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Abstract: In this study, we applied microwave annealing (MWA) to fabricate amorphous In-Ga-Zn-O
(a-IGZO) thin-film transistors (TFTs) without thermal damage to flexible polyimide (PI) substrates.
Microwave energy is highly efficient for selective heating of materials when compared to conventional
thermal annealing (CTA). We applied MWA and CTA to a-IGZO TFTs on PI substrate to evaluate the
thermal damage to the substrates. While the PI substrate did not suffer thermal damage even at a
high power in MWA, it suffered severe damage at high temperatures in CTA. Moreover, a-IGZO TFTs
were prepared by MWA at 600 W for 2 min, whereas the same process using CTA required 30 min at
a temperature of 300 ◦C, which is a maximum process condition in CTA without thermal damage to
the PI substrate. Hence, MWA TFTs have superior electrical performance when compared to CTA
TFTs, because traps/defects are effectively eliminated. Through instability evaluation, it was found
that MWA TFTs were more stable than CTA TFTs against gate bias stress at various temperatures.
Moreover, an MWA TFT-constructed resistive load inverter exhibited better static and dynamic
characteristics than the CTA TFT-constructed one. Therefore, MWA is a promising thermal process
with efficient energy conversion that allows the fabrication of high-performance electronic devices.

Keywords: thermal damage free; microwave annealing; efficient energy conversion; flexible sub-
strates; a-IGZO

1. Introduction

With the remarkable advances in display technology, flexible or foldable electronic
devices are attracting considerable attention. Therefore, extensive studies have been
conducted on flexible thin-film transistors (TFTs) for backplane driving devices and flexible
substrates such as polymer plastics, ultra-thin glass (UTG) and metal foils [1–4]. Among
various flexible substrates, polyimide (PI) is attracting much attention due to its low
cost, relatively high thermal stability, and excellent mechanical/chemical properties [5–7].
Although PI is more suitable for high-temperature processes than other plastic substrates, it
does suffer damage at high temperatures due to the inherent thermal limitations of plastic
substrates [8,9]. Thus, stringent restrictions are placed on the thermal process, which is
essential for improving device performance in flexible substrate-based electronic devices.
For the fabrication of flexible and transparent TFTs, oxide semiconductor materials such as
amorphous Indium-Gallium-Zinc-Oxide (a-IGZO), are receiving increasing attention due
to their excellent electrical and optical characteristics, mechanical endurance, and chemical
and thermal stability [10–13]. The conventional thermal annealing (CTA) process using
an electrical resistance heating furnace has the advantages of low cost and high wafer
throughput, and it is mainly used in post-deposition annealing (PDA) after depositing
oxide semiconductors. However, because this convection heating process requires a long
time at high temperatures, it may cause serious thermal damage to the flexible substrate
and consequent deterioration of device performance [14,15]. Therefore, a technology for
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efficient PDA is essential for improving the electrical properties of a device without causing
thermal damage to the flexible substrate.

In this study, we present the fabrication of thermal damage-free a-IGZO TFTs on
flexible and transparent PI substrates using microwave annealing (MWA). MWA is a
method in which materials couple with microwaves, absorb the electromagnetic energy
volumetrically, and transform into heat, which differs from CTA, in which heat is trans-
ferred between objects by conduction, radiation, and convection mechanisms. Compared
to conventional heating technology, microwave heating has additional advantages such
as higher heating rates, energy transfer as opposed to heat transfer, no direct contact be-
tween the heating source and the heated material, material selective heating, volumetric
heating, quick start-up and stopping, greater control of the heating process, significant
savings in energy consumption, compactness, low cost and maintainability [16–18]. The
selective heating capability of the material enables annealing of only the a-IGZO channels
without thermal damage to the PI substrate, which is transparent to microwaves. This
is a distinct advantage that MWA has over CTA in furnace, and it is highly suitable as
a heat treatment method for flexible insulator substrates that have weak heat resistance
such as PI. Although several studies have been conducted on the application of microwave
to a-IGZO-TFTs to date [19–21], there are few reports of microwave annealing effects on
improved performance and substrate heat damage of a-IGZO-TFT formed on flexible
substrates. Therefore, this work aims to establish MWA as the cornerstone of fabrication
processes for flexible electronics.

