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Abstract: Aggregates derived from waste, due to the growing awareness of global warming, are more
and more often used in the concrete production process. This way, their disposal not only reduces the
pollution of the Earth but also lowers the consumption of natural aggregates, which are limited. One
of the new “eco” aggregates may be a ferronickel slag waste (FNSW), which was generated in post-
war metallurgical processes and stored in Szklary (Lower Silesian, Poland). In order to determine the
possibility of using ferronickel slag waste aggregate (FNSWA) in the concrete production process,
new concrete mixtures were designed and tested. Physical properties (cone slump, air content, pH,
and density), mechanical properties (compressive strength, flexural strength, and tensile strength),
and thermal properties (thermal conductivity) were assessed for all new laboratory recipes. Moreover,
the modulus of elasticity and Poisson’s ratio were determined. This study includes five different
contents of FNSWA in the amount of 5%, 10%, 15%, 20%, and 25% of the mass of natural aggregate as
its partial substitute. The final results were compared to the base sample (BS) containing 100% natural
aggregate, which was granite.

Keywords: ferronickel slag waste; by-products; waste disposal; recycling; eco-efficient concrete
mixture; concrete modifications

1. Introduction

The war period was particularly severe for Poland. A significant number of the
country’s population died, defending their homeland, some lands were taken away, and
the losses in the infrastructure were difficult to accurately quantify. It is estimated that the
war cost that one resident had to pay was around USD 626 [1]. Despite the initial difficulties
however, the reconstruction of the country has begun, thus implementing recovery plans.
One of them, the Six-Year Plan, assumed the development of the metallurgical industry
due to the large amount of natural resources and minerals present in Poland. The priority
of the plan was to increase investment and the policy of intensive induction of the country
on the soviet model. According to the Six-Year Plan, the industrial production alone was to
increase by 85–95% [2–4], which could not have had a good environmental impact.

The post-war development of the polish industry has left its mark on the environment
by leaving soil and groundwater contamination, and a large amount of waste that remains
to this day [5,6]. This phenomena is especially visible in Silesian Districts of Southern and
South-Western Poland where coal-waste dumps are stored. The enormous amounts of
material from coal mining and coal production, due to the intense coal exploitation that has
begun in the 19th century, is accumulated on dumps [7]. These materials are exposed to
processes of self-heating, water-washing, and biodegradation, which can lead to significant
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environmental problems around coal-waste dumps, such as high concentrations of toxic
compounds in soil or acidic gases and chemicals in the air [8]. Therefore, not only the
environment but also human and animal life may be in danger. However, coal-waste is not
the only type of waste left after the post-war development of the polish industry. Another
big problem lies in South-Western Poland in Lower Silesian voivodeship. A small village,
Szklary, within Ząbkowice Śląskie County, is a place where up until 1982 the only nickel
ore mine in Poland was located. It has been officially closed due to the unprofitability of
further exploitation but huge amounts of ferronickel slag waste are accumulated there to
this day [9–11]. As it is stored in dumps, similar processes to coal-waste dumps occur. This
work is a proposal of ferronickel slag waste utilization in concrete mixtures to prevent
further contamination of groundwater, soil, and air spreading across Ząbkowice Śląskie
County, especially Szklary.

Waste and by-products from other industry branches can be re-used by the construc-
tion industry as a component of concrete and mortar [12–15]. According to current studies,
they can be used as a replacement of natural aggregate [16] and cement [17], as dispersed
reinforcement [18–21] to lower surface stress and prevent microcracks or as a filler to
increase thermal properties of final composite [22]. Ferronickel slag waste has a potential
to substitute natural aggregate as it is a solid discharged from the smelting process of metal
nickel or nickel-iron alloy. What is worth mentioning is that it has a high density and dura-
bility. Such properties are obtained in the heating and calcining process of nickel, where it
is bonded with iron oxide. Moreover, this fusion allows high resistance to corrosion, heat
shock, and fatigue, as well as the ferromagnetic effect of the final material [23].

