are strongly correlated.



Placing variables 4 and 5 in the same direction is an example of reducing the noise of the data using PCA. Variables 8, 9, and 10 (mix density, compressive strength, and concrete density, respectively) are strongly correlated with each other because their projections lie close to each other. These variables are also strongly correlated with variable 3 (aggregate 2–4 mm), which indicates that a high content of this aggregate is correlated with high densities of the fresh mix and the hardened concrete and high compressive strengths. Variable 7 (air content in the fresh mix) is almost directly located on the side opposite to variable 3, which means that a high content of the coarsest fraction (aggregate 2–4 mm) is correlated with low values of air content in the fresh concrete mix.



PCA with object grouping in a two-dimensional space shows that most cases characterized by a compressive strength of 22 MPa or above (see Figure 6) and a splitting tensile strength over 2.5 MPa (see Figure 7) are located in the bottom left of the two charts. Variables 3, 8, 9, 10, and 11 (see Figure 5)—assigned to aggregate 2–4 mm, mix density, compressive strength, concrete density, and splitting tensile strength—are also located in this area of the chart. One can conclude that a high volume of the coarse aggregate is correlated with higher densities of the concrete in the fresh and hardened states and with higher compressive and splitting tensile strengths.



Most cases characterized by a compressive strength of 16 MPa or below (see Figure 6) and a splitting tensile strength over 2.5 MPa are located in the bottom right of the two charts (see Figure 7). Variables 1, 4, and 5—assigned to aggregate 0–0.5 mm, cement, and water content—are also located in this area of the chart (see Figure 5). One can conclude that a high volume of fine aggregates is correlated with higher contents of water+cement paste because of the high specific area of very fine aggregates; however, due to the constant w/c ratio, it did not improve with regard to compressive and splitting tensile strengths.



Variables 8, 9, and 10—mix density, compressive strength, and concrete density in the hardened state, respectively (see Table 5)—are located at positions similar to those of the points of highest compressive and splitting tensile strengths (see Figure 8, Figure 9 and Figure 10). Variable 1—aggregate 0–0.5 mm—is located at a position on the chart similar to that of the points of lowest compressive and splitting strengths.



Taking into account the third factor and adding the third dimension to the 2D chart (compare Figure 5 and Figure 8) resulted in consistency being an important property of concrete, largely influencing the statistical model created using PCA. The contribution of consistency (variable 6) is high, at 66.2% (see Table 5). This phenomenon was not visible in the 2D chart (compare Figure 5 and Figure 8). In the 3D model (see Figure 8), cases characterized by consistency of 8.5 s or above were plotted at the top of the chart and cases characterized by consistency of 7 s or below were plotted at the bottom of the 3D chart (see Figure 11).



The PCA provided in the experiment described above showed a strong tendency to group cases with similar properties. The positions of cases characterized by desirable properties, i.e., high compressive strength (see Figure 6 and Figure 9), splitting tensile strength (see Figure 7 and Figure 10), or consistency (see Figure 11) are situated along the same direction as the variables that influenced the properties the most (see Figure 5 and Figure 8). A proper change in these values influences a change in the desirable properties of concrete. This is a tool useful for better understanding the concrete design process. This tool is also an excellent aid in refining the composition of a concrete mixture.




4. Conclusions


The principal component analysis method was used as a concrete mix design tool to obtain the following conclusions:




	
Clustered cases of certain properties were grouped together; i.e., cases characterized by high compressive and splitting tensile strength were plotted together.



	
A dependence between the properties and quantities of certain ingredients in concrete was observed; for instance, a high compressive strength corresponded to a high content of coarse aggregate fractions, and a low compressive strength corresponded to a high content of fine aggregate fractions.



	
Noise was reduced in the data, which simplified the interpretation of most of the important factors influencing the model: due to the water/cement ratio being constant in the experiment, these variables were plotted together on the chart; other correlated variables such as mix density and concrete density were plotted close to one another.



	
Elements that influenced the model to a large extent were recognized; in factor 1, they were water and cement content and concrete density.