Figure 1 exhibits a schematic of annealing equipment and the temperature profile
inside the samples for (a) CTA furnace and (b) MWA furnace. MWA was applied to
fabricate a-IGZO TFTs with a bottom-gate top-contact configuration on transparent and
flexible PI substrates. For comparison, the same device structures were also prepared by
CTA. The thermal damage of transparent, flexible PI substrates and the electrical properties
of the a-IGZO TFTs were evaluated. In addition, the instability of a-IGZO TFTs was
measured using the positive gate bias temperature stress (PBTS) and negative gate bias
temperature stress (NBTS) tests. Then, resistive load inverter circuits were constructed by
connecting a resistor in series with a-IGZO TFT and the static and dynamic characteristics
were measured. Through the investigation of the deterioration of the PI substrates and the
performance evaluation of the fabricated device and inverter circuit, the distinct strengths
of MWA over CTA became clear.
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Figure 1. (a) Schematic of annealing equipment and the temperature profile inside the samples for
(a) Conventional thermal annealing (CTA) furnace and (b) Microwave annealing (MWA) furnace.

2. Materials and Methods

The PI substrate was subjected to heat treatment under various microwave powers
and furnace temperatures to evaluate and compare the thermal damage caused by MWA
and CTA, respectively. For the heat-treated PI substrates, the critical process conditions
for MWA or CTA were investigated by measuring the transmittance using UV–vis spec-
troscopy and evaluating the durability using the substrate bending test. To prepare the
flexible substrates, 6 µm-thick PI was spin-coated on rigid glass. Then, a 100/100 nm-
thick SiNx/SiO2 protective layer was deposited by a plasma-enhanced chemical vapor
deposition system to a prevent chemical attack on the PI substrate and to ensure firm
adhesion of the Al bottom gate electrode and gate insulator to the flexible PI substrate. The
bottom gate electrode of a-IGZO TFTs was formed by depositing a 150 nm-thick Al film
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with an E-beam evaporator, patterning by photolithography, and then wet etching with
H3PO4 solution. Subsequently, a 130 nm-thick SiO2 gate insulator was deposited by an
RF magnetron sputter at a working pressure of 4.0 mTorr, RF power of 200 W, and Ar/O2
flow rate of 30/2 sccm. For the formation of the active channel layer, a 50 nm-thick a-IGZO
(In2O3:Ga2O3:ZnO = 4:2:4.1 mol.%) film was deposited by an RF magnetron sputter at a
working pressure of 6.0 mTorr, RF power of 100 W and Ar flow rate of 30 sccm, followed by
photolithographic patterning and 30:1 buffered oxide etchant (BOE) wet etching. Finally,
the source and drain (S/D) electrodes of a-IGZO TFTs were formed by a lift-off process
after depositing a 150 nm-thick Ti film with an E-beam evaporator. The fabricated channel
width and length were 20 µm and 10 µm, respectively. The PDA process for improving the
electrical properties of a-IGZO TFT was performed using both MWA and CTA. For MWA,
a microwave irradiation system with a frequency of 2.45 GHz was used. A resistance
heating furnace was used for CTA. The conditions of PDA were determined using the
CTA temperature at which the PI substrate showed no evidence of optical or mechanical
damage, and the MWA power corresponding the equivalent sample heating effect. In order
to test the PI substrates in similar temperature conditions, we accurately measured the
sample temperature in the MWA with an infrared (IR) thermometer and then adjusted the
microwave power to correspond to the CTA temperature. The PDA conditions of MWA
and CTA presented in this study were 600 W for 2 min and 300 ◦C for 30 min, respectively,
and both were annealed in ambient air.

Figure 2a,b show a schematic of the fabrication process sequence and completed
structure of back-gate top-contact a-IGZO TFT. Figure 2c exhibits an optical microscope
image of the fabricated TFT. The effects of the PDA on the electrical characteristics (such
as field-effect mobility, subthreshold swing, interface trap density, and on/off current
ratio) were measured with an Agilent 4156B Precision Semiconductor Parameter Analyzer.
Additionally, threshold voltage (VTH) shifts were monitored using positive/negative gate
bias temperature stress (PBTS/NBTS) tests at various temperatures to evaluate reliability
and instability. In addition, resistive load inverter circuits were constructed by connecting
a 400 MΩ resistor in series with a-IGZO TFTs and their static and dynamic characteristics
were studied to evaluate their application potential. Electrical measurements of the a-IGZO
TFTs and inverter circuit were performed in a shielded dark box to avoid external influences
such as light and electrical noise.
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3. Results and Discussion

