
materials

Article

Application of Statistical Methods in Predicting the Properties
of Glass-Ceramic Materials Obtained from Inorganic
Solid Waste

Anna Zawada 1,* , Iwona Przerada 1, Małgorzata Lubas 1, Maciej Sitarz 2 and Magdalena Leśniak 2
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Abstract: This paper uses mathematical methods as the basic tool at the stage of experiment planning.
The importance of research programming applications was shown using the theory of experiments
and the STATISTICA software. The method of experiment planning used in the case of studying the
properties of a mixture, depending on its composition, features considerable complexity. The aim
of the statistical analysis was to determine the influence of variable chemical composition of waste
materials on selected properties of glass-ceramic materials. A statistical approach to multicomponent
systems, such as ceramic sets, enables the selection of appropriate amounts of raw materials through
the application of ‘a plan for mixtures’. To utilize the raw waste materials, e.g., slags from a
solid waste incinerator, fly or bottom ashes, in the modeling of new materials, a mathematical
relationship was developed, which enables estimating, based on the waste chemical composition,
selected technological and practical properties of the glass so as to obtain a material featuring the
required technological–practical parameters. For the obtained glasses, a comparative analysis of
the experimentally and computationally determined properties was carried out: transformation
temperature, liquidus temperature, density, and thermal expansion coefficient. The obtained high
theoretical approximation (at the level of determination correlation coefficient R2 > 0.8) confirms
the suitability of the polynomial model for mixtures for applications in the design of new glass-
ceramic products.

Keywords: experiment planning; statistical modeling; waste management; glass-ceramic materials

1. Introduction

The accumulation of mineral residues in industrial production has reached a volume
of several hundred-million tons/a year. Their recovery and/or disposal result in growing
cost-intensive problems, such as a growth barrier or location problem [1]. Future legislative
activities can be expected to further aggravate this situation [2]. Various attempts were
made in the past to dispose of ashes and slags, e.g., from waste incineration [3–6].

The investigations carried out so far have shown that the production of higher-quality
molded glass products from residues is most difficult because the composition of these
substances, consisting of ashes, slags, and dusts, varies greatly [7–11]. In addition, melts
of these materials usually have difficult processing properties, such as low viscosity, a
strong tendency to crystallize, and a relatively high processing temperature. In preliminary
experiments, it was shown that the material and processing properties could be adapted to
the requirements by adding further residues, such as waste glass shards and old sands. The
processing of residual waste in the melting phase into glass-ceramic (e.g., roofing material)
and other shaped products requires the solution of material–technical and procedural

Materials 2021, 14, 2651. https://doi.org/10.3390/ma14102651 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9506-9972
https://orcid.org/0000-0002-8339-2710
https://orcid.org/0000-0002-1773-214X
https://www.mdpi.com/article/10.3390/ma14102651?type=check_update&version=1
https://doi.org/10.3390/ma14102651
https://doi.org/10.3390/ma14102651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14102651
https://www.mdpi.com/journal/materials


Materials 2021, 14, 2651 2 of 11

issues [12–14]. Fluctuations in the composition of the residues to be used have an effect on
both the product properties and the processing properties. So far, in glass technology, the
composition has always been kept constant in order to ensure desired properties. In the
recycling of residues, due to the strong fluctuations in their compositions in unfavorable
cases, a high proportion of additional raw materials would be required, and thus, the
amount of residual material decreases or the amount of product to be processed increases.
In order to be able to use a maximum of residues, an attempt is made to produce products
with the same properties but different compositions [15–17].

In each industrial sector, the use of solid waste is related to a permanent control of its
chemical composition. In many cases, the variability of chemical composition of processed
waste makes ensuring the stability of product properties obtained on its basis impossible.

Experimental methods are widely used in both research and industrial applications,
although sometimes to achieve different goals. The primary goal of scientific research is
to show that the influence of the chosen factor on the researcher of interest is statistically
significant [18,19].

