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Abstract: This paper adopts the method of steel tube wall thickness and strength reduction to
simulate corrosion damage. The numerical model of the square concrete-filled steel tube long column
(SCFST-LC) under eccentric compression after acid rain corrosion is established in the finite element
software, ABAQUS. The reliability and accuracy of the model are verified by comparing it with
published relevant experimental results. The failure mode, load-deformation curve, and ultimate
compressive load were analysed. Following that, the impacts of section size, yield strength of the
steel tube, axial compressive strength of concrete, steel ratio, slenderness ratio, and load eccentricity
on its ultimate compressive load are comprehensively investigated. The results demonstrate that the
ultimate compressive load of the SCFST-LC decreases significantly with the increase in corrosion
rate. The corrosion rate increases from 10 to 40%, and the ultimate bearing capacity decreases by
37.6%. Its ultimate bearing capacity can be enhanced due to the increase in section size, material
strength, and steel ratio. In contrast, the ascending slenderness ratio and load eccentricity has harmful
effects on the ultimate compressive load of the specimens. Finally, a simplified formula for the axial
compressive load of the SCFST-LC under eccentric compression after acid rain corrosion is proposed.
The calculation accuracy is high and the deviation of the results is basically within 15%, which is in
good agreement with the numerical simulation results.

Keywords: acid rain corrosion; concrete-filled square steel tube long column; eccentric compression;
ultimate bearing capacity; finite element analysis

1. Introduction

The concrete-filled steel tube column [1–3], as a composite structure, is formed by
filling a steel tube with concrete, in which the external steel tube and internal core concrete
bear load together. Compared with ordinary concrete columns, because the external steel
tube of concrete filled steel tube (CFST) has a restraining effect on the lateral expansion of
core concrete, CFST columns have more advantages in strength and ductility than ordinary
concrete columns [4,5]. Due to its desirable mechanical properties and economic and
construction benefits, concrete-filled steel tube columns have been widely implemented in
both mechanical and civil engineering fields, such as combined bridges, super high-rise
buildings, subway stations, and industrial plants [6–8]. However, with the deterioration
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of the global environment, they unavoidably undergo the impacts of climatic conditions
and human factors during their service, e.g., acid rain, low temperature, etc. According
to meteorological data, acid rain pollution in China has been gradually expanding from
south to north and has become more and more serious in most cities since 2000 [9,10].
When the concrete-filled steel tube columns are exposed to an acid rain environment for
a long time, the external steel tubes will be subjected to severe surface corrosion, which
can result in a significant reduction in their mechanical properties [11]. Those adverse
environmental conditions will greatly threaten the safety and durability of concrete-filled
steel tube columns.

Therefore, more and more scholars have carried out research on concrete-filled steel
tube columns under environmental corrosion [12–17]. Li et al. [18] established the finite
element model of a double-layer concrete-filled steel tube short column and studied its
mechanical properties under continuous load and chloride ion corrosion. The numerical
results showed that the bearing capacity of the concrete-filled steel tube short column
was significantly reduced after chloride ion corrosion. Han et al. [19–23] experimentally
investigated and theoretically analysed the performance degradation of 17 concrete-filled
square steel tube columns, which worked under long-term load and chloride ion corrosion.
Three types of corrosion conditions were taken into consideration, including non-corrosion,
semi-immersion corrosion, and full immersion corrosion. The compression, tension, and
bending of the concrete-filled square steel tube columns were analysed. Additionally, a
simplified calculation formula for the bearing capacity of the concrete-filled steel tube
column after chloride ion corrosion was proposed. Zhang et al. [24] carried out an axial
static load test on 11 thin-walled circular concrete-filled steel tube short columns in a
corrosive environment. The experimental results demonstrated that the failure mode of
those columns with chloride corrosion was typical partial outward bulging shear failure,
which is different from those without corrosion. The ultimate bearing capacity and plastic
deformation capacity of those concrete columns decreased significantly with the corrosion
rate increasing. Gao et al. [17] conducted axial compression tests on 18 concrete-filled
steel tube short columns after being corroded by salt spray. The results showed that the
salt spray corrosion would diminish the steel ratio and change the mechanical properties
of steel tubes. Chen et al. [16,25–29] conducted experimental research and theoretical
investigations on the concrete-filled steel tube short columns under acid rain corrosion
in Jiangxi Province, China. Based on the results, a simplified calculation formula for the
bearing capacity of a concrete-filled steel tube short column, corroded by acid rain, was
proposed. The calculation method of its flexural bearing capacity for seismic design was
also given.