Figure 3 shows photographic images and average transmittance of the pristine, MWA
and CTA processed flexible PI substrates. By comparing the photographic images, it can be
seen that the MWA processed PI substrate with 1800 W for 2 min depicted in Figure 3b
experienced little change from the pristine PI substrate depicted in Figure 3a, whereas the
CTA processed PI substrate with 500 ◦C for 30 min depicted in Figure 3c has undergone a
change in color. Figure 3d shows the average transmittance of the PI substrate in the visible
light region. It was found that the optical properties of PI substrates depend on the PDA
method and conditions. In the MWA, the transmittance of the PI substrate remained almost
constant, regardless of the increase in microwave power, whereas in the CTA, it began to
decrease from 400 ◦C. Thus, it was determined that the critical process temperature of CTA
allowed for the PI substrate in this study is 300 ◦C [22]. The average transmittance in the
visible region was 74.8%, 74.5%, and 68.9% for the pristine state, MWA at 1800 W, and CTA
at 500 ◦C, respectively. This difference is because the PI substrate, which is an insulator,
is almost transparent to microwaves and hardly suffers thermal damage. Therefore, it is
concluded that MWA has distinct advantages over CTA and is a highly suitable annealing
method for thermally vulnerable substrates.
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Figure 3. Photographic images of (a) pristine, (b) MWA (1800 W, 2 min) and (c) CTA processed
(500 ◦C, 30 min) PI substrates. (d) Average transmittance of the PI substrates in the visible light region.

Figure 4 shows the optical microscope images of flexible PI substrates after the bending
test. As mechanical strength is an important characteristic for flexible substrates, we
evaluated the bending endurance of the PI substrates processed by CTA (500 ◦C, 30 min)
and MWA (1800 W, 2 min). The simplest and most commonly used bending radius
test method was adopted. The bending radii (R = D/2) of 2.5, 1.5, and 0.5 mm were
selected, which were sufficiently tough conditions to test the PI substrate. For every
bending radius, 100 bending motions were repeated. In the case of CTA (upper images of
Figure 4), due to thermal damage of the PI substrate by convection heating, the PI substrate
creased at the 1.5 mm-bending radius and fatally cracked at the 0.5 mm-bending radius.
By contrast, the PI substrate processed by MWA (bottom images of Figure 4), showed
remarkable bending durability even at a 0.5 mm bending radius compared to CTA. From
the results in Figures 3 and 4, it is found that CTA directly induces thermal damage to the
PI substrate, reducing optical and mechanical properties. In contrast, MWA is more suitable
for annealing a-IGZO TFTs without damaging the transparent and flexible PI substrate,
due to its selective heating capability.



Materials 2021, 14, 2630 5 of 12

Materials 2021, 14, x FOR PEER REVIEW 5 of 12 
 

bending durability even at a 0.5 mm bending radius compared to CTA. From the results 
in Figures 3 and 4, it is found that CTA directly induces thermal damage to the PI sub-
strate, reducing optical and mechanical properties. In contrast, MWA is more suitable for 
annealing a-IGZO TFTs without damaging the transparent and flexible PI substrate, due 
to its selective heating capability. 

 
Figure 4. Optical microscopic images of CTA (upper images) and MWA processed (lower images) 
PI substrates after bending them 100 times. 

Figure 5 shows the temperature profile and thermal budget of the PDA processes for 
fabricating a-IGZO TFTs on flexible PI substrates. The temperature of CTA at 300 °C was 
chosen to minimize/avoid thermal damage to the PI substrate. Then, using an IR ther-
mometer, the sample temperatures were accurately measured in MWA, and the micro-
wave power was determined to be 600 W, which is the condition in which the sample 
temperature is equivalent to the CTA temperature of 300 °C. Namely, these conditions are 
intended to exclude differences in sample heating temperature, and to include only dif-
ferences in heating methods when evaluating the characteristics of TFTs. The thermal 
budgets calculated by integrating the temperature–time curves are 2.1 × 106 °C·s and 4.9 × 
105 °C·s for CTA and MWA respectively, revealing that the MWA has a thermal budget 
40 times lower than the CTA. This large difference is due to differences in ramp-up and 
ramp-down, and main process times. With efficient energy conversion, MWA delivers 
microwave energy directly to the materials, and features volumetric heating and quick 
start-up and stop, enabling relatively short processing times for PI substrates with poor 
thermal durability. 

Figure 4. Optical microscopic images of CTA (upper images) and MWA processed (lower images) PI
substrates after bending them 100 times.

