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Abstract: Cracks and pores are two common defects in metallic additive manufacturing (AM)
parts. In this paper, deep learning-based image analysis is performed for defect (cracks and pores)
classification/detection based on SEM images of metallic AM parts. Three different levels of complex-
ities, namely, defect classification, defect detection and defect image segmentation, are successfully
achieved using a simple CNN model, the YOLOv4 model and the Detectron2 object detection library,
respectively. The tuned CNN model can classify any single defect as either a crack or pore at almost
100% accuracy. The other two models can identify more than 90% of the cracks and pores in the test-
ing images. In addition to the application of static image analysis, defect detection is also successfully
applied on a video which mimics the AM process control images. The trained Detectron2 model can
identify almost all the pores and cracks that exist in the original video. This study lays a foundation
for future in situ process monitoring of the 3D printing process.

Keywords: defect classification; defect detection; image segmentation; CNNs; YOLOv4; Detectron2;
additive manufacturing; process control

1. Introduction

Machine learning (ML) has been widely applied in many areas such as computer
vision, general game playing, economics, data mining and bioinformatics [1–4]. Besides
the mainstream artificial intelligence (AI) field, many experts are exploring using ML in
their own fields, and materials science is one of the areas [5]. Deep learning (DL) is a
family of ML methods that use multiple processing layers to learn data representations,
and it has made new progress in the application of data-driven methods in the field of
materials science [5]. For example, convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and deep coding networks have demonstrated capabilities in material
detection, material analysis, material design and quantum chemistry [6–9]. Convolutional
neural networks (CNNs) have been used in image analysis since the 1980s, and they are
inspired by studying the brain’s visual cortex [10]. A CNN is a feedforward artificial neural
network (ANN) which can accept images directly as an input of the network to avoid
complex preprocessing procedures that are carried out in traditional image recognition
algorithms [5]. The character of this model requires a large amount of parallel computation,
which takes a long time when using central processing units (CPUs) alone. However,
with the tremendous increase in the computation power of graphics processing units
(GPUs), large CNNs can be trained in a reasonable amount of time. Due to the increase
in computation power and available data, CNNs have achieved superior performance on
many complex visual tasks, such as image searches, self-driving cars, automatic video
classification and more [5,10,11]. In recent years, many fundamental architectures have
been developed, such as the LeNet-5 architecture (1998), AlexNet (2012), GoogLeNet (2014)
and ResNet (2015), which have reduced the error rate from over 26% to only 3% in the
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ILSVRC ImageNet challenge [10,12]. As a result, CNN-based models can be very useful
tools to analyze materials science-related images.

Nowadays, metal-based additive manufacturing (AM) processes, such as laser powder
stream, or LENS®-Laser Engineered Net ShapingTM, electron beam wire feed, electron
beam powder bed and laser beam powder bed fusion (LPBF), are widely used in industries.
For making critical components, a fundamental requirement is to reduce/eliminate defects,
such as pores and cracks, in the metal-based AM parts. In a laser-based AM process, pores
are generally formed due to lack of fusion or keyholes, and cracks are usually associated
with freezing contraction and microsegregation. As metal-based AM is a complex process,
and many conditions cannot be controlled during printing, defects are hard to avoid
initially, especially for some newly developed alloys. Since an AM process forms the
parts layer by layer, fast and precise cameras can be added to 3D printers to generate in
situ monitoring images or videos. It is envisioned that future in situ monitoring systems
could automatically detect and classify defects and pinpoint defect locations during the
AM process. Therefore, AM processing parameters, such as different laser scan speeds,
scan patterns and laser powers, can be modified for the next layer to mitigate the defects
formed in the previous layer. As a result, automatic detection and classification of defect
types are becoming a prevalent task for improving metal-based AM processes.