At present, most of the published papers on concrete-filled steel tube columns under
environmental corrosion are based on short columns under axial compression. According
to the slenderness ratio of CFST members, a column with a slenderness ratio greater
than 4 is a long column, and a column with a slenderness ratio less than 4 is a short
column. There is very little existing research concerning the SCFST-LC under eccentric
compression after acid rain corrosion. Therefore, this paper takes the SCFST-LC under
eccentric compression, corroded by acid rain, as the research object. By modifying the yield
strength and wall thickness of the external steel tube, its finite element model is established.
Based on a representative numerical example, its whole eccentric compression process
is numerically investigated. The mechanical mechanism and mechanical properties of
the SCFST-LC under eccentric compression after acid rain corrosion are comprehensively
analysed. Moreover, a parametric analysis is conducted to investigate the importance and
effects of its main parameters on the ultimate bearing capacity of the SCFST-LC, under
eccentric compression after acid rain corrosion.
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2. Finite Element Model of the CFST-LC under Eccentric Compression
2.1. Stress-Strain Relationship Model

The CFST-LC is composed of two materials, i.e., steel and concrete. Due to the
influence of acid rain, not only the effective thickness of the external steel pipe is reduced,
but its mechanical properties are also weakened. According to the existing research results,
it is assumed that the surface of the steel pipe is uniformly corroded, and the thickness
of the steel pipe is uniformly reduced. Therefore, the stress-strain relationship model of
steel adopted in this paper is based on the model proposed in [29], which considers the
influence of the corrosion damage on the external steel pipe. The concrete stress-strain
relationship model improved by Liu [30] is suitable for calculating the core concrete in the
steel tube and can be utilized to describe the constitutive relationship of concrete under
eccentric compression. The specific expressions are as follows:

1. Stress-strain relationship model of steel

σs =



Eseεs, εs < εe
−Aε2

s + Bεs + C, εe < εs ≤ εe1
fye, εe1 < εs ≤ εe2

fye

[
1 + 0.6 εs−εe2

εe3−εe2

]
, εe2 < εs ≤ εe3

1.6 fye, εs > εe3

(1)

ε = 0.8 fye/Ese (2)

εe1 = 1.5εe (3)

εe2 = 10εe1 (4)

εe3 = 100ε1 (5)

A = 0.2 fy(εe1 − εe)
2 (6)

B = 2Aεe1 (7)

C = 0.8 fye + Aεe
2 − Bεe (8)

Ese = (1− 0.955γ)Ee (9)

fye = (1− 1.007γ) fy (10)

γ = ∆t/t (11)

∆t = t− te (12)

where Es is the initial elastic modulus of the steel, MPa; Ese is the effective elastic modulus
of the steel after corrosion, MPa; fy is the initial yield strength of the steel, MPa; fye is the
effective yield strength of the steel after corrosion, MPa; γ is the corrosion rate measured
by the test, %; ∆t is the reduction of the wall thickness of the steel tube due to corrosion,
mm; t is the initial wall thickness of the steel tube, mm; te is the effective wall thickness of
the steel tube after corrosion, mm.

2. Stress-strain relationship model of concrete

y =

{
2x− x2 (x ≤ 1)

x
β(x−1)η+x (x > 1) (13)

x = ε/ε0 (14)

y = σ/σ0 (15)

σ0 = f ′c (16)

ε0 = (1300 + 12.5 f ′c + 800ζ0.2
e )× 10−6 (17)

η = 1.6 + 1.5/x (18)
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β = ( f ′c)
0.1/

[
1.2
√

1 + ζe

]
(19)

f ′c =
[

0.76 + 0.2 + log10

(
fcu

19.6

)]
fcu (20)

ζe = αe × fye/ fck (21)

fck = 0.88× 0.76× fcu (22)

αe = Ase/Ac (23)

where, σ0 and ε0 are the peak stress and peak strain of concrete core, respectively; fc′ is the
compressive strength of the concrete cylinder, MPa; fcu is the compressive strength of the
concrete cube, MPa; fck is the standard value of axial compressive strength of the concrete,
MPa; ξe is the effective restraint effect coefficient of the concrete-filled steel tube; αe is the
effective steel ratio of the steel tube; Ase is the effective cross-section area of the steel tube,
mm2; Ac is the cross-section area of the concrete column, mm2.