	
PCA was found to be useful as an aid for concrete mix design.



	
It is also an excellent aid in refining the composition of a concrete mixture with certain properties using a combination of PCA variables and 2D and 3D factors to refine the concrete design process.



	
It could also be useful for designing other types of concretes by relying on the test results of these concretes.












Funding


This research received no external funding.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


The data presented in this study are available upon request from the corresponding author.




Conflicts of Interest


The author declares no conflict of interest.




References


	



Rumman, R.; Bari, M.S.; Manzur, T.; Kamal, M.R.; Noor, M.A. A Durable Concrete Mix Design Approach Using Combined Aggregate Gradation Bands and Rice Husk Ash Based Blended Cement. J. Build. Eng. 2020, 30. [Google Scholar] [CrossRef]

	



Chaudhari, S.V.; Chakrabarti, M.A. Modeling of Concrete for Nonlinear Analysis Using Finite Element Code ABAQUS. Int. J. Comput. Appl. 2012, 44. [Google Scholar] [CrossRef]

	



Desta, E.; Jun, Z. A Review on Ground Granulated Blast Slag GGBS in Concrete; Institute of Research Engineers and Doctors: Kuala Lumpur, Malaysia, 2018; pp. 5–10. [Google Scholar]

	



Kadir, A.A.; Hassan, M.I.H. An Overview of Fly Ash and Bottom Ash Replacement in Self Compaction Concrete. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 594. [Google Scholar]

	



Sucharda, O. Identification of Fracture Mechanic Properties of Concrete and Analysis of Shear Capacity of Reinforced Concrete Beams without Transverse Reinforcement. Materials 2020, 13, 2788. [Google Scholar] [CrossRef]

	



Robati, M.; McCarthy, T.J.; Kokogiannakis, G. Incorporating Environmental Evaluation and Thermal Properties of Concrete Mix Designs. Constr. Build. Mater. 2016, 128, 422–435. [Google Scholar] [CrossRef]

	



Rashid, K.; Farooq, S.; Mahmood, A.; Iftikhar, S.; Ahmad, A. Moving towards Resource Conservation by Automated Prioritization of Concrete Mix Design. Constr. Build. Mater. 2020, 236. [Google Scholar] [CrossRef]

	



Tait, M.W.; Cheung, W.M. A Comparative Cradle-to-Gate Life Cycle Assessment of Three Concrete Mix Designs. Int. J. Life Cycle Assess. 2016, 21. [Google Scholar] [CrossRef]

	



Flatt, R.J.; Roussel, N.; Cheeseman, C.R. Concrete: An Eco Material That Needs to Be Improved. J. Eur. Ceram. Soc. 2012, 32. [Google Scholar] [CrossRef]

	



Bidabadi, M.S.; Akbari, M.; Panahi, O. Optimum Mix Design of Recycled Concrete Based on the Fresh and Hardened Properties of Concrete. J. Build. Eng. 2020, 32. [Google Scholar] [CrossRef]

	



Kao, C.Y.; Shen, C.H.; Jan, J.C.; Hung, S.L. A Computer-Aided Approach to Pozzolanic Concrete Mix Design. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef]

	



Xun, W.; Wu, C.; Leng, X.; Li, J.; Xin, D.; Li, Y. Effect of Functional Superplasticizers on Concrete Strength and Pore Structure. Appl. Sci. 2020, 10, 3496. [Google Scholar] [CrossRef]

	



Collepardi, M. The New Concrete; Grafiche Tintoretto: Villorba, Italy, 2010; ISBN 9788890377723. [Google Scholar]

	



Powers, T.C. The Properties of Fresh Concrete; Wiley: New York, NY, USA, 1968. [Google Scholar]

	



Li, L.G.; Kwan, A.K.H. Concrete Mix Design Based on Water Film Thickness and Paste Film Thickness. Cem. Concr. Compos. 2013, 39, 33–42. [Google Scholar] [CrossRef]

	



