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Abstract: Tensile deformation behavior and microstructure of nickel-base superalloy Inconel 625
are investigated under different strain rates of 5 × 10−4 s−1 and 5 × 10−5 s−1. According to the
experimental results, yield strength and ultimate tensile strength of the alloy increase with the
increase in strain rate in room temperature. Microstructure results indicate that the size of dimples
is smaller in the tensile fracture surface at low strain rate than the high strain rate, and the number
of dimples is also related to the strain rates and twins appear earlier in the specimens with higher
strain rates. Apart from Hollomon and Ludwik functions, a new formula considering the variation
trend of strength in different deformation stages is deduced and introduced, which fit closer to the
tensile curves of the 625 alloy used in the present work at both strain rates. Furthermore, the Schmid
factors of tensile samples under two strain rates are calculated and discussed. In the end, typical
work hardening behavior resulting from the dislocations slip behavior under different strain rates
is observed, and a shearing phenomenon of slip lines cross through the δ precipitates due to the
movement of dislocations is also be note.

Keywords: nickel-based superalloys; tensile behavior; strain rate sensitivity; failure mechanism

1. Introduction

Inconel 625 superalloy is extensively used as a structural material in aeronautical,
petrochemical, and marine industries because of excellent high-temperature mechanical
properties and resistance to severely aggressive corrosive environments especially in appli-
cations require a moderate strength at temperatures below 1200 ◦C [1–4]. Generally, the
alloy derives its strength from the solid-solution hardening effect by adding substitutional
alloying elements chromium (Cr) and molybdenum (Mo). In addition, during the aging
process, in the austenite matrix at the temperature range of 600–650 ◦C [5], precipitation
hardening of this alloy is mostly born of the precipitation of delicate metastable phase γ
(an ordered body-centered tetragonal structure with Ni3Nb stoichiometry), the equilibrium
phase δ (an ordered orthorhombic structure), formed directly during aging at 750 ◦C and
above or by a transformation of the metastable γ phase [6,7], and the intergranular precipi-
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tations Laves phase also the blocky MC (M denotes Nb, Ti), M6C (M denotes Si, Ni, Cr),
and M23C6 (M denotes Cr) carbides [8–10].

Strain hardening behavior is a critical factor in evaluating the plastic deformation of
materials, especially for different strain rates [11–13]. Zheng et al. [14] studied the effect of
temperature and strain rate on tensile properties of UNS N10276 and correlated the fracture
modes with the mechanical properties gained from the tensile tests. Ajit K. Roy et al. [15]
presented a mechanistic understanding of relation of the plastic deformation of Alloy C-276
and its temperature and strain rate. Two strengthening mechanisms in Inconel 718 alloy
based on the values of strain-hardening coefficient is identified by Sundararaman et al. [7]
as: (i) when n~0.85, the fracture mode exhibits shearing of γ precipitate particles by
dislocations; (ii) when n < 0.57, the fracture mode exhibits twinning within γ particles. The
activation of the local slip on multiple slip system is found by ALAN Xu et al. [16], which
caused strain hardening during in situ micro-tensile tests. Moreover, an increase in strain
rate causes an increase in flow stress for single Ni crystals during tensile test along <100>
and <110> directions. Zhang et al. [16] investigated the strain hardening behavior and
deformation microstructure of single crystal superalloys CMSX-4, and calculated strain
hardening rate with several empirical equations. Vani Shankar et al. [3] also calculated
the values of strain-hardening coefficient and exponent of thermally aged service exposed
625 alloy using experimental functions. J. Mittra et al. [17] investigated the deformation
behavior of Alloy 625 in precipitated and unaged conditions, and explained the deformation
phenomena with deformation microstructure and various parameters obtained from the
work-hardening analysis.