The possibility of ferronickel slag waste utilization in concrete has been studied during
recent years by Saha et al. [24–27]. As they reported, a 50% replacement of natural sand
with FNSWA increases compressive strength from 38 to 57 MPa in concrete [26]. What
was unexpected, other mechanical properties also showed higher values compared to
plain concrete. Saha et al. noted about 7% and 13% increase in split tensile strength and
flexural strength, respectively. Similar trends were observed by Nguyen et al. [28] as
they reported an increase in concrete performance containing ferronickel sand as a fine
aggregate. They pointed out, that both, mechanical and durability properties increased,
due to the better interfacial transition zone between ferronickel aggregate and cement paste.
Nuruzzaman et al. [29] also tested ferronickel slag waste as an aggregate replacement.
With the density of 2920 kg/m3 and substitution in range from 20% to 60% they achieved
an increase in concrete mixture workability and a decrease in water absorption of hardened
samples. Furthermore, concretes containing 20%, 40%, and 60% showed an increase
by 1%, 34%, and 31% compressive strength compared to the base mix (37 MPa), and
an increase by about 2%, 15%, and 8% split tensile strength compared to the base mix
(4.3 MPa), respectively. The same trend after replacing coarse aggregate with ferronickel
was reported by Sun et al. [30] and Qi et al. [31]. However, not only mechanical and
psychical properties changes have been reported after FNSWA incorporation in concrete
mixture. As presented by Saha [32], ferronickel slag can lower the thermal conductivity,
as well. A concrete designed by them, with 100% FNSWA, showed 1.16 W/mK thermal
conductivity, which was about two times lower compared to the base mix with only natural
aggregate (2.34 W/mK).

This study aims to contribute to this growing area of research by exploring the poten-
tial usage of FNSWA mined in Szklary (Lower Silesia, Poland) as a replacement of natural
aggregate in concrete. The problem of FNSW in Lower Silesia in Poland is very serious, so
far, however, no possible method of utilization of this waste has been efficiently introduced
to the Polish industry. To do so, psychical, mechanical, and thermal properties on new
concretes were tested. Findings presented in this study make an important contribution to
the effective utilization of ferronickel slag waste accumulated in Szklary (Lower Silesia,
Poland) and contribute to the environment harmed by ferronickel slag waste stored there.
As it has a different mineral composition proportion compared to the ones presented in
current studies it may also show different results of concrete properties, especially its
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mechanical strength. Moreover, such a replacement is consistent with the principle of
sustainable development and the circular economy.

2. Materials
2.1. Specimen Preparation

Table 1 shows chemical composition and strength parameters of the Portland cement
(CEM I 42.5 R [33]) used for each concrete mixture, which were determined according to
EN 196-6:2019-01 [34] and PN EN 196-1:2016-07 [35]. Moreover, all of the recipes were
based on tap water (chloride content 28 mg/l) and natural granite aggregate, used as a
filler, with a fraction up to 8.0 mm. Its grain size index (CU = 7.2 and CC = 1.1) suggests
that aggregate is well compacted [36] and, as presented in Figure 1, fits between upper and
lower curves determined in accordance with the EN 12620+A1:2010 [37] standard.

Table 1. Chemical composition and strength parameters of the cement [38].

Compositions SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O Cl

Unit (vol%) 19.5 4.9 2.9 63.3 1.3 2.8 0.1 0.9 0.05

Specific surface area
(m2/kg) 376.3

Initial setting time (min) 227

Compressive strength
after 2 days (MPa) 28.4

Compressive strength
after 28 days (MPa) 60.8

Figure 1. Gradation of crushed granite aggregate and FNSWA.

In order to increase the workability of all mixtures, but at the same time maintain the
water-cement ratio w/c at 0.44, the chemical admixture was used. It was a low-alkaline
liquid, free of chlorine, and based on an aqueous solution of modified polycarboxylic
ethers (melamine and silanes/siloxanes), which helped reduce the accumulated water on
the surface of concrete after compaction, as well [39]. The chemical composition of the
chemical admixture is given in Table 2.

Table 2. Chemical composition of the admixture.

Compositions O Na Si K

Unit (vol%) 77.7 14.9 4.8 2.6
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2.2. Ferronickel Slag Waste

As a partial substitute to natural granite aggregate, ferronickel slag waste was used
(Figure 2). FNSW was mined from the ferronickel waste dump stored in Szklary, within
Ząbkowice Śląskie County (Lower Silesia, Poland) and transported to the laboratory.

Figure 2. Ferronickel slag waste aggregate.

Table 3 presents the chemical composition of FNSW used as an aggregate substitute,
the density of which is about 2750 kg/m3. Compared to cement, its chemical composition
is similar due to the fact that it contains a significant part of the compounds present in the
binder. The FNSWA sieve curve is given in Figure 1.

Table 3. Chemical composition of FNSW.

Compositions SiO2 Fe2O3 Al2O3 CaO MgO

Unit (vol%) 49.8 24.4 11.9 9.6 4.3

2.3. Mix Composition

Six different types of mortar mixtures were produced, see Table 4. The FNSWA
content, which was added rather than the same amount of natural aggregate, was 5%, 10%,
15%, 20%, and 25% of granite mass for samples marked in the article as 5FNSW, 10FNSW,
15FNSW, 20FNSW, and 25FNSW, respectively. The sample with 100% of natural granite
aggregate was marked as BM and used to compare test results.

Table 4. Mix proportions (1 m3).