Figure 5 shows the temperature profile and thermal budget of the PDA processes
for fabricating a-IGZO TFTs on flexible PI substrates. The temperature of CTA at 300 ◦C
was chosen to minimize/avoid thermal damage to the PI substrate. Then, using an IR
thermometer, the sample temperatures were accurately measured in MWA, and the mi-
crowave power was determined to be 600 W, which is the condition in which the sample
temperature is equivalent to the CTA temperature of 300 ◦C. Namely, these conditions
are intended to exclude differences in sample heating temperature, and to include only
differences in heating methods when evaluating the characteristics of TFTs. The thermal
budgets calculated by integrating the temperature–time curves are 2.1 × 106 ◦C·s and
4.9 × 105 ◦C·s for CTA and MWA respectively, revealing that the MWA has a thermal
budget 40 times lower than the CTA. This large difference is due to differences in ramp-up
and ramp-down, and main process times. With efficient energy conversion, MWA delivers
microwave energy directly to the materials, and features volumetric heating and quick
start-up and stop, enabling relatively short processing times for PI substrates with poor
thermal durability.
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Figure 5. Temperature profile and heat budget for CTA (300 ◦C, 30 min) and MWA (600 W, 2 min)
processes. MWA features faster ramp-up and ramp-down, and shorter processing time.

Figure 6 shows the electrical characteristics of flexible a-IGZO TFTs on PI substrates
processed by MWA (600 W, 2 min) and CTA (300 ◦C, 30 min). The transfer characteristics
(ID-VG) in Figure 6a were measured by sweeping the gate voltage (VG) from −1 to 2 V at
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a drain voltage (VD) of 0.1 and 1 V. Compared to CTA TFT, the on-current of MWA TFT
is two orders of magnitude higher and the drain current (ID) also increases more steeply
with an increase in VG. The VTH of the CTA TFT and MWA TFT are 0.23 and −0.10 V,
respectively. Figure 6b shows the output characteristics (ID-VD), where ID increases linearly
at low VD regions, showing clear pinch-off and saturation behavior at high VD regions. It
can be seen that MWA TFT has a much higher driving current than CTA TFT.
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Figure 6. (a) Transfer and (b) output characteristics of CTA (300 ◦C, 30 min) and MWA processed
(600 W, 2 min) a-IGZO TFTs on flexible polyimide (PI) substrates.

Figure 7 shows the electrical parameters of flexible a-IGZO TFTs on PI substrates
prepared by MWA and CTA. In Field Effect Transistor (FET) devices, a large field effect
mobility (µFE) and small threshold swing (SS) are desirable for a fast-switching perfor-
mance and low power consumption. The µFE, which determines the switching speed, was
calculated using the following equation:

µFE =
Lgm

WCoxVD
, gm =

∂ID
∂VG

∣∣∣∣
VD=Const

(1)

where L, W, gm, and Cox are the channel length, width, transconductance, and gate oxide
capacitance per unit area, respectively. The µFE of TFTs was extracted at VD = 0.1 V. The
µFE of a-IGZO TFTs on the PI substrate was 1.6 cm2/V·sec and 34.3 cm2/V·sec for the CTA
and MWA processes, respectively. The increase in field effect mobility in the MWA process
indicates that microwave annealing effectively contributed to the improvement of channel
conductance in a short processing time without thermal damage to the PI substrate. The
on/off current ratios (Ion/Ioff) and the drain current ratios for when the transistor is turned
on and off were 1.0 × 106 and 4.8 × 107 for the CTA and MWA processes, respectively.
Meanwhile, a small SS is a major concern for a low-power operation, because it allows a
lower VTH for the same off current, enabling the driving of the transistor at a lower supply
voltage. The SS of the FET is defined as the change in gate voltage to achieve a one-decade
change in ID, and it can be calculated from the ID–VG curve using the following equation:

SS =
d VGS

d log IDS
(2)
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Figure 7. Electrical parameters of a-IGZO TFTs on flexible PI substrate for CTA (300 ◦C, 30 min) and
MWA processing (600 W, 2 min). (a) Field effect mobility and on/off current ratio. (b) Subthreshold
swing and interface trap density.

The SS was 131.9 and 94 mV/dec for the CTA and MWA processed a-IGZO TFTs,
respectively. In addition, the interface trap density (Dit) between the a-IGZO channel and
the SiO2 gate insulator was extracted from SS using the following equation:

Dit =

(
q·SS· log(e)

kBT
− 1
)

Cox

q
(3)

where q, kB, and T are the elementary electric charge, Boltzmann’s constant, and absolute
temperature, respectively. The Dit was 3.7 × 1012 and 2.6 × 1012 cm−2 eV−1 for the CTA
and MWA processed a-IGZO TFTs, respectively. This result reveals that MWA effectively
improves the interface states of a-IGZO/SiO2, despite a processing time of just 2 min,
which is much less than the 30 min for CTA.