Thus far, only a few works have been published that study the strain hardening
behavior, and the strain rate sensitivity of Inconel 625 alloy, an empirical fitting formula
of flow stress curves specially for this material is scarely seen in the open literature. The
current study aims to analysis the strain hardening behavior and failure mechanism of
Inconel 625 alloy through micro-tensile tests at two different strain rates and to fit the strain
hardening exponent with different empirical equations and a modified ‘hybrid’ equation.
Then, the electron microscopy was used to observe the fracture surface and to define the
slip properties and dislocation distribution, and to study the deformation behavior and
failure mechanism under both strain rates. In the following content, the experimental
procedures are described in Section 2. In Section 3, the hardening exponent is calculated
using a different fit equation, and deformation microstructure characterization at different
strain rates about 2.0% plastic strain is observed and presented. Furthermore, the Schmid
factor is calculated, and the compressive strength and deformation mechanics are analyzed.
After that, the conclusion is presented in Section 4.

2. Experimental Procedure

The material was solution treated at 1200 ◦C for 2 h followed by water quenched
immediately and the chemical composition of Inconel 625 alloy used in this work is
provided by the manufacturer which is presented in Table 1. Tensile tests were performed
on test system SHIMADZU AGX 100 (SHIMADZU CORPORATION, Kyoto, Japan) at
two different strain rates, i.e., 5 × 10 −4 s−1 and 5 × 10 −5 s−1, respectively, at room
temperature (RT). The micro-specimens for monotonic tensile testing were designed as
the micro-plate shape referring to the international standard and previous work [16,18], as
shown in Figure 1. Three specimens were tested at each strain rate, and one of the three
specimens was interrupted at around 2.0% plastic strain to study the deformation structure.

Table 1. Chemical composition (wt.%) of the Inconel 625 alloy used for the current study.

Ni Cr Mo Nb Fe Ti Al

residue 20.0~23.0 8.0~10.0 3.15~4.15 ≤5.00 ≤0.40 ≤0.40

Co C Ta Si, Mn P, S O N

≤1.0 ≤0.10 ≤0.05 each ≤ 0.5 each ≤ 0.05 ≤200 ppm ≤200 ppm
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H2SO4 and CH3OH with a volume ratio of 1:4. After that, the microstructure of as-received 
material is detected using Quanta 450F scanning electron microscope (SEM) (FEI Na-
noPorts, Hillsboro, OR, USA) with HKL Channel 5 electron backscattering dif-fraction 
(EBSD), and FEI-TALOS F200X transmission electron microscope (TEM) (Oxford Instru-
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Quantification of microstructure characteristics was achieved by EBSD. Pole figures 
show that there is no obvious texture in the material and the statistical results show that 
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extent the high tensile strengths of the superalloy [20]. Moreover, a significant level of 
misorientation about 60 deg indicates an array of twins in the as-received materials [21]. 

Figure 1. The geometry of the tensile test specimens (unit: mm).

To check the microstructure before the tests, specimens for microstructural observation
were wet ground with 400~1200 grit SiC papers and then were etched in a solution of
H2SO4 and CH3OH with a volume ratio of 1:4. After that, the microstructure of as-received
material is detected using Quanta 450F scanning electron microscope (SEM) (FEI NanoPorts,
Hillsboro, OR, USA) with HKL Channel 5 electron backscattering dif-fraction (EBSD), and
FEI-TALOS F200X transmission electron microscope (TEM) (Oxford Instruments, Oxford,
UK) with Super-XTM EDS detector at 200 kV voltage, respectively. In the end, morphologies
of the fracture surfaces of the specimens were observed by scanning electron microscope
(SEM).

3. Results and Discussion
3.1. Initial Microstructure

Quantification of microstructure characteristics was achieved by EBSD. Pole figures
show that there is no obvious texture in the material and the statistical results show that
the sample mainly consists of equiaxed grains and the average grain size is 11.61 µm. The
graphic of the frequency of the grain misorientation distribution of the as-received alloy,
presented in Figure 2d, exhibits a relatively high fraction of low angle grain boundaries
(LAGBs, θ < 15◦) [19] caused by the presence of substructures created by a large number
of dislocations. These structures can hinder the slip of dislocations explaining to some
extent the high tensile strengths of the superalloy [20]. Moreover, a significant level of
misorientation about 60 deg indicates an array of twins in the as-received materials [21].