The task of modeling is different. In the given context, only the following subarea
is interesting. There is a functional relationship between the influencing variables and
the response quantity, which can be expressed quantitatively using, among other things,
mathematical–statistical methods. A statistical model is then obtained which, in a limited
area, reflects the relationships between influencing factors and target variables in more
or less good approximation, depending on the quality of the adaptation. As a statistical
model for influence and effect relationships, the regression model is often used [20,21].

The applicability of the model can be checked using various methods. There is a
possibility of internal or external validation. In internal validation, the data are used both
to build the model and to verify it. External validation is performed using other data which,
however, must also be representative. To check the model, tests can also be carried out in
which the target variables were predicted with the aid of the model. The measured values
are compared with the predicted values. In the event of deviations, the reason must be
found, and the model may have to be recreated. As a result, a model becomes better and
better and more stable against unwanted influences [22,23].

The experimental methods are widely used both in science and in industrial applica-
tions. The basic objective of scientific research consists in showing that the influence of
the selected factor on the magnitude, in which the researcher is interested, is statistically
significant. The basic objective in the industry frequently consists in obtaining the maxi-
mum number of unbiased results, describing the factors affecting the production process,
in addition to an as small as possible number of measurements.

Statistical test planning can be used for laboratory tests as well as for large-scale
production tests. The aim of statistical experiment planning is to obtain a maximum
of information with as few experiments as possible. However, there are restrictions.
Extrapolations beyond the examined area are not permitted. The random scatter must also
be taken into account. In systems with periodic or discontinuous behavior, statistical test
planning can only be used to a limited extent.

Taking into consideration the basic chemical composition of the waste, as well as the
role fulfilled by its individual components during the processing, it is possible to develop a
computational model, based on which the main technological–practical parameters will
be determined. The aluminosilicate glasses were the research area analyzed in this paper.
In a multicomponent area, such as the chemical composition of glass, the matching of a
computational model was based on a statistical plan for mixtures, starting from linear
through to square and reaching a full third-order model. The choice of an appropriate
model allowed to determine basic technological parameters is necessary to manufacture
glass-ceramic materials. A controlled transformation of slags and fly ashes from solid
waste incinerators into functional glass-ceramic materials allows limiting the storage of
hazardous materials, protecting the environment from high-risk substances, and reducing
the costs of their storage. Recycling such waste in combination with other waste materials,
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e.g., glass cullet, makes it possible to completely dispose of the end poisonous products of
combustion [24,25].

Mathematical methods are most often used in the analysis of research results. This is
the most appropriate and purposeful approach, but it should be stated that their application
at this stage of research is too late. It is forgotten that mathematical methods should emerge
as a basic tool in the planning phase of an experiment. The aim of this study is to pay
special attention to the research phase, called planning the experiment.

2. Experimental Procedures

The purpose of each type of experimental research is to obtain information on the
relationship between the values taken as input (independent variables) and the output
values (dependent variables). This type of relationship is most often presented in the form
of an approximating function of the research object; sometimes, the obtained relationship
becomes a mathematical model of the research object. This happens when the obtained
model is a cause-and-effect relationship based on the substantive analysis of the research
object. Thus, not every approximating function of the research object obtained will be
a mathematical model, but it can be used, for example, for optimization or simulation
purposes. Another effect of the research may be the determination of the significance of the
influence of the input quantities on the output quantities, which enables the elimination of
irrelevant factors.

2.1. The Plan for Mixtures

The experiment planning allows answering two basic questions: how to plan the
optimum experiment and how to analyze the obtained results of studies [18]. The method
of experiment planning used in the case of studying the properties of a mixture, depending
on its composition, features considerable complexity.

In the case of ceramic materials obtained and based on raw waste material, it is difficult
to unequivocally characterize the area of practical applicability of such waste (ranges of
chemical compositions and components’ quantitative ratios). The introduced amount of
raw waste material is usually selected based mainly on its chemical composition, which
sometimes varies in wide ranges.