Mix Symbol Cement
[kg]

Water
[kg]

Chemical
Admixture [kg]

Granite Aggregate
[kg]

FNSWA
[kg]

BM

468 207 4.7

1600 0

5FNSW 1520 80

10FNSW 1440 160

15FNSW 1360 240

20FNSW 1280 320

25FNSW 1200 400

2.4. Mix Production

After mixing dry components for 1 min, the liquid components were added to the
concrete mixture, and blended together for 4 min. Next, fresh concrete was poured into
molds and compacted on a vibrating table. All of the samples were manufactured in 21 ◦C
temperature and 50% humidity inside a laboratory and stored in water according to EN
12390-2:2019-07 [40]. After 28 days, the samples were tested for each property.
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From each mix, the following samples were produced: Ten cubes with dimensions
of 150 × 150 × 150 mm, five cuboids with dimensions of 40 × 40 × 160 mm, five rollers
with a base diameter of 150 mm and a height of 300 mm, and one tile with dimensions of
30 × 30 × 6 mm. In total, 60 cubic samples, 30 cuboid samples, 30 cylinders, and six tiles
were made to conduct this study.

3. Methodology
3.1. Fresh Concrete Tests

The slump cone test was carried out according to EN 12350-2:2019-07 [41], when the
air content and pH value of the mix were determined according to EN 12350-7:2019-08 [42]
and PN-B-01810:1986 [43], respectively. Five samples for each mixture were investigated.
These tests were performed in a listed order and right after the mixing process was done.
The presented values for the conducted tests are the average values of five samples made
in pursuance of each concrete recipe.

3.2. Hardened Concrete Tests

The density of concrete samples, was determined according to EN 12390-7:2019-08 [44]
on 150 × 150 × 150 cubes. Furthermore, mechanical properties were assessed, such as
compressive strength, flexural strength, and tensile strength. To do so, a Zwick machine
(Zwick, Ulm, Germany) with a force range of 0–5000 kN and maximum stress increase
of 0.5 MPa/s was used. The compressive strength was measured according to EN 12390-
3:2019-07 [45] on 150 × 150 × 150 mm samples, which were placed in the Zwick machine.
Next, the compressive strength of each test was determined by dividing the maximum
sample load value by the sample cross-sectional area. For the flexural strength test, in a
three-point bending set-up, 40 × 40 × 160 mm concrete beams were prepared according to
EN 12390-5:2019-08 [46]. The Zwick machine used for the test enabled loading with a static
force and keeping it in a vertical configuration at a constant assumed level thanks to the
supports that allowed only the horizontal movement (the distance between supports was
100 mm). The last mechanical property, the split tensile strength, was tested on cylinders of
150 mm diameter and 300 mm height according to EN 12390-6:2011 [47]. In order to perform
the test, the sample was placed in the Zwick machine on sliding supports, immobilized
in the guides of the testing machine. The distance between the supports was greater than
10 diameters of the sample and the pressure head and supports were radially rounded at
the point of contact with the sample. The cylinders of 150 mm diameter and 300 mm were
also used to define the Modulus of elasticity and Poisson’s ratio according to the EN 12390-
13:2014-02 [48] standard. Every sample was loaded and the load was removed in the lower
and upper stress range to determine these material properties of each hardened concrete
mixture. The modulus of elasticity and Poisson’s ratio were determined thanks to linear
displacements and measuring base lengths noted with Epsilon extensometers (Epsilon,
Jackson, WY, USA). The scope of the research also included thermal conductivity. The
temperature responses to the material heat flow pulses were the basis for all measurements
done with the ISOMET2114 analyzer (Applied Precision Ltd., Bratislava, Slovakia). The
analyzer probe, containing the resistor heater through which the heat flow was induced,
had a direct contact with the tested sample. A probe with a diameter of 60 mm and
the tested material in the form of cubes (150 × 150 × 150 mm) from each concrete mix
were used.

All of the specified above tests were carried out after 28 days of the curing process.
Each of them was performed on five samples of every mix and the values presented are the
average values (Figure 3).
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Figure 3. Photographic documentation of tests carried out: (a) Compressive strength test, (b) flexural strength test, (c) split
tensile strength test—cubes, (d) split tensile strength test—cylinder, (e) elastic modulus test, (f) thermal conductivity test.
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4. Results and Discussion
4.1. The Slump Cone Test

Table 5 shows the slump cone test results of all concrete recipes. According to EN
12350-2:2019-07 [41], they could be classified as a S1 class. Analyzing the obtained results,
it can be seen that the modification with ferronickel slag did not affect the cone slag at any
percentage share of the natural aggregate substitute, and thus the fresh concrete consistency.
All of the presented values of the slump cone fall test are in the error range. The slump
cone test was also conducted by Saha et al. in their studies [24,26]. They reported however
a much higher fall as the values fluctuated in the range of 200 to 230 mm and in the range
of 120 to 150 mm for mortars and concretes with ferronickel slag addition, respectively.
This difference in the results may be due to the higher water/cement ratio used by Saha
and the smaller size of ferronickel slag waste compared to our study.