The purpose of this paper is to demonstrate the capability of different CNN models
for detecting and classifying cracks and pores, the two common defects in LPBF parts.
The material image analysis in this study was carried out at three different levels of
complexity. Level one is defect classification using a simple CNN, and the goal is to
classify a defect in the image as either a crack or pore. A simple CNN consisting of
three convolutional layers and two dense layers was used. Level two is target detection,
and the model is designed to detect cracks and pores on a typical scanning electron
microscope (SEM) image and draw bounding boxes around the defects. The outcome of
level two is the capability to provide defect location and type information for advanced
AM processing control. The selected model for target detection is YOLOv4, which is the
latest variant (fourth version) of a popular object detection algorithm YOLO—You Only
Look Once [13,14]. This target detector is faster and more accurate than the other available
detectors such as LRF, SSD and M2Det. In addition, it can be trained on conventional
GPUs with 8–16 GB-VRAM, which makes its broad use possible [13]. Level three is image
segmentation. Besides providing the second-level information, the level three model
should also generate information regarding the defects’ shape, which can be used for
further physics-based simulations. The selected level three model for image segmentation
is Detectron2. It is a Facebook AI Research (FAIR) software system that implements state-
of-the-art object detection algorithms, including Faster R-CNN, Mask R-CNN, RetinaNet
and Densepose [15–17]. Detectron2 is a newer version of Detectron, and it is implemented
in Pytorch with a more modular design [15]. It has become the most widely used open
source project of FAIR because of its enhanced flexibility and extensibility [15]. Finally,
the Detectron2 model is also applied on a video which was created by a sequence of X-ray
computed tomography (CT) images to test the capability of in situ monitoring. The CT
technique is widely applied in the AM field for nondestructive evaluation of 3D-printed
parts [18]. This study can potentially provide a tool for detecting defects in LPBF AM
parts in situ, which can further offer a new perspective to eliminate cracks and pores by
changing scan strategies during the subsequent layer of the LPBF printing process.

2. Materials and Methods
2.1. The Structure of Different Models

CNNs usually consist of convolutional layers, pooling layers, and fully connected
layers. The neurons in the first convolutional layer are only connected to their correspond-
ing receptive fields, and the neurons’ weights can be represented as a filter. Each filter
will construct a feature map, and all the feature maps will be combined together to form a
convolutional layer. This architecture allows the network to focus on low-level features and
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then assemble them into higher-level features in the next hidden layer [10]. The pooling
layer is added to reduce the computational load by reducing the image size. At the end
of the convolutional layers, all the feature maps will be flattened and followed by several
fully connected layers, and the last layer outputs the prediction results.

YOLOv4 is a combination of a series of computer vision techniques which mainly
consists of three parts: (1) a backbone: CSPDarknet53 [19]; (2) a neck: spatial pyramid
pooling (SPP) [20], path aggregation network (PAN) [21]; and (3) a head: YOLOv3 [22].
In the backbone stage, the image is taken as input and goes through a CNN to extract
features. YOLOv4 uses CSPDarknet53 as the backbone, which is developed based on
DenseNet [23]. CSPDarknet53 can separate the feature maps into two copies; one copy
goes to the dense block and the second copy can go directly to the next stage. This unedited
version of the feature map can remove the computational bottlenecks [19,23]. The role of the
neck stage is to mix and combine feature maps from different stages of the backbone [23].
The neck consists of an SPP block and a PAN. The SPP block can generate a fixed-length
output with the most important features, and the PAN can achieve better propagation of
layer information from bottom to top or top to bottom [22,23]. The final head stage will
perform the last dense prediction, including the predicted bounding box’s coordinates,
the confidence score and the classification label [22].

Taking Base R-CNN with feature pyramid network (Base-RCNN-FPN) as an example,
the structure of Detectron2 mainly includes three parts: backbone network, region proposal
network (RPN) and ROI head (box head). The backbone network can extract multi-scale
feature maps with various receptive fields from the input image; the RPN can detect the
object regions from the multi-scale feature maps, and by default, it will output a thousand
proposed boxes with a confidence score; lastly, the box head can use the proposal boxes
to crop the feature maps into different sized features, and through fully connected layers,
it can find out the box locations and the classification labels [24]. The above functions
are achieved through different classes in each stage. For example, FPN and ResNet are
the classes within the backbone network; the RPN stage includes StandardRPNHead
and RPNOutput classes; and the ROI head includes ROIPooler, FastRCNNConvFCHead,
FastRCNNOutputLayers and FastRCNNOutputs classes [24].

2.2. Image Data Preparations

Using CNNs for LPBF AM, defect detection and classification often involve three sub-
tasks: (1) collecting images that include cracks and pores, (2) manually/semi-automatically
creating labels for a number of images, (3) training different CNN models using various
techniques with the labeled images [25]. These subtasks are tackled at three levels of
different complexity in this paper.