A statistical approach to multicomponent systems, such as ceramic sets, enables—
through the application of the ‘plan for mixtures’—selecting an appropriate amount of
raw materials, so as to obtain a material featuring the required technological–practical
parameters. Such plan can be used only if specific properties depend clearly on the amount
of the introduced component of the mixture, i.e., of the set. Sometimes the components
introduced to the set, even at small amounts, substantially change the properties, e.g., the
addition causing the nucleation of the phase crystallizing in the glass [26].

Graphs in triangular coordinates are a widely used method to present shares in the
mixture consisting most often of three components. A mixture of three components can be
unequivocally determined by a point in a triangular coordinates system defined by these
three variables. For each mixture, the total of individual component share values is 1. This
means that in a mixture system, in which three components exist (k = 3), the experiment
planning is limited to the area of a triangle. Then, it is necessary to carry out computations
for mixtures of composition described by the coordinates of vertices (i.e., triangle corners)
and of centers of gravity (triangle sides). Sometimes, such plans are supplemented by
computations for a larger number of mixtures, in which compositions are described by
coordinates of internal points within the triangle. At the increasing number of mixture
components, the number of experimental points, situated in the spatial geometrical system
in the plan of experiments, increases (Figure 1). From a mathematical point of view, the
space of allowed values of x components of the mixture is a simple x with x vertices on an
(x−1) dimensional hyperplane [4,18].
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Figure 1. Number of experimental points for 3 and 4 components (k). N—number of experimental
points; g—the degree of the regression polynomial [18].

The number of measurement points N is determined by Equation (1):

N =

(
g + k − 1

g

)
=

k(k + 1)(k + 2) . . . (k + g − 1)
1·2· . . . ·g (1)

where k—the number of components, g—the degree of regression polynomial.
The properties described by experimental points in a triangle, or possibly in a poly-

hedron, can be presented by means of degree 2 ÷ 4 polynomial. Using the computations
according to Equation (1), the minimum necessary number of experimental points was
determined, which is also equal to the number of coefficients b of the regression polynomial
(Table 1).

Table 1. Number of coefficients b of a regression polynomial in relation to the degree of the polyno-
mial and the number of components [18].

Number of
Components

x

Regression Polynomial

2nd Degree 3rd Degree 4th Degree

Number of Coefficients b

3 6 10 15
4 10 20 35
5 15 35 70
6 21 56 126
7 28 84 210
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2.2. The Canonical Form of Polynomials for Mixtures

The matching of the polynomial model for mixtures, describing the matching of the
response surface, starts from a linear model through square, special third degree and
ending at a full third-degree model. Table 1 presents the number of coefficients for each
model, depending on the number of mixture components.

The following models are usually used for mixtures: square and a simplified third
degree. Equations (2)–(4) present the form of polynomials for these models in the case of
three variables:

The linear model:
y = b1 × x1 + b2 × x2 + b3 × x3 (2)

The square model:

y = b1 × x1 + b2 × x2 + b3 × x3 + b12 × x1 × x2 + b13 × x1 × x3 + b23 × x2 × x3 (3)

The special cubic (third-degree) model:

y = b1 × x1 + b2 × x2 + b3 × x3 + b12 × x1 × x2 + b13 × x1 × x3 + b23 × x2 × x3 + b123 × x1 × x2 × x3 (4)

The response surface matching to the experimental results for mixtures is subject to
limitations; this means that the sum of all components must be constant.

The analysis of experiments with mixtures in practice is based on a multiple (multi-
dimensional) regression with a free term (b0) reduced to zero. The integrity condition for
the mixture (the sum of all components is constant) can be satisfied by the use of multiple
regression models, which do not contain a free term [3,18,27–34].

Analyzing the nature of glass properties changes, presented in model Figure 2 and
obtained based on slags from the solid waste incineration, depending on the basic chemical
composition, a second-order computational forecasting method in the form of Equation (3)
is assumed [35,36]. All tested properties of glasses showed compliance with the adopted
square model.

Figure 2. Changes in properties of aluminosilicate glasses related to their chemical composition (RO:
CaO + MgO).