The Poisson’s ratio (ν) of the concrete is set to 0.2 [31]. The values of other parameters
of the concrete, including its elastic modulus (Ec), dilation angle (Ψ), and ratio of the
second stress invariant on the tension-compression meridian plane (Kc), as well as fb0/fc0
ratio, can refer to [31]. The formulas are given by Equations (24)–(27). The eccentricity
in-flow rule is set to 0.1. To improve the convergence, the viscosity parameter (µ) is 0.0005.

Ec = 4700
√

f ′c (24)

Ψ =

[
56.3(1− ζe)

6.672e
7.4

4.64+ζe

]
f or ζe ≤ 0.5
f or ζe > 0.5

(25)

Kc =
5.5

5 + 2( f ′c)
0.075 (26)

fb0/ fc0 = 1.5( f ′c)
−0.075 (27)

2.2. Modeling Statements and Parameter Definitions

The numerical modelling and calculation is conducted in finite element software
ABAQUS (v.6.14). In the simulation, ABAQUS plastic analysis model was used for the
constitutive analysis of steel, and the plastic damage model in the calculation software is
used for the concrete constitutive model. The steel tube and concrete are established by the
four-node, three-dimensional shell element, S4R, and the eight-node, three-dimensional
solid element, C3D8R, respectively. The mesh of the steel tube is set to a quadrilateral
element and that for the concrete is determined as a hexahedral element. To improve the
accuracy and efficiency of the calculation, the mesh size is taken as 1/10 of the section
length of the model [32]. To guarantee the calculation accuracy in the thickness direction of
the shell element, the Simpson integration method, with 9 integration points, is utilised.
In the construction application of concrete-filled steel tubular members, there are more or
less initial bending, and the section is not completely symmetrical, thus forming the initial
eccentricity. In order to better meet the actual situation, the initial defects of the components
are established in the calculation. Therefore, the initial defect is taken as 1/1000 of the
length of the component, with consideration to its geometric nonlinearity [1]. The initial
defect is taken as 1/1000 of the length of the component with consideration to its geometric
nonlinearity. The contact between the steel tube and concrete adopts surface-to-surface, of
which the normal direction is hard contact. The outer surface of the concrete is a master
surface, and the inner surface of the steel tube is a slave surface. The tangential friction
force (Friction Coeff) is taken as 0.6 [33]. For the boundary conditions of this model, its
one end is set as a consolidation, that is to constrain all 6 degrees of freedom. Another end
adopts the displacement loading mode, which means a vertical displacement is applied
in the Z direction, while the other 5 degrees of freedom are constrained. To improve the
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calculation convergence and avoid stress concentration, both ends of the model are set
as rigid surfaces (rigid body). The geometric centre point of each end surface is selected
as reference points (reference point), i.e., RP-1 and RP-2. The region type (region type) is
defined as the corresponding end face of each reference point. The mesh dividing and
boundary conditions of the finite element model are shown in Figure 1.

Figure 1. Schematic diagram of mesh dividing and boundary conditions of the finite element model.

2.3. Model Verification

The concrete-filled square steel tube long columns under eccentric compression in [34]
and the concrete-filled square steel tube short columns under axial compression in [35] are
simulated and verified with the established numerical model. The parameters of specimens
in [34,35] are given in Table 1. The numerical modelling results of the ultimate bearing
capacity of each specimen are obtained and shown in Table 2. According to the results,
due to the difference in the constitutive selection of corroded steel and concrete in the
literature and the finite element simulation in this paper, the corresponding calculation
results are different, which leads to the higher simulation results in the literature than
in this paper. The values of Nue/Nbe of specimens are all within 10% and the average
value of Nue/Nbe is approximately equal to the average value of Nue/Nce, which proves the
rationality of the established model. The relationship curves of the eccentric compression
load N vs. vertical strain ε (ratio of vertical displacement increment to member length) and
the axial compression load N vs. axial displacement ∆ (axial compression displacement
increment) are depicted in Figures 2 and 3. Those curves demonstrate that the trend of the
numerical modelling results coincide with the experimental results in [34,35]. However,
there are differences between the initial stiffness value and the ultimate bearing capacity
of the specimen. The initial stiffness value of the simulation curve in the figure is slightly
higher than that of the test curve. There is a gap between the high and low ultimate bearing
capacity in Figure 2. This is mainly because the corrosion of the component is locally
uneven during the corrosion test, and there will be different degrees of initial defects before
the test. The finite element modelling assumes that all materials are in an ideal state, which
leads to the difference between the experimental and simulated ultimate bearing capacity
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of corroded and non-corroded members. Besides, the experimental measurement errors of
axial displacement can also result in the difference between experimental and numerical
results. According to the descending branches of those curves, except for specimen NC-
50-0, the results calculated by the proposed numerical model are more consistent with the
experimental results than the numerical modelling results in [34,35]. It further verifies the
feasibility and reliability of the model proposed in this paper.