Furthermore, the main composed phase in as-received Inconel 625 superalloy pre-
sented in Figure 3 by TEM images is γ phase, and the needled morphology distributed
within the grains and at their boundaries suggests δ phase [22]. Apart from the needled-like
δ phase, a globular precipitate is also be found in the intergranular regions.

To differentiate the identity of these precipitates, two areas, labeled 1 and 2, respec-
tively, in Figure 3b,c, were selected for the TEM observations and EDS pattern microanalysis.
For precipitate 1, based on its chemical analysis result, the average composition of this
needled-like precipitation was determined for the major concentrations of Ni, Nb, Fe, Ti,
Cr. The results confirm that it is δ phase [1,23–25]. As to the large blocky precipitate 2,
the EDS analysis results of this area revealed that this polygonal shaped precipitate was
Laves phase, which is consistent observed by Wang et al. [26–29]. To summarize, according
to the SEM and TEM observations, it can be claimed that the δ phase is present in the
γ matrix, and a few brittle phase of Inconel 625, Laves particles can be found at grains
boundaries [30,31].
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Figure 3. (a) TEM microstructure of the as-received sample; (b,c) EDS pattern of the selected areas.

3.2. Dependence on Strain Rate of Tensile Behavior

The stress–strain curves under different strain rates were shown in Figure 4. All
the specimens show a similar performance during the whole elastic stage. However,
no apparent serrated flow behavior was observed on the micro-plasticity stage. As to
the macro-plasticity stage, with continuous deformation, the true stress increases until
fracture. It was evident that the yield strength and the ultimate tensile strength increase
with increasing strain rate from 5 × 10−4 s−1 to 5 × 10−5 s−1 as illustrated in Table 2.
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Table 2. Mechanical properties of Inconel 625 at two strain rates.

Strain Rate No. E (GPa) Yield Stress (MPa) Tensile Strength (MPa)

5 × 10−4 s−1 4-1 206.36 1158.35 1649.79
4-2 202.77 1176.01 1631.73

Average 204.57 1172.18 1640.76

5 × 10−5 s−1 5-1 199.76 1107.62 1596.18
5-2 198.08 1131.28 1569.32

Average 198.92 1119.45 1582.75

Besides, from Figure 4, a significant strain rate sensitivity was observed above the
elastic limit. To evaluate the strain hardening behavior, the hardening capacity Hc of
Inconel 625 can be described as following [32],

Hc =
σUTS − σy

σY
=

σUTS
σY

− 1 (1)

Considering no obvious yield point in the stress–strain curves, σY is determined as the
engineering stress proof 0.2% plastic deformation, and σUTS is the ultimate tensile strength.
The Hc value of each specimen was calculated and listed in Table 3. However, a small gap
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of Hc between both strain rates is not sufficient to justify the hardening capacity of the
superalloy. To further confirm the strain hardening behavior of the superalloy, the strain
hardening exponent (n) of the alloy was evaluated using several mathematical expressions,
which are the most common. However, it is not surprising that these empirical equations
can not accurately describe the stress–strain curves for a specified metals. Thus, the aim of
this section is to study the applicability of two types (unsaturation extrapolation formula
and saturated extrapolation formula) widely used fit functions [33,34] for the estimation of
the n exponent, and to suggest an improved stress–strain fitting model.

The unsaturated model is represented by classical Hollomon [35] and Ludwik equa-
tion [13,36]. The Hollomon model is a typical full-strain model, which describes that the
material strength increases in the form of power of constant hardening coefficient (n) during
the whole process of deformation. The Ludwik model is an evolution of the Hollomon
model with a fixed initial value. The extrapolated stress value of the Hollomon and Ludwik
model has no upper limit, and they are written, respectively, as the following:

σ = K1εn1 (2)

σ = σY + K2(ε − εY)
n2 (3)

where n1 and n2 are the strain hardening exponent; K1 and K2 are the strength parameters
of the superalloy; σ and σy are true stress and yield stress, respectively; ε is the true strain
and εy used in Equation (3) is the true strain before yielding, which means the Ludwik
equation only considers the true plastic deformation stage (i.e., between yield strength and
ultimate tensile strength) for the curve fitting.