The adopted square model perfectly describes the area of studied glasses, classified as
aluminosilicate glasses, featuring changes to properties depending on the chemical compo-
sition, which are not linear, such as those observed in the case of alkaline-silicate glasses.
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3. Results and Discussions

To create a full picture of the development of secondary materials’ properties (the
remainder originating at the solid waste incineration) depending on their chemical compo-
sition, percentage ranges of oxide contents, being the basis for further studies, have been
estimated based on the literature data (Table 2).

Table 2. Oxides content ranges (in wt%).

Oxide SiO2 Al2O3 CaO MgO Fe2O3 R2O *

wt% 45–60 8–20 10–25 3–15 2–10 4–6
* R—alkalimetals (Na, K).

Using a statistical research plan, compositions of 71 representative model glasses were
selected from the SiO2-Al2O3-CaO-MgO-Fe2O3-R2O system, being the basis for further
studies. For the determined oxide compositions of the glasses, sets were prepared from
pure raw materials (CERTECH, Niedomice, Poland) and were then melted in corundum
crucibles, in a laboratory furnace (CZYLOK, Jastrzębie-Zdrój, Poland), at a temperature
of 1500 ◦C for 120 min, and then poured into a steel mold. Table 3 presents examples of
nominal chemical compositions of melted glasses.

Table 3. Examples of oxide compositions of glasses melted according to the research plan (wt%).

Nr SiO2 Al2O3 CaO MgO Fe2O3 Alkali

1 46 21 23 2 2 5
2 44 13 21 8 9 4
3 59 9 10 13 2 5
4 46 10 22 14 2 5
5 60 19 11 3 4 4
6 45 21 23 2 3 5
7 58 14 19 2 3 4
8 45 23 18 3 6 4
9 46 19 10 10 7 5

10 43 21 18 3 10 4
11 44 8 21 4 4 6
12 46 9 19 3 4 7
13 45 9 19 4 4 6
11 43 8 21 4 3 6
12 44 9 19 4 4 6
13 45 8 19 4 4 7
14 54 8 16 3 3 6
15 46 9 17 3 4 7
16 49 8 18 3 3 7
17 48 8 18 3 4 7
18 48 8 18 3 4 7
19 48 8 19 3 4 7
20 47 8 18 3 4 7
14 50 8 18 3 4 7
15 46 9 20 4 4 7
16 47 9 20 4 4 7
21 47 9 20 4 4 7
22 47 8 19 4 4 7
23 48 8 19 3 4 7
24 46 8 19 3 4 7
25 51 8 18 3 4 7
26 51 8 18 3 4 6
27 48 8 20 3 4 6
28 45 8 19 4 4 6
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The following properties were determined experimentally for the obtained glasses:
the transformation temperature—Tg, the liquidus temperature TL, density ρ, as well as the
coefficient of thermal expansion α.

To determine the transformation temperature Tg (softening point), thermal expansion
can be used, which is characterized by the average coefficient of linear expansion α. The
change in the length of the glass sample during heating is recorded with a dilatometer.
Below the Tg temperature, the glass expands linearly. Above Tg, the glass also expands
linearly, but with a different slope of the straight line. The graphic designation of the Tg
temperature is the place of the intersection of the tangents to the straight lines above and
below the Tg (Figure 3).

Figure 3. Measurement of Tg using dilatometry.

The determination of thermal expansion coefficient α and transition temperature
Tg is closely related to the cooling process [37,38]. Samples must be well cooled before
measurement. For this, they are heated to a temperature of 30 K above Tg and then cooled
to 150 K below Tg at a rate of 2 K/min. During the measurement, the heating rate should
be 5 K/min. Figure 3 shows the measurement curve and its evaluation.

The determination of the thermal expansion coefficient and the transformation temper-
ature Tg was carried out using the linear dilatometer DIL 402 C (Netzsch, Selb, Germany),
under air atmosphere conditions, with a heating rate of 10 K/min.