Table 1. The main design parameters in [35].

Model Number B × L × t
(mm)

∆t
(mm)

fcu
(MPa)

fy
(MPa)

γ
(%)

e
(mm)

Nue
(kN) Ref.

NC-50-0 160 × 1250 × 3.64 0 53.5 342.5 0 50 1095.00

[34]
NC-50-1 160 × 1250 × 3.64 0.36 53.5 342.5 10 50 970.00
NC-50-2 160 × 1250 × 3.64 0.758 53.5 342.5 20 50 805.00
NC-25-2 160 × 1250 × 3.64 0.758 53.5 342.5 20 25 1105.00

S3-0-0 80 × 300 × 3.0 0.00 49.8 358 0 0 606.25

[35]

S3-0-10 80 × 300 × 3.0 0.30 49.8 358 10 0 543.75
S3-0-20 80 × 300 × 3.0 0.60 49.8 358 20 0 493.75
S3-0-30 80 × 300 × 3.0 0.90 49.8 358 30 0 456.25
S4.5-0-0 80 × 300 × 4.5 0.00 49.8 358 0 0 774.78
S4.5-0-10 80 × 300 × 4.5 0.45 49.8 358 10 0 704.35
S4.5-0-20 80 × 300 × 4.5 0.90 49.8 358 20 0 610.44
S4.5-0-30 80 × 300 × 4.5 1.35 49.8 358 30 0 547.83

Note, B and t are the side length of specimen and the initial thickness of steel tube; ∆t is the wall thickness reduction of steel tube due to
corrosion; γ is the corrosion rate; Nue is the test value of the bearing capacity of specimen; e is the load eccentricity.

Table 2. Numerical modelling results of specimens with acid rain corrosion.

Model Number B × L × t
(mm)

Nue
(kN)

Nce
(kN)

Nbe
(kN) Nue/Nce Nue/Nbe Ref.

NC-50-0 160 × 1250 × 3.64 1095 1078.48 1058.34 1.02 1.03

[34]

NC-50-1 160 × 1250 × 3.64 970 941.44 927.87 1.03 1.04
NC-50-2 160 × 1250 × 3.64 805 840.82 825.35 0.96 0.98
NC-25-2 160 × 1250 × 3.64 1105 1076.92 1133.61 1.03 0.97

Average value 1.00 1.00
Variance 0.001 0.001

S3-0-0 80 × 300 × 3 606.25 - 625.46 - 0.97

[35]

S3-0-10 80 × 300 × 3 543.75 - 573.08 - 0.95
S3-0-20 80 × 300 × 3 493.75 - 511.82 - 0.96
S3-0-30 80 × 300 × 3 456.25 - 461.98 - 0.99
S4.5-0-0 80 × 300 × 4.5 774.78 - 814.8 - 0.95

S4.5-0-10 80 × 300 × 4.5 704.35 - 701.1 - 1.00
S4.5-0-20 80 × 300 × 4.5 610.44 - 610.99 - 1.00
S4.5-0-30 80 × 300 × 4.5 547.83 - 546.47 - 1.00

Average value - 0.98
Variance - 0.001

Note, Nce is the numerical modeling results in references; Nbe is the numerical modeling results obtained by using the constitutive relation
equation proposed in this paper.
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Figure 2. Simulation verification results of Ref. [34]. (a) NC-50-0; (b) NC-50-10; (c) NC-50-20; (d) NC-25-20.
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Figure 3. Cont.
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Figure 3. Results verification of Ref. [35]. (a) S3-0-0; (b) S3-0-10; (c) S3-0-20; (d) S3-0-30; (e) S4.5-0-0; (f) S4.5-0-10;
(g) S4.5-0-20; (h) S4.5-0-30.