For level one defect classification, a total of 200 images, with a single defect in each
image, were collected as screenshots from SEM images of LPBF-processed Ni939 samples,
which contain multiple cracks and pores. Therefore, there is only one defect that needs to
be classified on each of these generated images. Two file folders were created (“Cracks”
and “Pores”) to include the single-defect images, and the folder names act as the defects’
class labels. Additionally, 5 images in each category were used as validation data to test the
model accuracy during the training process. A simple CNN model was trained using these
images to distinguish between cracks and pores. Figure 1 shows some example images of
the training data.
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For target detection and image segmentation at level two and level three, SEM images
of AM parts were used. A total of 11 SEM images, taken on LPBF-processed Ni939 samples,
were collected from our SEM image archive. Among the 11 images, nine images were used
as training, and the remaining two images were used as testing. According to the common
practice, there are two image annotation software packages commonly used for labeling
the data. The cracks and pores on these images were manually labeled using LabelImg,
which can only draw the bounding box around the defects [26]. These labeled images were
then used for training YOLOv4. The second software is Labelme, an image annotation
tool that can outline the shape of the cracks and pores [27]. These labeled images were
used for training Detectron2. Figure 2 shows an example labeled image using LabelImg
and Labelme.
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Figure 2. (a) An example of the labeled image using LabelImg for training YOLOv4. (b) An example of the labeled image
using Labelme for training the Detectron2 model.

For defect detection in video files, about 1800 cross-section CT scan images, obtained
on an LPBF Ni939 sample, were accumulated using 3D X-ray microscopy (Zeiss XRM
620 Versa, White Plains, NY, USA). Due to the size limitation, a sequence of 100 images was
imported to ImageJ software to generate a 14-s video with a frame rate of 7 fps. This video
was then used for testing the trained Detectron2 model. Ten different images were chosen
from the above CT scan images to generate the training data. The training data were
manually labeled with cracks and pores with the same process as image segmentation
using Labelme software.

2.3. Training Process for Different Models

For training the level one CNN model, the images needed to be imported to the model
at the same size to improve the training accuracy. As a result, the 200 single-defect images
were randomly shuffled and imported to Python at the same size of 100 × 100 pixels.
Ten images (five images for each category) were used as test data to validate the model’s
performance. The codes were generated using Python in Jupyter Notebook, and the ML
packages included os, Numpy, Matplotlib and Tensorflow. All the images were imported
to the CNN model with the label of either “Cracks” or “Pores”, and the model was built
for binary classification. The CNN model has three convolutional layers, each followed by
a maxpooling layer. Two dense layers are added at the end, and the activation functions
are “relu”. “Adam” is used as the optimizer and the loss function is “BinaryCrossEntropy”.
Table 1 shows a summary of the model (this table is reformatted based on the original
code output, and the direct code output table is provided in the Supplementary Materials).
The model was trained for 20 epochs with training and testing accuracy tracked during the
training process.
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Table 1. The summary of the level one CNN model.

Model.Summary()

Model: “Sequential_3”

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 100, 100, 16) 160

max_pooling2d (MaxPooling2D) (None, 50, 50, 16) 0
conv2d_1 (Conv2D) (None, 50, 50, 32) 4640

max_pooling2d_1 (MaxPooling2D) (None, 25, 25, 32) 0
conv2d_2 (Conv2D) (None, 25, 25, 64) 18,496

max_pooling2d_2 (MaxPooling2D) (None, 12, 12, 64) 0
flatten (Flatten) (None, 9216) 0
dense(Dense) (None, 512) 4,719,104

dense_1 (Dense) (None, 1) 513

Total params: 4,742,913
Trainable params: 4,742,913

Non-trainable params: 0

For training the YOLOv4 model, the darknet was cloned and rebuilt from AlexeyAB’s
repository to Google Colab [28,29]. As shown in Figure 2a, the labeled image contains
the defect bounding box. The coordinates of the bounding box and defects’ category
information were included in a .txt file for each image. The yolov4-custom configuration
file was adjusted based on two classes, and the training parameters included batch = 64,
subdivision = 16, max_batches = 3600, steps = 2880, 3240, width = 416 and height = 416.
The classes were set to two for the three YOLO layers, and the filters = 21 in the three convo-
lutional layers before the YOLO layers [30]. The pre-trained weights for the convolutional
layers were loaded to the YOLOv4 network before training to achieve higher accuracy and
shorten the training time. The model was trained for 3600 iterations, and the best weights
were stored in a Google Drive for later validation.