The variations in true stress (σ) with the true strain (ε) and true plastic strain
(ε− εY) were, respectively presented as double logarithmic plots in Figure 5. The hardening
exponent (n1, n2) is determined as the slope of the corresponding curve, as shown in Table 3.
Calculation results of n1 and n2 expose a similar rule that hardening exponent increases
with increasing strain rate. This distinctly indicates that the strain hardening stages of the
Inconel 625 alloy used in this work are related to the strain rate. It must be pointed out
that a much higher growth of n2 at strain rate from 5 × 10−4 s−1 to 5 × 10−5 s−1, fitted by
Equation (3) than that of n1 was strongly due to Equation (3) exclusive the impact of elastic
deformation stage based on Hook’s law which has no contribution for strain hardening.
Accordingly, the index n2 is more sensitive to the strain rate than n1 fitted by the Hollomon
equation.
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Table 3. Hardening index of Inconel 625 at two strain rates.

Strain Rate No. Hardening Capacity n1 n2 n*

5 × 10−4 s−1 4-1 0.42 0.14 0.40 0.34
4-2 0.39 0.15 0.41 0.35

Average 0.41 0.15 0.41 0.35

5 × 10−5 s−1 5-1 0.44 0.13 0.35 0.3
5-2 0.39 0.14 0.41 0.3

Average 0.41 0.14 0.38 0.3

Referring to the above mentioned, model with the constant initial value, i.e., start from
the yield point (0, σY) seems to be more suitable for the hardening exponent calculation.
However, as the stress increases indefinitely with the strain increases, the unsaturated
extrapolation model shows deficiencies at the end of the deformation as presented in
Figure 6 (blue dotted line). On this basis, saturated extrapolation model introduced the
concept of hardening factor is of great significance in describing the large strain stage, in
which Hockett–Sherby (H–S) [37] is a typical model, as follows:

σ = σY + (σ∞ − σY)
[
1 − em1(ε−εY)

n]
(4)

m1 is material constant; σ∞ is the stress at fracture.
The fitting curves of H–S method were shown in Figure 6. It is not hard to find that

when the material starts to yield, flow stress rises rapidly, and the Ludwik equation is
better fit for this stage than the H–S, then as the strain increases, unsaturated extrapolation
loss accuracy, in contrast, H–S curves match better with the true case. At this point, a key
problem of these above-mentioned fit equations appears: How to find a more appropriate
formula, that considers both specialties of the whole variation trend. Hence, a hybrid
method consists of the Ludwik and the H–S equation with a strain-dependent factor Φ is
presented as below:

σ = σY + (1 − Φ)K(ε − εY)
n∗ + Φ(σ∞ − σY)[1 − exp(m2((ε − εY)

n∗)] (5)

where Φ = cε/ε∞, ε∞ is the strain at fracture; n* is the hardening exponent; m2, c and K are
the material constant. Relevant parameters of the hybrid model and the relative error are
in Table 4. Error analysis was realized by taking relative error (RE) of curve integral, where
the error is defined as:

RE =

∫
|σFIT − σEXP|dεp∫

σEXPdεp
× 100%

where, σFIT, σEXP are the fitted stress and experimental stress, respectively; εP is the true
plastic strain. The error results show that the curve fitted by the hybrid model has the
highest approximation to the measured curve, and its relative error reaches 0.48% and
0.79% at 5 × 10 −4 s−1 and 5 × 10 −5 s−1, respectively.

In addition, according to the change in strain, this new hybrid model contributes
to harmonizing the proportion of saturated and unsaturated equations. Obviously, the
divergence of flow stress control by the Ludwik equation decreases significantly, as H–S
gradually takes its effect with the increase in true plastic strain. The fit curves of these
models can be seen in Figure 6, in which Ludwik and H–S fitting curves show their
limitations, hybrid model, by contrast, always keeps consistent with the true curve and
the hardening exponents obtained by the new method were also listed in Table 3. The
largest gap of n* from 0.3 to 0.35 between two strain rates indicates the material’s strain rate
sensitivity, whereas a dramatic increase in stress at the latter stage of deformation leads to
a higher value of n2 fitted by Ludwik equation. Analysis of exponents also confirms the
applicability of this new hybrid model for specified 625 superalloys.
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Table 4. Fitting parameters of different model.