3. Results and Discussion of CFST-LC under Eccentric Compression
3.1. Numerical Model under Eccentric Compression

To study the influence of acid rain corrosion on the load-bearing capacity of the
concrete-filled steel tube long column under eccentric compression, a set of finite element
models are designed. The design parameters of these models are shown in Table 3. Poisson
ratios of concrete µc and steel µs are 0.2 and 0.3, respectively.

3.2. Failure Mode

The schematic diagram of the failure mode of the CFST-LC, subjected to eccentric
loads after undergoing different degrees of acid rain corrosion, is shown in Figure 4. The
failure modes of the CFST-LC under eccentric compression with corrosion (in Figure 4b–e)
are similar to those without corrosion plotted in Figure 4a. Both of them have local buckling
occurring in the middle of the long column, where the mid-span deflection is the largest.
In practice, due to the defects in steel tubes, local buckling can take place at any position
along the column height. The buckling directions of those CFST-LC in all faces are outside
because the internal core concrete provides the external steel tube with effective support.
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Table 3. Main design parameters of models.

Model Number B × L × t
(mm)

∆t
(mm)

e
(mm)

fcu
(MPa)

fy
(MPa)

γ
(%) α

N
(kN)

S-40-345-0.11-0 160 × 1200 × 4 0 40 40 345 0 0.11 1043.32
S-40-345-0.11-10 160 × 1200 × 4 0.4 40 40 345 10 0.11 929.41
S-40-345-0.11-20 160 × 1200 × 4 0.8 40 40 345 20 0.11 824.95
S-40-345-0.11-30 160 × 1200 × 4 1.2 40 40 345 30 0.11 721.63
S-40-345-0.11-40 160 × 1200 × 4 1.6 40 40 345 40 0.11 651.72

Note: In the model number, S represents that the cross-section of a specimen is square. The first number denotes the compressive strength
of the concrete cube. The second number means the yield strength of the steel tube. The third number indicates the initial steel ratio of a
specimen (α = As/Ac, As is the initial cross-sectional area of the steel tube, Ac represents the cross-sectional area of the concrete). The fourth
number states the corrosion rate. For example, S-40-235-0.11-0 means that the specimen is a concrete-filled square steel tube column. The
compressive strength of its concrete cube and the yield strength of its steel tube are 40 and 345 MPa, respectively. Its initial steel ratio is 0.11
and its corrosion rate is 0%.

With the corrosion rate rising, the mid-span deflection of the specimen is largely
amplified, increasing from 26 mm under γ = 0% to 32 mm under γ = 40%. It can be noted
that the effects of the corrosion rate on the magnitude of mid-span deflection during the
range that γ = 0% to γ = 30% is more significant than that under γ = 30% to γ = 40%. Since
the specimens utilized in this paper are uniformly corroded, the corrosion degrees of steel
tubes are approximately the same. The following prerequisite indicated that if the defect
in steel is almost the same, then the middle of the (long column) LC becomes the weakest
district. With the corrosion rate increasing gradually, the possibility of local defection on
the surface of the steel tube increases where the degree of local buckling becomes greater.
However, when the steel tube is seriously corroded, its effective thickness will be largely
reduced. Hence, the specimen will fail in advance, resulting in small deformation.

When the specimen S-40-345-0.11-20 fails, the stress cloud diagrams of its steel tube
and concrete are shown in Figure 5. When the specimen is uniformly corroded and
subjected to an eccentric load, the stress distribution in each direction is different, causing
it to become concentrated in the buckling part of the steel tube and the failure part of
the concrete. According to Figure 5a, along the height of steel tube, the maximum stress
appears in the mid-span section, where the stress at the corner reaches the maximum value
of 365 MPa. It is caused by stress concentration, which indicates that the restraint effect
of the concrete is more effective at the corner position. The stress mitigates gradually
from the middle section to the two ends along the column height. The stress differences
between the compression side and the tension side, as well as the mid-span section and
end section of the steel tube, are considerably different. This is because the LC has rotated
due to the eccentric compression and the inconsistency of the range, leading to the different
constraints at the ends of the column. In Figure 5b, as the stress cloud diagram of the
mid-span cross-section area of the concrete depicts, the maximum stress appears at the two
compression corners of the cross-section area. It is about 32.96 MPa, which demonstrates
that the constraining effect of the steel tube is the most significant in this position. Along the
direction of the compressive edge to the tensile edge of the concrete cross section, the stress
decreases continuously, and the minimum value is 19 MPa. By comparing the stress cloud
diagrams of the steel tube and core concrete, most of the vertical load of the concrete-filled
square steel tube is supported by the core concrete during the entire eccentric compression
process. When the eccentric load applied on the entire specimen exceeds the threshold, the
core concrete reaches its ultimate load and the steel tube yields.
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Figure 4. Schematic diagram of the failure mode of concrete-filled square steel tube long column subjected to eccentric loads
with different corrosion rates (a) γ = 0%; (b) γ = 10%; (c) γ = 20%; (d) γ = 30%; (e) γ = 40% (U is the buckling displacement,
unit: mm).
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Figure 5. Stress cloud diagram (a) steel tube (b) concrete.