For training the Detectron2 model, a total of 828 pores and 301 cracks were manually
labeled from the nine SEM images using Lableme software. As shown in Figure 2b, it can
be found that the shapes of the defects are outlined with a different color. These images
contain instance and shape information compared with the YOLOv4 model. These detailed
data can be exported to other software for further analysis and simulations, such as finite
element analysis (FEA) for crack propagation predictions under specific load conditions.
The codes were generated using Python in Google Colab, and the ML packages included
Pytroch, Detectron2, OpenCV and Numpy. Firstly, the labeled data were converted to coco
format and registered as coco instances. Model Mask-RCNN-R50-FPN was chosen from
the Detectron2 Model Zoo. The other training parameters included image_per_batch = 2,
Base_learning_rate = 0.0025, training_iterations = 15,000 and batch_size_per_image = 512.
The training curves were tracked using Tensorboard during the training process. After
training, the remaining two images were used to test the performance of the model.

For the video testing, the Detectron2 R101_DC5_3x model was trained using Google
Colab for 5000 iterations with a learning rate of 0.0025. All other parameters were the same
as above. Before testing on the video, the weight path in the configuration file was changed
to the trained model’s final weight; the test threshold was set to 0.3; and the detection per
image was increased to 1000 per image.

3. Results and Discussion

Figure 3 shows the “accuracy” and “loss” changes with epochs for the level one CNN
model. The training and validation accuracies almost reach 100%, and the loss is nearly
0 only after ten epochs of training. Such perfect outcome usually indicates that the model
is overfitting, which means the model achieved high accuracy by just simply remembering
each image category. Overfitting is a very common phenomenon, especially for cases with
a small dataset [31]. A model with overfitting typically cannot generalize well on the new
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data. To validate whether overfitting exists in our model or not, six new test images that
the model never saw during training were imported to the CNN model to test if it could
classify the defects correctly. Figure 4 shows the classification results, and all the defects are
classified correctly. For these new images, the model performs perfectly and achieves very
high accuracy. Based on the fact that all the training, validation and new test data are evenly
distributed, it can be concluded that the model is not overfitting. The high accuracies are
achieved mainly because this is a relatively simple dataset with obvious signals for each
category. The pores are round-shaped, and the cracks have a long and narrow line shape,
which can be easily distinguished. Another possible reason for this superior performance is
that all the data are manually selected without any mistakes and confusion images, which
can minimize the errors during the training and validation process.
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The YOLOv4 model was trained using the Google Colab Tesla P100-PCIE-16GB GPU
for 3600 iterations, and the best weights were generated by the code and autosaved in
a Google Drive. The final total loss reached around 16, and the average precision (AP)
achieved about 50%. Figure 5a shows the total loss and the AP curve recorded during the
training process. It can be found that the total loss value indicated by the blue line falls
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below 20 after about 1200 iterations of training. After this, the loss value starts to bounce
between 20 and 12, with tiny drops with the increase in training iterations. This indicates
that the model has already reached the local minimum. Even the training keeps going,
and there will not be an obvious drop for the total loss value. However, the loss value
is still very high compared with other applications in which the loss value can drop to
less than 2 [30,32]. After 1000 iterations of training, the AP value (red line) has been
tracked for every 100 iterations of training, with its value marked above the line. Between
1000 and 3600 iterations of training, the AP value does not have a noticeable increase.
On the contrary, it dropped few times, indicating the model already has some degree of
overfitting. As a result, the training process can have an early stop. However, around a
50% AP value is deficient compared with some other applications [30,32–34]. The high loss
and low AP value are most likely because of the complexity of the training data. (1) Some
of the tiny features are ignored when labeling the image since there are too many, and it
is impossible to label all of them. (2) Some of the defects have an irregular shape that is
different from most of the other defects. (3) There are some overlap defects, which can cause
confusion to the model. Some examples of the above data are represented in Figure 5b.
These complexities can make the model hardly fit all the data; therefore, the total loss and
AP had no improvements after about 1000 training iterations. Additionally, the relatively
small training dataset size also contributes to the quick convergence of the training process.
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Figure 5. (a) The total loss and AP curve of YOLOv4 training process (the X-axis is the training
iterations, the Y-axis is the total loss, the blue curve is the total loss and the red curve is the AP).
(b) Examples of the data complexity.