Valikhani, A.; Jahromi, A.J.; Mantawy, I.M.; Azizinamini, A. Numerical Modelling of Concrete-to-UHPC Bond Strength. Materials 2020, 13, 1379. [Google Scholar] [CrossRef]

	



Ziolkowski, P.; Niedostatkiewicz, M. Machine Learning Techniques in Concrete Mix Design. Materials 2019, 12, 1256. [Google Scholar] [CrossRef] [PubMed]

	



Hakim Abdelgader, A. Three Equations Method for Normal Concrete Mix Design. Study Civ. Eng. Archit. 2013, 2, 109–113. [Google Scholar]

	



Ahmed, M.; Islam, S.; Nazar, S.; Khan, R.A. A Comparative Study of Popular Concrete Mix Design Methods from Qualitative and Cost-Effective Point of View for Extreme Environment. Arab. J. Sci. Eng. 2016, 41. [Google Scholar] [CrossRef]

	



Khademi, F.; Jamal, S.M.; Deshpande, N.; Londhe, S. Predicting Strength of Recycled Aggregate Concrete Using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int. J. Sustain. Built Environ. 2016, 5. [Google Scholar] [CrossRef]

	



Pieters, C. Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus 2002, 155, 285–298. [Google Scholar] [CrossRef]

	



Jolliffe, I.T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 2002, 30. [Google Scholar] [CrossRef]

	



Brown, J.D. Choosing the Right Type of Rotation in PCA and EFA. Shiken JALT Test. Eval. SIG Newsl. 2009, 13, 20–25. [Google Scholar]

	



Kassambara, A. Practical Guide To Principal Component Methods in R: PCA, M (CA), FAMD, MFA, HCPC, Factoextra; CreateSpace Independent Publishing Platform, 2016. [Google Scholar]

	



Kobaka, J.; Katzer, J.; Zarzycki, P.K. Pilbara Craton Soil as a Possible Lunar Soil Simulant for Civil Engineering Applications. Materials 2019, 12, 3871. [Google Scholar] [CrossRef] [PubMed]

	



Bjornsson, H.; Fowler, J.; Cohen, L. Practical Statistics for Field Biology. Biometrics 1991, 47. [Google Scholar] [CrossRef]

	



Berner, D. Size Correction in Biology: How Reliable Are Approaches Based on (Common) Principal Component Analysis? Oecologia 2011, 166. [Google Scholar] [CrossRef] [PubMed]

	



Wang, B.; Jiang, L. Principal Component Analysis Applications in COVID-19 Genome Sequence Studies. Cogn. Comput. 2021. [Google Scholar] [CrossRef] [PubMed]

	



Papi, M.; Caracciolo, G. Principal Component Analysis of Personalized Biomolecular Corona Data for Early Disease Detection. Nano Today 2018, 21. [Google Scholar] [CrossRef]

	



Koide, T.; Yamamoto, Y.; Fukami, T.; Katori, N.; Okuda, H.; Hiyama, Y. Analysis of Distribution of Ingredients in Commercially Available Clarithromycin Tablets Using Near-Infrared Chemical Imaging with Principal Component Analysis and Partial Least Squares. Chem. Pharm. Bull. 2015, 63. [Google Scholar] [CrossRef] [PubMed]

	



Tadić, L.; Bonacci, O.; Brleković, T. An Example of Principal Component Analysis Application on Climate Change Assessment. Theor. Appl. Climatol. 2019, 138, 1049–1062. [Google Scholar] [CrossRef]

	



Sen, D.; Erazo, K.; Zhang, W.; Nagarajaiah, S.; Sun, L. On the Effectiveness of Principal Component Analysis for Decoupling Structural Damage and Environmental Effects in Bridge Structures. J. Sound Vib. 2019, 457. [Google Scholar] [CrossRef]

	



Siddiqui, F.; Sargent, P.; Montague, G. The Use of PCA and Signal Processing Techniques for Processing Time-Based Construction Settlement Data of Road Embankments. Adv. Eng. Inform. 2020, 46. [Google Scholar] [CrossRef]