Figure 6 shows the distribution of normal contact force between steel tube and concrete
when the specimen reaches the peak load. It can be seen that the distribution of normal
contact force between steel tube and core concrete is mainly concentrated in the corner,
and the steel tube has less binding force on concrete at the end of the member. It can be
seen from the figure that with the increase in the degree of corrosion, the binding force
of the steel tube on core concrete becomes smaller and smaller, which is mainly due to
the reduction in the thickness of the steel tube wall, caused by corrosion, thus reducing
the effect of the steel tube on concrete. With this increase in the degree of corrosion, the
bending failure characteristics of specimens become more obvious.
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Figure 6. Steel tube-concrete normal contact force distribution at peak load point (unit: N). (a) γ = 0%; (b) γ = 10%;
(c) γ = 20%; (d) γ = 30%; (e) γ = 40%.

3.3. Load-Vertical Displacement Relationships

Figure 7 shows the load-vertical displacement relationship curves of a typical CFST-
LC under eccentric compression after acid rain corrosion. The trends of these curves are
basically the same under different corrosion rates. The loading process can be roughly
divided into 4 stages: linear stage (0Ai), non-linear stage (AiBi), descending stage (BiCi),
and smooth phase (CiDi). The characteristics of each stage are analysed as follows:
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1. Within the linear stage (0Ai), the relationship between load and vertical displacement
is approximately linear. The external steel tube and internal concrete work indepen-
dently, the interaction force between which is 0. Compared with the specimen that
has not been corroded, displayed in the red line, the specimens undergoing acid rain
corrosion will enter the elastic-plastic phase earlier. Additionally, with the corrosion
rate rising, their elastic modulus diminish significantly, and elastic stages are slightly
shortened.

2. During the non-linear stage (AiBi), with the increase in applied load, small cracks
appear in the core concrete and develop gradually. Meanwhile, since the transverse
deformation coefficient of the core concrete is larger than that of the steel pipe, the
steel pipe will exert a lateral restraint on the core concrete. The specimen reaches
its ultimate bearing capacity at Bi point. Compared with the specimens without
corrosion, the specimens will reach the ultimate bearing capacity ahead of time, and
with the increase in corrosion rate, the ultimate bearing capacity of the specimens
gradually decreases, and the time to reach the ultimate bearing capacity is also earlier
and earlier.

3. Within the decline stage (BiCi), after the specimen reaches its ultimate bearing capacity,
the core concrete is crushed, and the steel tube yields. Hence, the specimen undergoes
plastic failure. Furthermore, the acid rain corrosion can largely shorten the decline
stage of the specimen.

4. During the gentle stage (CiDi), due to the buckling of the specimen, its vertical
displacement increases rapidly. However, whether the specimen undergoes acid rain
corrosion or not, it has a stable bearing capacity in the gentle stage, which proves that
the failure mode of the specimen is plastic failure.

Figure 7. Load-vertical displacement curve of specimen.

3.4. Bearing Capacity

The ultimate bearing capacity of the specimen under different corrosion rates is shown
in Figure 8. As the corrosion rate increases, the ultimate bearing capacity of the specimen
decreases significantly. Compared with the specimen without corrosion, the ultimate
bearing capacity of the specimen with 10, 20, 30, and 40% corrosion rates decreases by
10.9, 20.9, 30.8, and 37.6%, respectively. The results further demonstrate that acid rain has
remarkable impacts on the ultimate bearing capacity of the CFST-LC.
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Figure 8. The ultimate bearing capacity of the specimen under different corrosion rates.

4. Ultimate Bearing Capacity of the CFST-LC under Eccentric Compression
4.1. Parameter Analysis

Based on [1], a dimensionless parameter, corrosion damage factor β, is defined as
Equation (28).