Before testing on new images, the configuration file was set to batch = 1, subdivision = 1
and threshold = 0.3, in order to test on a single image. Figure 6 shows the test results of
two images with different defect densities. The bounding box, the defect category and
the confidence score are marked on the image. It can be found that some defects are not
recognized by this model. Some examples of the missed defects are marked with a red
arrow in Figure 6a. By just visualizing the test result, the trained YOLOv4 model can
generate acceptable results with about a 90% recognition rate. The result is calculated
using the total number of the model-detected defects divided by the total defects that
are included in the ground truth image. The above testing result only covers one set of
parameters in the configuration file; however, many parameters may affect the final test
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results. Among them, the initial learning rate (LR) and scales are two important parameters.
The LR needs to be high at the beginning of the training process with little knowledge of
the features; however, the LR needs to be lowered with the increase in iterations. The scales
are the factors to multiply the LR after the specified step numbers [32]. Since the model
had little improvements after about 1000 iterations of training, max_batches was set to
1000 and the steps were set to 800 and 900, which can save training time. Table 2 shows the
comparison of testing results with different LRs and scales. Among them, IoU stands for
Intersection over Union, which computes the area of intersection over the union area of the
ground truth bounding box and the predicted bounding box. It acts as the threshold to
determine true positives (TPs) and false positives (FPs). When the model fails to detect an
object, which is present in the ground truth image, it will be classified as a false negative
(FN). Below are the equations for calculating average precision (AP) and recall values [35].

AP =
1
N ∑

TP
TP + FP

(1)

Recall =
1
N ∑

TP
TP + FN
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Table 2. The comparison of testing result with different LRs and scales.

No. LR Scales AP Recall TP FP FN Average IoU

1
0.001

0.1, 0.1 77% 0.35 150 46 274 54.16%
2 0.2, 0.2 79% 0.49 208 56 216 54.44%
3 0.3, 0.3 75% 0.49 207 69 217 52.19%

4
0.0005

0.1, 0.1 79% 0.47 199 52 225 56.34%
5 0.2, 0.2 73% 0.48 205 77 219 49.48%
6 0.3, 0.3 80% 0.5 210 51 214 57.19%

Basically, N is the total number of classes. The AP value describes the accuracy of the
predicted objects, and the recall value indicates the completeness of the predicted results.
For both of these two values, the higher, the better. As a result, the No. 6 parameters
achieved the best results. Figure 7 shows a comparison of the testing results on the same
image using (a) No. 6, (b) No. 5 and (c) No. 1 parameters. In Figure 7b, more detections
are made. However, these include many FP detections, which drops the AP to only 73%.
Figure 7c has less detections compared with (a), but it cannot cover all the defects included
in the ground truth image. Therefore, the recall value for No. 1 is only 0.35.

The Detectron2 model was trained using the Google Colab Tesla P100-PCIE-16GB GPU
for 15,000 iterations. The total loss value was tracked using Tensorboard, and the curve is
shown in Figure 8. It can be seen that the total loss value drops with the increase in training
iterations and finally reaches about 0.2. However, the total loss number cannot indicate
model performance on the new data since it may have overfitting. Therefore, testing the
trained model on the new images is necessary. Before testing, the testing threshold was
set to 0.3, and the detections_per_image was set to 1000. This is used to cover a large
number of defects in the testing images. Figure 9 shows the testing results using the trained
Detectron2 model. The image used for testing is the same as that used for testing the
YOLOv4 model. However, besides the bounding box, the result outlines the defects’ shape,
which is extra information compared with YOLOv4. Similarly, there are also a few missed
defects, which are marked in the red arrows in Figure 9a. By just visualizing the testing
results using the Detectron2 model, the trained model can identify more than 90% of the
defects. The result is calculated using the same method as the YOLOv4 model. However,
for some more complicated images with a much higher defect density, the testing result of
the Detectron2 model is not as good as the YOLOv4 model. By comparing Figures 6b and 9b
(both with the test threshold of 0.3), it can be found that the Detectron2 model missed more
defects compared with the YOLOv4 model. Nevertheless, the Detectron2 model only takes
about 3 h to train 15,000 iterations, and the YOLOv4 model takes more than 9 h to train
3600 iterations using the same GPU. Therefore, the Detectron2 model is more efficient than
the YOLOv4 model based on the training process.