Figure 8 shows threshold voltage shift (∆VTH) when PBTS (VG = VTH0 + 2 V, VD = 0 V)
and NBTS (VG = VTH0 − 2 V, VD = 0 V) are applied for 1000 s at a temperature of 25, 55 and
85 ◦C each, where VTH0 is the initial VTH without gate stress. The driver TFTs in the pixel
circuitry of a display are subjected to long-term positive or negative bias stress during pixel
operation and stand-by. Consequently, the ∆VTH against prolonged gate bias stress is one
of the crucial factors in terms of the reliability of a device. In Figure 8, it is shown that the
VTH shifted in the positive or negative direction depending on the polarity of the electrical
stress over all measured temperatures. Oxygen and moisture are more likely to be adsorbed
onto the a-IGZO back-channel under positive gate bias stress, which results in a positive
∆VTH by forming electron trapped acceptor-like trap states in the channel region [23,24]. By
contrast, under negative gate bias stress, negative ∆VTH is caused because of hole traps in
oxygen vacancies that behave as donor-like trap states [25,26]. In addition, the reason why
the threshold voltage shift in the NBTS is smaller than that in the PBTS is due to the fact that
only a small number of holes in the a-IGZO channel have n-type conduction properties [27].
For both PBTS and NBTS, at all measurement temperatures, the ∆VTH over stress time was
smaller in magnitude and slower in MWA than in CTA. The ∆VTH for thermally activated
charge trapping can be fitted through the following stretched-exponential function for the
stress time [28]:

∆VTH = ∆VO

{
1 − exp

[
−
(

t
τ

)β
]}

(4)

where the VO is the VTH shift at infinite time, β is the stretched-exponential exponent, and
τ is the characteristic charge trapping time. It is found that the fitting line agrees well with
the experimental data and that τ depends on the annealing processes CTA and MWA.
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Figure 8. Time dependence of the VTH shift under PBTS and NBTS tests at 25, 55, and 85 ◦C for CTA
(300 ◦C, 30 min) and MWA processed (600 W, 2 min) a-IGZO TFTs on flexible PI substrates. The
symbols represent the measured VTH, and the lines represent the fitting curves using the stretched-
exponential equation.

Figure 9 shows the charge trapping time τ, which is the time it takes for carriers to be
trapped inside the insulator or at the channel/insulator interface of a-IGZO FETs, extracted
from the time dependence of the ∆VTH under PBTS and NBTS in Figure 8. It can be seen
that the τ values extracted from the PBTS in Figure 9a are lower than those extracted from
the NBTS in Figure 9b, indicating that the PBTS deterioration due to electron trapping
is dominant in the a-IGZO TFTs. In terms of annealing methods, the τ value of MWA is
higher than that of CTA. Accordingly, it can be concluded that MWA is a more effective
PDA method than CTA to improve the electrical properties and stability of a-IGZO TFT.
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Figure 9. Comparison of charge trapping time τ of a-IGZO TFT on flexible PI substrate extracted by
(a) PBTS and (b) NBTS test according to PDA method.

Figure 10 shows the plot of ln(τ) as a function of the reciprocal of temperature (1/T).
In the stretched-exponential Equation (4), the charge trapping time τ of the thermally
activated carriers is expressed as

τ = τ0 exp
(

Eτ

kBT

)
= ν−1 exp

(
Eτ

kBT

)
(5)