β =
∆t
t

(28)

where, t is the initial wall thickness of the steel tube, mm; ∆t is the wall thickness loss of
the steel tube caused by corrosion, mm.

A parametric analysis is conducted to analyse the effects of section size (B), yield
strength of steel tube (fy), axial compressive strength of concrete (fcu), steel ratio (α), slen-
derness ratio (λ), and load eccentricity (e) on the ultimate bearing capacity of the CFST-LC
under eccentric compression. The default parameters of the specimen for simulation are:

B × t × L = 160 mm × 4 mm × 1200 mm α = 0.11 e = 20 mm
fcu = 40 MPa fy = 345 MPa

The corresponding ranges of those parameters are:
B = 200–500 mm fy = 235–420 MPa fcu = 30–60 MPa

α = 0.05–0.23 λ = 20–50 e = 10–70 mm
The parametric analysis results are given in Figure 9. With the increasing of section

size of the specimen, in Figure 9a, the rise tendency is different with different corrosion
factor β. It indicates that the section size has a significant impact on the ultimate bearing
capacity of the CFST-LC under eccentric compression. The increasement of the section size
can largely enhance the ultimate bearing capacity of the specimen, for it amplifies the area
of core concrete to improve the ultimate bearing capacity.

Figure 9 shows the influence of section size, yield strength of the steel tube, compres-
sive strength of concrete, and steel ratio on the ultimate bearing capacity of the specimens.
It can be seen that the ultimate bearing capacity of the specimen increases linearly with the
increase in section size, yield strength of the steel tube, compressive strength of concrete
and steel ratio. Although the increasement of the section size increases the core concrete
area, the restraint effect of the steel tube on concrete decreases. When the section size
becomes large enough, the specimen can be considered as very thin-walled members and
the confinement effect has been wakened or has even vanished. Therefore, the steel tube
and concrete are considered to bear axial load individually, as detailed in the superposition
theory. After acid rain corrosion, the effective thickness of the steel tube decreases, but
due to the increase in material strength, the confinement coefficient of the actual specimen
increases, which improves the ultimate bearing capacity of the specimens. The ascending
steel ratio increases the thickness of the steel tube, which leads to the improvement of steel
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tube bending stiffness. The buckling of steel is delayed, and the ultimate bearing capacity
is improved.

Figure 9. The influence of different parameters on the ultimate bearing capacity of specimens (a) section size; (b) steel pipe
yield strength; (c) concrete axial compressive strength; (d) steel ratio; (e) slenderness; (f) load eccentricity.

Figure 9e,f depict the influence of slenderness ratio and load eccentricity on the
ultimate load bearing capacity. It can be seen that slenderness ratio and load eccentricity
greatly influence the ultimate bearing capacity of the specimen. With the increase in
the slenderness ratio, the ultimate bearing capacity of the specimen gradually decreases,
and the same tendency is suit for eccentricity. With the increase in slenderness ratio, the
specimens are more likely to lose stability, which leads to instability failure. Therefore,
in order to improve the ultimate bearing capacity of the specimen, the large slenderness
ratio of the specimen should be avoided. The longitudinal bending deformation and the
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lateral deformation of the specimen increases after the CFST-LC is subjected to eccentric
load, which makes the specimen prone to buckling failure. The buckling in the specimens
decrease the ultimate bearing capacity. In the structural design, the excessive eccentric load
should be avoided so that the ultimate bearing capacity of the component can be improved.

4.2. Design Method

The bearing capacity of a concrete-filled square steel tube member under axial com-
pression at ambient temperature can be calculated by the following equations [36]:

N0 = Asc × fsc (29)

fsc = (1.212 + Bθ + Cθ2) fcu (30)

αsc =
As

Ac
(31)

θ =
fy

fcu
(32)

B = 0.131 fy/213 + 0.723 (33)

C = −0.07 fcu/14.4 + 0.026 (34)

in which, N0 is the compression bearing load of CFST-LC, kN; fsc design value of com-
pressive strength of the concrete filled steel tube, MPa; Asc section area of concrete filled
steel tubular members, mm2; B, C influence coefficient of section shape on hoop effect; αsc
steel ratio of concrete filled steel tubular members; θ hoop coefficient of concrete filled steel
tubular members; fy denotes the strength of the steel tube, N/mm2; As is the cross-section
area of the steel tube, mm2; fcu represents the strength of the concrete, in N/mm2; Ac is the
cross-section area of the concrete, mm2.