Strain Rate
Hybrid Model Ludwik H–S

c m2 K ER ER ER

5 × 10−4 s−1 1.33 2.9 663 0.48% 0.70% 1.12%
5 × 10−5 s−1 1.42 2.65 584 0.79% 1.09% 1.01%

3.3. Fracture Pattern and Microstructure Morphology

According to the above investigation, the tensile properties of Inconel 625 superalloy
depend strongly on the strain rates, resulting in different fracture patterns at both strain
rates. In that way, the representative SEM micrographs of fracture morphology of the
specimens after tensile tests show quite different features, as shown in Figure 7.

A slight neck can be observed at both strain rates, as shown in Figure 7a,b, which
indicates that local plasticity presents before final failure. There is a flat fracture surface
with river patterns and fine and shallow dimples on the fracture surface at 5 × 10−5 s−1

presented in Figure 7d,f, which show ductile fracture mode by the occurrence of dimples
on the fracture surface. Comparing to the low strain rate, a large number of transgranular
cracks can be observed from the specimens destroyed under 5 × 10−4 s−1 in Figure 7c.
However, the tensile fracture of high strain rate is mixed mode of fracture though the
failure was predominantly intercrystalline. It should also be indicated that the dimple size
increases with the increasement of the strain rate.

To study the deformation mechanism and dislocation configuration, the TEM images
of interrupted tensile tests (2.0% plastic strain excluding elastic strain) as shown in Figure 8
and are gathered for the following analysis. All the deformed samples show planar slip
with high dislocation density. Some specific slip bands (Figure 8a) consisted of dislocation
structure of densely packed primary and secondary dislocations was observed in the
gauge length [38,39]. A few nano deformation twins are occasionally observed in several
grains [40] at 5 × 10−4 s−1 without 5 × 10−5 s−1, see Figure 8b Generally, in face-centered
cubic (FCC), twinning is facilitated through lower stacking fault energy (SFE) and special
deformation conditions (such as low deformation temperatures or high strain rates) [41,42].
For Inconel 625, as an FCC metal with low SFE, the deformation mechanism is twinning
({111}<112>) and dislocation slip ({111}<110>) through the tensile deformation modes [43].
Therefore, slip is the main deformation mode during the initial stages of tensile deformation
under both strain rates. After dislocation multiplication and tangle formation, further
deformation results in dislocation cross slip being suppressed to that extent the cross slip
of Shockley partial dislocations could lead to intrinsic stacking faults on parallel {111}
planes, leading to twins [44]. Thus, twinning is the other deformation mode during the



Materials 2021, 14, 2652 9 of 16

futher stages of tensile deformation, and twin boundaries act as strong obstacles to the
dislocation motion, resulting in improvement of alloy strength [45,46]. Li et al. [47] has
also found the deformation twins in other alloys, and demonstrate that this critical change
of deformation mechanisms from dislocation slips to twinning behavior is responsible for
such an increasing of hardening exponent (n) value from 5 × 10−5 s−1 to 5 × 10−4 s−1.
This is consistent with our experimental results.
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Figure 8. The TEM microstructure of Inconel 625 superalloys at 2.0% plastic strain. (a) slip band (b)
nano deformation twin at 5 × 10−4 s −1 sample.

In addition, the typical planar slip during deformation is dicided by the Schmid factor
and yield stress. With the consideration of the crystal orientation, the critical resolved shear
stress (CRSS) can be determined as following with Schmid’s law [48].

τCRSS = σY M (6)

where M is Schmid factor.
To define the relationship between Schmid factor and slip, a free MATLAB toolbox

MTEX [49] was used to calculate the Schmid factor and visualize the active slip systems of
a given EBSD map in Figure 9. The Schmid factor on different slip systems and CRSS of a
typical grain is presented in Table 5.Materials 2021, 14, x FOR PEER REVIEW 11 of 18 
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Figure 9. Schematic of slip direction calculated by MTEX.