	



Deepika, M.A.; Gowri, V.T.; Sravana, P. Principal Component Analysis for Concrete Mix by Ranking Method. Int. J. Eng. Technol. 2018, 7, 453–457. [Google Scholar] [CrossRef]

	



Boukhatem, B.; Kenai, S.; Hamou, A.T.; Ziou, D.; Ghrici, M. Predicting Concrete Properties Using Neural Networks (NN) with Principal Component Analysis (PCA) Technique. Comput. Concr. 2012, 10, 557–573. [Google Scholar] [CrossRef]

	



Katzer, J.; Kobaka, J. Influence of Fine Aggregate Grading on Properties of Cement Composite. Silic. Ind. 2009, 74, 9. [Google Scholar]

	



Katzer, J.; Kobaka, J. The Assessment of Fine Aggregate Pit Deposits for Concrete Production. Kuwait J. Sci. Eng. 2006, 33, 165. [Google Scholar]

	



Cattell, R.B. The Scree Test for the Number of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]








[image: Materials 14 02668 g001 550] 





Figure 1. Plan of the experiment: percentage of three aggregate fractions: 0–0.5 mm, 0.5–2 mm, and 2–4 mm for 38 types of tested concrete mixes. 
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Figure 2. Compressive strength of concrete in relation to the percentage of three aggregate fraction groups. Red represents a compressive strength of 22 MPa or above, and blue represents a strength of 16 MPa or below. 
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Figure 3. Splitting tensile strength of concrete in relation to the percentage of three aggregate fraction groups. Red represents a strength over 2.5 MPa, and blue represents a strength below 2.10 MPa. 
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Figure 4. Scree plot of eigenvalues. 






Figure 4. Scree plot of eigenvalues.



[image: Materials 14 02668 g004]







[image: Materials 14 02668 g005 550] 





Figure 5. PCA projection of variables set in a 2D factor loading space (for the variable designations, see Table 5). 
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Figure 6. PCA with object grouping in a two-dimensional space on the basis of concrete composition in relation to concrete properties. Compressive strength: red represents a strength of 22 MPa or above, and blue represents a strength of 16 MPa or below. 
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Figure 7. PCA with object grouping in a two-dimensional space on the basis of concrete composition in relation to concrete properties. Splitting tensile strength: red represents a strength over 2.5 MPa, and blue represents a strength below 2.10 MPa. 
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Figure 8. PCA projection of variables set in a 3D factor loading space (for the variable designations, see Table 5). 
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Figure 9. PCA with object grouping in a three-dimensional space on the basis of concrete composition in relation to concrete properties. Compressive strength: red represents a strength of 22 MPa or above, and blue represents a strength of 16 MPa or below. 
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Figure 10. PCA with object grouping in a three-dimensional space on the basis of concrete composition in relation to properties. Splitting tensile strength: red represents a strength over 2.5 MPa, and blue represents a strength below 2.10 MPa. 
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Figure 11. PCA with object grouping in a three-dimensional space on the basis of concrete composition in relation to properties. Consistency: red represents 8.5 s or above, and blue represents 7 s or below. 
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Table 1. Composition of concrete mixes used in the experiment.
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No.

	
Aggregate (kg/m3)

	
Cement (kg/m3)

	
Water (kg/m3)

	
No.

	
Aggregate (kg/m3)

	
Cement (kg/m3)

	
Water (kg/m3)




	
0–0.5 (mm)

	
0.5–2 (mm)

	
2–4 (mm)

	
0–0.5 (mm)

	
0.5–2 (mm)

	
2–4 (mm)