The Detectron2 Model Zoo has different baseline models, which are combinations of
different backbones and training schedules [36]. Three models were selected to compare
the performance of different baselines, and all the evaluations were performed using the
same images as used in the previous testing. The results are shown in Table 3. Among them,
the mAP value is the average AP for IoU from 0.5 to 0.95, with a step size of 0.05. AP50 is
the AP with IoU = 0.5, and AP75 is the AP when IoU = 0.75. AR10 is the average recall value
given 10 detections per image. Similarly, AR100 and AR1000 are the average recall values
when the maximum detection per image is 100 and 1000, respectively. It can be found in
Table 3 that for all three models, the AP and AR values only have minor variations with the
increase in training iterations from 5000 to 10,000. This indicates that all the models will
converge quickly because of the small training dataset. When the IoU threshold becomes
larger, the AP value drops dramatically, meaning that the mAP value is low compared
with YOLOv4. The AR value reaches the highest when the maximum detection per image
reaches 1000. However, when the number is small, the AR value decreases significantly.
Based on the mAP and AR1000 value, the No.3 model with 1000 iterations of training has
the best testing result, and the No. 1 model with 5000 iterations of training is the worst
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among Table 3. Figure 10 shows a comparison of the testing result images between the best
and worst models. By just visualizing, the conclusion is that the No. 1 model misses more
defects than the No. 3 model.
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Table 3. The comparison of testing results with different models and iterations.

No. Model Iterations mAP AP50 AP75 AR10 AR100 AR1000

1 X101-FPN 3x
5000 0.174 0.383 0.141 0.055 0.214 0.214

10,000 0.172 0.393 0.122 0.054 0.211 0.211

2 R50-FPN 3x
5000 0.23 0.505 0.164 0.058 0.26 0.283

10,000 0.231 0.524 0.17 0.054 0.272 0.288

3 R101-DC5 3x
5000 0.237 0.59 0.133 0.045 0.27 0.324

10,000 0.237 0.569 0.155 0.042 0.271 0.33

For the testing on video files, a comparison of the original video frame and the
output video frame after defect detection using the trained Detectron2 model is shown in
Figure 11. (Due to the size limitation, Figure 11 is taken as a screenshot of the same frame
of the original and the output video. The video files are provided in the Supplementary
Materials.) It can be found that the trained Detectron2 model can detect almost all the pores
and cracks which exist in the original video. Furthermore, the detections also present the
defect category, defect location and the defect shape information in a very short period of
time for each frame (based on the evaluator function that is included in Detectron2, it only
takes about 0.22 s to generate the above information for each frame). This information can
be beneficial for in situ AM process control. For example, the AM machine can be modified
in real time to eliminate the defects by changing scan parameters or scan strategies when
processing the following layer. However, due to the limitation of the current facilities and
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resources, further work regarding in situ AM process control needs to be performed in
the future.
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Figure 11. Comparison (the screenshot of the same frame) of the (a) original video and the (b) output
video of the defect detection using the trained Detectron2 model.

4. Conclusions

Three different levels of complexities—defect classification, defect detection and
defect image segmentation—were successfully performed using a simple CNN model,
the YOLOv4 model and the Detectron2 object detection library, respectively. The tuned
simple CNN model can accurately classify cracks and pores. The YOLOv4 and Detec-
tron2 models can identify more than 90% of the defects in the testing images. Defect
detection was also successfully applied on a video file, generated using a sequence of CT
scan images. The trained Detectron2 model can identify almost all the pores and cracks
that exist in the original video. This capability lays a foundation for future in situ process
control for 3D printers.

Overall, the authors demonstrated the application of deep learning models for mate-
rials science-related image classification, target detection and image segmentation tasks.
This paper demonstrates that ML can be a powerful tool to support materials science
research. However, the functionality of the ML models should be further improved with
more data. Building a database and collecting more data closely related to the research
purpose must be tackled to enable the application of ML in the field of materials science.
For future AM process monitoring applications, it is envisioned that image streams ob-



Materials 2021, 14, 2575 13 of 14

tained from high-quality cameras would be fed into the ML-based in situ monitoring
system to automatically detect and classify defects and pinpoint defect locations during
the AM process. This information will then be used to adjust AM processing parameters,
such as different laser scan speeds, scan patterns and laser powers, for the next layer to
mitigate the defects formed in the previous layer.

Supplementary Materials: The following are available online at https://github.com/neclipse/
Metal_defects_detection/tree/main/Supplementary%20Materials, Figure S1: The original table of
level one CNN model summary for Figure 1, Figure S2: The original total loss curve for Figure 8,
Video S1: The original video before testing for Figure 11a, Video S2: The original output video using
Detectron2 model for Figure 11b.
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