The slip direction calculated by MTEX (white arrow) is in accordance with the EBSD
map presented in Figure 9. and the results show possible primary slip system was (−1, 1,
−1) [0, −1, −1], the secondary slip system (111) [0, −1, 1] and the third slip system (−1,
1, 1) [1, 0, 1] are activated during tensile tests. Furthermore, the max CRSS value on the
strain rate of 5 × 10−4 s−1 is 573.72 Mpa, which is higher than 547.91 MPa at 5 × 10−5 s−1.
It indicates that CRSS value can be affected by the strain rate, which can be explained with
the Taylor equation;

τ = τ0 + αGb
√

ρ − ρ0

where α is a constant measuring the efficiency of dislocation strengthening, G is the shear
modulus and b is the Burgers vector, hence it is clear that shear stress (τ) is directly related
to the final dislocation density (ρ).
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Table 5. Slip behaviour and CRSS of Inconel 625 at two strain rates.

Slip Slip Slip Schmid Critical Critical
System Plane, n Direction, s Factors, Resolved Resolved

|M| Shear Stress, Shear Stress,
τcrss τcrss

Strain Rates: Strain Rates:
5 × 10−4 s−1 5 × 10−5 s−1

γ1
(−1, 1, −1)

[−1, −1, 0] 0.29 337.37 322.19
γ2 [0, −1, −1] 0.49 573.72 547.91
γ3 [1, 0, −1] 0.20 236.35 225.72
γ4

(1, 1, 1)
[−1, 0, 1] 0.27 322.24 307.74

γ5 [0, −1, 1] 0.42 490.05 468.01
γ6 [1, −1, 0] 0.14 167.81 160.26
γ7

(−1, 1, 1)
[0, −1, 1] 0.18 209.38 199.96

γ8 [1, 0, 1] 0.35 405.90 387.64
γ9 [1, 1, 0] 0.17 196.53 187.68
γ10

(1, 1, −1)
[−1, 0, −1] 0.13 152.68 145.82

γ11 [−1, 1, 0] 0.02 26.97 25.76
γ12 [0, −1, −1] 0.11 125.71 120.06

3.4. Failure Mechanism

In this section, the work-hardening concepts were induced to explain and predict
the stress–strain response of the alloy from the point of dislocation theosries, and the
work-hardening rate of 625 superalloy shows an increase with increasing strain rate. As
seen in the Kocks–Mecking type plot of strain hardening rate θ (=dσ/dε); vs. net flow stress
(σ − σY) at two strain rates of the Inconel 625 superalloy, as shown in Figure 10, work-
hardening behaviour of this alloy is characterized by an initial sharp fall in θ, followed
by satge II, i.e., a plateau and then a further gradual fall can be denoted as stage III
work-hardening, respectively [17].
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Stage II is characterized by a high initial θ value that almost stabilised at a constant, and
such a behaviour is attributed to an initially linear stage II strain hardening behaviour [12].
Additionally, the stress reaches the CRSS, one or more slip systems are activated in this
stage. Meanwhile, dislocation shear into δ phase has been observed, as shown in Figure 11,
which plays an important role in controlling the tensile performance of the alloy. As to stage
III, the sharp drop in the slope of the sample under 5 × 10 −4 s−1, as shown in Figure 10,
occurs earlier than that of the low strain rate sample. This indicates a premature recovery
process occurs on a high strain rate sample, speculated as once the recovery process starts
in the specimen with higher dislocation density, it goes faster than the other [17].
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Based on the above discussion, a model about strain hardening takes into account to
explain the strain hardening behavior of this alloy [50],

σ = σ0 + σHP + σd (7)

where σ0 is the stress contributed by the friction; σHP = kd1/2 is contributed by the Hall–
Petch; σd = MαGbρ1/2 is contributed by the Taylor dislocation.