	
1

	
0

	
1570

	
0

	
358

	
189

	
20

	
1141

	
143

	
143

	
472

	
248




	
2

	
157

	
1417

	
0

	
397

	
209

	
21

	
1279

	
0

	
142

	
457

	
241




	
3

	
309

	
1235

	
0

	
394

	
207

	
22

	
0

	
1285

	
321

	
370

	
194




	
4

	
480

	
1121

	
0

	
384

	
202

	
23

	
167

	
1167

	
333

	
350

	
184




	
5

	
614

	
921

	
0

	
422

	
222

	
24

	
331

	
996

	
331

	
375

	
198




	
6

	
755

	
755

	
0

	
429

	
226

	
25

	
512

	
853

	
341

	
376

	
198




	
7

	
878

	
585

	
0

	
452

	
238

	
26

	
628

	
628

	
314

	
429

	
226




	
8

	
1007

	
432

	
0

	
488

	
257

	
27

	
810

	
491

	
327

	
410

	
216




	
9

	
1107

	
277

	
0

	
487

	
256

	
28

	
904

	
302

	
302

	
439

	
231




	
10

	
1225

	
136

	
0

	
478

	
251

	
29

	
1065

	
152

	
304

	
425

	
224




	
11

	
1362

	
0

	
0

	
492

	
259

	
30

	
1226

	
0

	
306

	
420

	
221




	
12

	
0

	
1480

	
164

	
380

	
200

	
31

	
0

	
1209

	
518

	
354

	
186




	
13

	
163

	
1303

	
163

	
360

	
190

	
32

	
168

	
1008

	
504

	
346

	
182




	
14

	
319

	
1118

	
160

	
398

	
210

	
33

	
344

	
860

	
516

	
341

	
180




	
15

	
479

	
958

	
160

	
405

	
213

	
34

	
522

	
696

	
522

	
343

	
181




	
16

	
617

	
771

	
154

	
419

	
221

	
35

	
670

	
502

	
502

	
379

	
200




	
17

	
751

	
601

	
150

	
403

	
212

	
36

	
817

	
327

	
490

	
378

	
199




	
18

	
850

	
425

	
142

	
474

	
249

	
37

	
948

	
158

	
474

	
403

	
212




	
19

	
1025

	
293

	
146

	
418

	
220

	
38

	
1084

	
0

	
465

	
431

	
227
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Table 2. Composition of concrete mixes used in the experiment.
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Subject of Test

	
Tested Property

	
Standard Number

	
Stage






	
Fresh concrete mix

	
Consistency

	
EN 12350-3:2001

	
I




	
Apparent density

	
EN 12350-6:2011




	
Air content

	
EN 12350-7:2011




	
Hardened concrete

	
Apparent density

	
EN 12390-7:2011

	
II




	
Compressive strength

	
EN 12390-3:2011




	
Splitting tensile strength

	
EN 12390-6:2011
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Table 3. Fresh concrete mix properties—stage I of the tests.
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	No.
	Consistency
	Apparent Density
	Air Content
	No.
	Consistency
	Apparent Density
	Air Content





	(-)
	(s)
	(kg/m3)
	(%)
	(-)
	(s)
	(kg/m3)
	(%)



	1
	9.0
	2117
	9.1
	20
	4.5
	2147
	5.1



	2
	7.0
	2180
	5.8
	21
	8.8
	2119
	6.5



	3
	9.0
	2145
	7.2
	22
	7.0
	2170
	6.9



	4
	9.0
	2187
	4.8
	23
	7.5
	2201
	6.2



	5
	9.0
	2178
	5.2
	24
	8.0
	2231
	4.3



	6
	8.5
	2165
	5.5
	25
	8.0
	2280
	2.5



	7
	6.0
	2152
	5.3
	26
	8.0
	2225
	3.2



	8
	8.0
	2184
	3.3
	27
	9.2
	2262
	2.6



	9
	8.0
	2127
	5.5
	28
	8.0
	2178
	4.7



	10
	7.2
	2090
	7.2
	29
	7.0
	2170
	5.4



	11
	9.0
	2113
	5.8
	30
	9.0
	2173
	5.5



	12
	7.5
	2224
	4.5
	31
	7.2
	2267
	3.6



	13
	8.0
	2179
	6.8
	32
	9.0
	2208
	6.0



	14
	7.0
	2205
	4.8
	33
	8.2
	2241
	4.9



	15
	7.5
	2215
	4.2
	34
	9.0
	2264
	3.9



	16
	6.0
	2182
	5.1
	35
	8.0
	2253
	3.4



	17
	8.2
	2117
	8
	36
	8.5
	2211
	5.1



	18
	7.0
	2140
	5.3
	37
	7.5
	2195
	5.5



	19
	8.5
	2102
	8.2
	38
	7.0
	2207
	3.8










[image: Table] 





Table 4. Hardened concrete properties—stage II of the tests.