Additionally, reference [36] proposed the expressions for the bearing capacity of
the CFST-LC beam-columns member under eccentric compression, without corrosion at
ambient temperature, which are given by Equations (35)–(38). The eccentricity and the
height of the compression zone of concrete are taken into consideration.

N
N0

+ (1− αc)
M

Mw
= 1 (35)

Mw = [0.5As(B− 2t− dn) + bt(t + dn)] fy (36)

dn =
AS − 2Bt

(b− 2t) fc
f + 4t

(37)

M = Ne (38)

where M is the bending moment of the column end; αc represents the concrete work bearing
coefficient; Mw gives the bending bearing capacity of the section where only the bending
moment acts; fy is the bending strength of the steel; B denotes the side length of section; t is
the wall thickness of the steel tube; dn is the height of compression zone of the concrete in
the steel tube; f stands for the design value of the steel flexural strength.

When corrosion is taken into consideration, its impact on the properties of the material
cannot be ignored. Therefore, the strength, cross-section area and wall thickness of the
steel tube in Equations (29)–(38) should be corrected to Equations (39)–(41). By substituting
Equations (39)–(41) into Equations (29)–(38), the expression of the bearing capacity of the
SCFST-LC under eccentric compression after acid rain corrosion is obtained. The equations
are given as follows:

fye = (1− 1.007γ) fy (39)

Ase = 4(B− 2t + γt)γt (40)
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te = (1− γ)t (41)

Numerical modelling is conducted to verify the accuracy of the attained theoretical
equations. The numerical and theoretical results of the ultimate bearing capacity of 144
CFST-LC under eccentric compression after acid rain corrosion are attained and compared
in Figure 10. There is no significant difference between the values of Nfn obtained by the
finite element simulation and the simplified formula. The average and variance values of
the ratio of Nfn to Ncn are 1.093 and 0.003, respectively. Although the theoretical results of
a few specimens are slightly higher than those gained by numerical modelling, the error is
within 15% and the calculation result is generally safe. Therefore, this simplified formula
can accurately predict the bearing capacity of SCFST-LC under eccentric compression after
acid rain corrosion. It can provide theoretical reference for safety and stability evaluation, as
well as the prediction of service life of the CFST structure under the corroded environment.

Figure 10. Comparison between the ultimate bearing capacity obtained by numerical modelling and
simplified formula.

5. Conclusions

In this paper, the corrosion damage of concrete-filled steel tubular (CFST) eccentrically
loaded long columns after acid rain corrosion was simulated by the method of steel tube
wall thickness and strength reduction. A simplified calculation formula for the bearing
capacity of CFST eccentrically loaded long columns after acid rain corrosion was proposed.
The finite element simulation is in good agreement with the formula calculation, which
verifies the reliability of the formula.

1. The failure mode of the SCFST-LC under eccentric compression being subjected
to acid rain corrosion was similar to that of the scenario without corrosion. Local
buckling occurred at the mid-span part of the specimen and the internal concrete
columns collapsed. The increase in the corrosion rate could amplify the local buckling
amplitude at the mid-span part of the external steel tube.

2. The load-vertical displacement curves of the SCFST-LC under eccentric compression
with different corrosion rates had a similar tendency, including elastic stage, elastic-
plastic stage, descending stage, and gentle stage. The peak strain appeared earlier due
to the increasing corrosion rate. Furthermore, the failure modes of both specimens,
with or without corrosion, were plastic failure and they had a stable bearing capacity
during the gentle stage.

3. The parametric analysis results demonstrated that the section size, yield strength of
the steel tube, compressive strength of concrete, steel ratio, slenderness ratio, and
load eccentricity all had significant effects on the ultimate bearing capacity of the
SCFST-LC. The ultimate bearing capacity of the SCFST-LC was enhanced by the
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increase in its section size, material strength, and steel ratio. However, the growth
of the slenderness ratio and load eccentricity could diminish its ultimate bearing
capacity.

4. Through the parameter analysis of the results, the simplified formula for the ultimate
bearing capacity of the SCFST-LC under eccentric compression after acid rain corro-
sion was proposed. Its accuracy and efficiency have been verified by comparing the
bearing capacity obtained by the simplified formula and numerical modelling.
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