The liquidus-TL temperature was determined in a gradient furnace with an accuracy
of ±5 ◦C (gradient tube furnace in which you can create a temperature gradient across
the furnace chamber (HTM Reetz GmbH, Berlin, Germany)). The samples are placed on
platinum plates. The glass samples were annealed in the temperature range of 900–1250 ◦C.
After the annealing process, the surface of the tested glasses was assessed using an optical
microscope (Opta-Tech LAB–40M, Warsaw, Poland), and the liquidus temperature was
determined on its basis.

In practice, the homogeneity and stability of the glass composition can be described
by measuring the density, which is also an important factor for the calculation of other
properties and design parameters. This parameter was determined for all samples by the
hydrostatic weighing method (set for determining the density of solids and liquids, RAD-
WAG, Radom, Poland). The density of the tested glasses ranged from 2.56 to 3.01 g/cm3.

The multiple regression function (3), which fit the experimental data expressed by
a determination correlation coefficient (R2), amounted to 0.87 for the transformation
temperature—Tg (Figure 4), 0.93 for the coefficient of thermal expansion—α (Figure 5), 0.82
for the liquidus temperature—TL (Figure 6), and 0.99 for the density (Figure 7). A poor fit
of the experimentally measured and forecast values, in the case of liquidus temperature
(the upper crystallization temperature), most likely resulted from the formation of various
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crystalline phases, for which additional parameters should be taken into account at the
selection of coefficients b of Equation (3).

If the values result in a straight line after being entered in a probability network, they
are normally distributed (Figures 5 and 7). Individual values that are far from the straight
line are likely to be outliers (Figure 6). There is no normal distribution if the values form a
clearly curved line. In this case, the values should be transformed, e.g., calculated with
the logarithmized or squared values. With the software (Statistica) used here for statistical
test planning, the test of the normal distribution is carried out on the basis of the residuals,
because the above procedure only applies to measured values determined under the same
conditions, but here, each test point was only implemented once. The residuals result from
the deviation between the estimated x value (calculated) and the measured value y.

R2 indicates how well the model fits the data and should be >0.8. For the selected
parameters, the model fits the data well in all of the properties tested. R2 values range from
0.8 to 1.0.

Figure 4. Comparison of the measured values (experimentally tested) with the estimated values
(calculated using the chosen mathematical model)—for a dependent variable: transformation tem-
perature (Tg) in ◦C.

Figure 5. Comparison of the measured values (experimentally tested) and the estimated values
(calculated using the chosen mathematical model)—for a dependent variable: thermal expansion
coefficient α, in 10−6/K.
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Figure 6. Comparison of the measured values (experimentally tested) and the estimated values
(calculated using the chosen mathematical model)—for a dependent variable: liquidus temperature
in ◦C.

Figure 7. Comparison of the measured values (experimentally tested) and the estimated values
(calculated using the chosen mathematical model)—for a dependent variable: density in g/cm3.

4. Summary

A controlled processing of slags and fly ashes from a solid waste incineration plant
into glass-crystalline materials allows reducing the dumping of hazardous substances,
creating a major threat to environmental protection and increasing the related costs [39].
The recycling of such waste in combination with other waste materials, e.g., a cullet,
provides the possibility of total disposal of the final products of the incineration.

Thanks to the results obtained in this work, it is possible to select an appropriate set
of raw materials for a given chemical composition of glass. However, to predict individual
property values from a given composition, or to calculate the composition for desired
properties, it is necessary to know and consistently apply the underlying test plan and
associated model.

To use waste in the manufacture of new materials, a mathematical relationship was
determined. This allows estimating, based on the waste chemical composition, selected
technological and practical properties of glass. The quality check of the created model
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confirmed that the model was well adapted to the data for almost all properties, and the
predictability of the property values was either good or very good.

The conformity of computed and experimentally determined values indicates a pos-
sibility to apply such a model in practice, which enables theoretically characterizing the
properties of glasses obtained on the basis of slags, ashes or dusts from a waste incinerator
within a broad range. The developed model also enables forecasting the course of certain
technological processes, e.g., crystallization. Such theoretical approximation is very useful,
in particular when designing new glass-ceramic products in the ceramics industry.
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