Table 4. Hardened concrete properties—stage II of the tests.





	
No.

	
Apparent Density

	
Compressive Strength

	
Splitting Tensile Strength

	
No.

	
Apparent Density

	
Compressive Strength

	
Splitting Tensile Strength




	
(-)

	
(kg/m3)

	
(MPa)

	
(MPa)

	
(-)

	
(kg/m3)

	
(MPa)

	
(MPa)






	
1

	
2058

	
15.8

	
2.09

	
20

	
2080

	
18.1

	
2.19




	
2

	
2112

	
17.2

	
2.23

	
21

	
2071

	
17.8

	
2.08




	
3

	
2108

	
19.6

	
2.34

	
22

	
2151

	
23.2

	
2.30




	
4

	
2116

	
19.1

	
2.18

	
23

	
2141

	
20.6

	
2.28




	
5

	
2117

	
16.6

	
2.20

	
24

	
2157

	
22.0

	
2.37




	
6

	
2109

	
18.5

	
2.37

	
25

	
2173

	
22.7

	
2.58




	
7

	
1996

	
18.0

	
2.19

	
26

	
2144

	
22.3

	
2.43




	
8

	
2092

	
15.8

	
2.16

	
27

	
2111

	
21.5

	
2.61




	
9

	
2077

	
15.5

	
2.16

	
28

	
2123

	
19.9

	
2.39




	
10

	
2036

	
15.7

	
2.00

	
29

	
2136

	
18.4

	
2.48




	
11

	
2040

	
15.3

	
1.95

	
30

	
2129

	
18.5

	
2.00




	
12

	
2155

	
18.3

	
2.29

	
31

	
2178

	
24.9

	
2.49




	
13

	
2158

	
21.1

	
2.20

	
32

	
2217

	
21.8

	
2.63




	
14

	
2135

	
21.8

	
2.17

	
33

	
2200

	
22.6

	
2.53




	
15

	
2127

	
20.7

	
2.05

	
34

	
2179

	
21.7

	
2.68




	
16

	
2105

	
21.7

	
2.25

	
35

	
2184

	
22.5

	
2.61




	
17

	
2100

	
18.6

	
2.39

	
36

	
2154

	
25.6

	
2.44




	
18

	
2096

	
19.9

	
2.29

	
37

	
2118

	
20.2

	
2.23




	
19

	
2093

	
18.7

	
2.26

	
38

	
2110

	
16.0

	
2.15
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Table 5. Contribution of the variables in PCA factors.






Table 5. Contribution of the variables in PCA factors.





	
Variable Designation

	
Designation Assignment

	
Contribution of the Variables (%)




	
F1

	
F2

	
F3






	
1

	
aggregate 0–0.5 mm

	
9.2

	
15.7

	
6.5




	
2

	
aggregate 0.5–2 mm

	
5.4

	
23.1

	
8.3




	
3

	
aggregate 2–4 mm

	
8.8

	
10.8

	
2.7




	
4

	
cement

	
13.7

	
5.3

	
1.2




	
5

	
water

	
13.7

	
5.4

	
1.2




	
6

	
consistency

	
0.5

	
1.2

	
66.1




	
7

	
air content

	
2.2

	
23.9

	
8.1




	
8

	
mix density

	
11.7

	
7.2

	
2.6




	
9

	
compressive strength

	
11.4

	
1.9

	
0.5




	
10

	
concrete density

	
13.7

	
1.0

	
1.1




	
11

	
splitting tensile strength

	
9.7

	
4.5

	
1.7
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