During deformation, the gliding of dislocation causes plastic strain in the material. As
the strain increases, the material begins to yield, dislocations nucleate, and interact, leading
to dislocation density increases. Thus stress contribution caused by dislocation density can
be written as the total flow stress subtracting the yield stress,

ρ1/2 ∝ σd − σy (8)

The applied stress necessary to deformation is obviously proportional to the dislo-
cation density in the material. Thus far, dislocation density is affirmed necessary in this
investigation. The magnitude ρ was determined by the line intersection method [51–53]
based on the superimposition of a grid consisting of horizontal and vertical test lines on
the TEM micrographs that contained dislocations of the specimens at both strain rates.
Since here we only need to compare the different influence between the two strain rates
qualitatively, we can briefly distinguish the dislocation density of different strain rates by
computing the average number of intersections of each test lines with dislocations. To
simplify the computing process further, the grid was drawn as a square, as illustrated in
Figure 12. For each strain rate, two pictures were used, and for each picture, we grid two
areas that unaffected by the precipitate, then the computing results are listed in Table 6.

However, the average values of intersection number determined from the TEM mi-
crographs of tensile specimens strained at 5 × 10−4 s−1 was relatively higher than the low
stain rate ones 5 × 10−5 s−1. This can also be verified by examining the TEM micrographs
presented in Figure 11, showing the denser population of dislocations at this strain rate. Es-
srntially, the number and velocity of dislocations are improved at a high strain rate, which
accompanied with the increasing of the dislocation density per unit area. Accordingly, the
high initial dislocation density in the high strain rate specimens might have contributed
to the initial high and nearly constant strain hardening rate (i.e., stage II linear hardening
shown in Figure 10 of the specimens under 5 × 10−5 s−1. This suggests that much higher
activation energy is required for the plastic flow due to powerful barriers to the dislocation
movement [54]. As described by reference [12], a positive work hardening stage II occurs
due to continuous reduction in mean free path during dislocation–dislocation interaction
and dislocation pileups at the grain boundary. Thus, the Taylor dislocation contribution
σd = MαGbρ1/2 in Equation (7) dominates this region. The increasing of the number of
dislocations leads to the increasing of the resistance to the dislocation movement, and the
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stress required to deform the materials becomes higher with increasing deformation. This
is in accordance with Zhang’s results in nickel-based superalloy [16].
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Table 6. The number of dislocation under both strain rates.

Strain Rate Grid Number of Intersections

5 × 10−4 s−1

1 17.50
2 21.17
3 18.17
4 16.50

average 18.33

5 × 10−5 s−1

5 7.33
6 7.83
7 6.83
8 6.50

average 7.13
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Moreover, an interesting phenomenon worth to note is that the original shearing
direction changes when dislocations slip shear through the δ phase under a low strain
rate, see Figure 11. In contrast, under a high strain rate, shearing is always in the same
direction. The following statement may interpret this strain rate related performance:
When experiments were carried out at a high strain rate, with a high per unit time strain,
the inside of the material is subjected to more intense deformation per unit time, which
means more energy is imported to help dislocations go through the obstacle. On the
opposite, low strain rate specimens cannot cross the δ phase directly. Therefore, shearing
direction will change to the pass with the lowest energy cost [55–58].

4. Conclusions

Tensile tests have been conducted on nickel-base superalloy Inconel 625 under two
strain rates at RT. The main conclusions derived from this study are as follows:

(1) All the strain–stress curves show a similar trend: no apparent serrated flow on the
micro-plasticity stage. During the macro-plasticity stage, the true stress increases
until fracture. In contrast, there are differences between different strain rates: with
increasing strain rate from 5 × 10−4 s−1 to 5 × 10−5 s−1, the yield strength and the
ultimate tensile strength increase.

(2) Higher strain rate also results in greater strain hardening exponents. It should also
be pointed out that the equation excludes the impact of the elastic deformation stage
on Hook’s law, is more appropriate to fit the strain hardening exponents n than
the Hollomon equation. In addition, the hybrid model, integrates saturated and
unsaturated methods is the most accurate for the calculation of hardening exponents.

(3) The fracture morphologies of tensile specimens depend on the strain rate. Flat fracture
surface and dimples can be observed in all the deformed samples. The size of the
cleavage facet and dimple increases with the increase in the strain rate.

(4) The strain hardening stages depend on the strain rate. Under a high strain rate,
specimens possess a high constant work hardening value at stage II and a high slop in
stage III. The original shearing direction changes when dislocations slip shear through
the δ phase under a low strain rate, while under a high strain rate, shearing is always
along the same direction.
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