where the τ0 and ν are the thermal pre-factor and frequency pre-factor for emission across
the barrier, respectively. The thermal activation energy is given by Ea = Eτ β, where Eτ is
the average effective energy barrier height for carrier transport. Because the τ decreases
with an increase in temperature as shown in Figure 9, Eτ can be extracted using Arrhenius
relation and Equation (5). The extracted Eτ was 0.24 and 0.18 eV for PBTS and NBTS for
MWA TFTs, respectively. By contrast, in CTA TFTs, Eτ for PBTS and NBTS was 0.45 and
0.24 eV, respectively, higher than that of MWA TFTs. In some of the previous studies, it has
been reported that lower Eτ is due to the more ordered structure of the a-IGZO channel
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layer [29]. The smaller Eτ in MWA TFTs than in CTA TFTs implies that the MWA processing
results in a more ordered structure of the a-IGZO channel than the CTA processing. This is
because MWA directly transfers microwave energy to the material and efficiently converts
it into heat, enabling the formation of a more orderly structured channel layer despite a
shorter process time than CTA.
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Figure 11 shows the static voltage transfer characteristics (VTC) and dynamic inversion
characteristics of a resistive load inverter circuit constructed by connecting a load resistance
of 400 MΩ in series with an a-IGZO TFT. For the application of TFTs as display driver
circuits, it is necessary to evaluate the performance of the inverter, which is an elementary
building block of digital devices. Figure 11a shows typical VTC curves of a resistive load
inverter versus the DC gate input voltage (Vin). As shown in the equivalent circuit inset in
Figure 11a, a constant voltage of 1 V was applied to the resistor connected in series with
the drain while the source of the a-IGZO TFT was grounded. It can be seen that the voltage
states of the output and input of inverters composed of both CTA TFT and MWA TFT
are clearly inverted. In the case of the MWA TFT-based inverter, the output state “1” is
maintained until the input voltage (Vin) reaches −0.04 V, where it transitions to the “0”
at Vin = 0.46 V. However, the CTA TFT-based inverter keeps the output state at “1” until
Vin reaches 0.56 V, and the output transitions to the “0” at Vin = 1.36 V, resulting in slower
switching properties. In addition, the output voltage (Vout) corresponding to the “0” state
was 0.0 and 0.121 V for MWA and CTA, respectively. Figure 11b shows the voltage gain
−dVout/dVin, where the maximum gain of the MWA TFT-based inverter (5.8 V/V) is more
than two times higher than that of the CTA TFT-based inverter (2.3 V/V). Figure 11c,d
show the dynamic inverting responses for AC input voltages with frequencies of 1 and
2 Hz, respectively. The MWA TFT-based inverter displayed ideal dynamic characteristics
in which the output state is the inverted form of the input signal. Moreover, it is found
that the CTA TFT-based inverter with low mobility has a relatively higher voltage in the
“0” state than the MWA TFT-based inverter due to the response delay. This difference in
dynamic inverting response (0.25 V at 1 Hz and 0.30 V at 2 Hz) is more pronounced at
higher input frequencies. The “0” state voltage and higher frequency response speed of an
MWA TFT-based inverter reduces power consumption and increases operating speed in
practical display driver circuit applications.
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Figure 11. Resistive load inverter characteristics of CTA (300 ◦C, 30 min) and MWA processed (600 W,
2 min) a-IGZO TFTs on flexible PI substrates. (a) voltage transfer characteristics (VTC) curve. The
inset is a schematic of an equivalent circuit for a resistive load inverter. (b) Voltage gain. Dynamic
inverting responses at a frequency of (c) 1 Hz and (d) 2 Hz.

4. Conclusions

We proposed the fabrication of a-IGZO TFTs without thermal damage on a flexible
and transparent PI substrate by applying MWA with efficient energy conversion. Prior to
device fabrication, MWA or CTA was applied to a transparent and flexible PI substrate,
and thermal damage was evaluated through optical transmittance and bending endurance
tests. The PI substrate did not suffer any damage even at the high microwave power in
MWA, whereas it suffered significant damage at the high temperatures in CTA. Therefore,
MWA is an efficient thermal damage-free process with material-selective heating, enabling
the fabrication of high-performance a-IGZO TFTs on flexible PI substrates. Meanwhile,
the flexible a-IGZO TFTs were fabricated under two PDA conditions: MWA (600 W for
2 min) and CTA (300 ◦C for 30 min) with the same sample heating temperatures, and
its electrical properties and reliability were evaluated. It was demonstrated that MWA
effectively improves the electrical properties of TFTs such as µFE, SS, Dit and Ion/Ioff in spite
of consuming less processing time as compared to CTA. In addition, MWA reduces the
threshold voltage shift for PBTS and NBTS tests under the same measurement temperature,
resulting in improved stability of a-IGZO TFTs. The extracted charge trapping time (τ) and
the effective energy barrier height (Eτ) for charge transport from the time dependence of
∆VTH in PBTS and NBTS tests under various measurement temperatures revealed that
MWA improves device reliability by configuring a more orderly channel structure than
CTA. Comparing the switching performance of configuring resistive load inverter circuits,
the MWA TFT-based inverter showed better VTC curve, gain, and dynamic switching
characteristics than the CTA TFT, resulting in less power consumption and faster switching
speed in actual device applications. In conclusion, thermal damage-free MWA, which is
characterized by high efficiency, low cost, and high process compatibility is expected to be
a promising technology for flexible display applications.
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