Table 5. Fresh concrete test results.

Mix Symbol Slump Cone [mm] Consistency Class [41] Air Content [%] pH [-]

BM 2 ± 1 S1 2.1 ± 0.1 12.61 ± 0.03

5FNSW 2 ± 1 S1 2.2 ± 0.1 12.65 ± 0.03

10FNSW 2 ± 1 S1 2.4 ± 0.1 12.68 ± 0.04

15FNSW 2 ± 1 S1 2.7 ± 0.1 12.69 ± 0.03

20FNSW 2 ± 1 S1 3.2 ± 0.1 12.71 ± 0.03

25FNSW 1 ± 1 S1 3.6 ± 0.1 12.72 ± 0.04

4.2. Air Content

The air content presented in Table 5 shows that the peak value of this property was
reported for the 25FNSW sample (modified with 25% of ferronickel slag waste). It showed
an increment of 1.5% compared to BM. Previous substitutions of granite aggregate also
indicated a higher air content in concrete mixtures compared to BM. This phenomena may
be a result of the higher grain size of FNSWA compared to the granite aggregate used in
the concrete manufacturing process. It can also indicate more air voids both in fresh and
hardened concrete.

4.3. The pH Test

As presented in Table 5, the pH of all concrete mixtures exhibits the alkaline reaction.
The highest value of pH was reported for samples with 25% ferronickel slag waste aggregate
(12.72). Compared to the base mix values (12.61) an increase of about 1% can be noted.
Such a small change may indicate that FNSWA did not affect the pH of the concrete
mixture significantly.

4.4. Density

The density of concrete samples is presented in Table 6. The substitution equal to 5%,
10%, 15%, 20%, and 25% of natural aggregate done with FNSWA, resulted in a density
increase by 1.6%, 2.6%, 3.2%, 6.6%, and 8.7% compared to the BM, respectively. All of the
obtained values were in the range between 2187 ± 2 kg/m3 (BM) and 2378 ± 3 kg/m3

(25FNSW), and, after analyzing them, an overall trend can be noted as: The higher the
FNSWA amount, the higher the density of concrete, see Figure 4. This may be a result of the
higher density of FNSWA compared to the natural granite aggregate. Similar to this study,
Nuruzzaman et al. [29] also reported an increase in density of concrete containing FNSWA.
As they reported, the density increased by 1.58%, 3.15%, and 4.73% due to the use of 20%,
40%, and 60% FNSWA. On the other hand, the opposite trend was reported by Bouasria
et al. [49]. They, however, replaced not the aggregate but the cement with ferronickel slag,
and noted a decrease in concrete density from 2390 to 2330 kg/m3 after a 10% substitution.
Further modifications also showed decreased values—2310 and 2300 kg/m3 for 15% and
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30% replacement of cement, respectively. This may be connected to a higher density of
cement powder compared to ferronickel slag.

Table 6. Hardened concrete test results.

Mix Symbol Density
[kg/m3]

Compressive
Strength

[MPa]

Split Tensile
Strength

[MPa]

Flexural
Strength

[MPa]

Modulus of
Elasticity

[GPa]

Poisson
Coefficient

[GPa]

Thermal
Conductivity

[W/mK]

BM 2187 ± 2 45 ± 1 2.87 ± 0.03 5.9 ± 0.1 31.5 ± 0.4 0.123 ± 0.03 1.88 ± 0.04

5FNSW 2222 ± 2 49 ± 1 2.99 ± 0.05 6.2 ± 0.1 31.6 ± 0.3 0.124 ± 0.03 1.68 ± 0.04

10FNSW 2244 ± 3 53 ± 1 3.60 ± 0.03 6.5 ± 0.1 31.8 ± 0.3 0.129 ± 0.04 1.58 ± 0.04

15FNSW 2258 ± 2 54 ± 1 3.95 ± 0.03 7.4 ± 0.1 32.1 ± 0.4 0.123 ± 0.03 1.56 ± 0.03

20FNSW 2332 ± 2 56 ± 1 4.02 ± 0.03 9.5 ± 0.2 32.4 ± 0.3 0.124 ± 0.04 1.54 ± 0.04

25FNSW 2378 ± 3 59 ± 1 4.11 ± 0.04 9.8 ± 0.1 33.6 ± 0.3 0.123 ± 0.03 1.53 ± 0.03

Figure 4. The impact of FNSWA on concrete density.

4.5. Compressive Strength

The results of compressive strength for samples with different contents of FNSWA are
presented in Table 6 and in Figure 5. The results were compared to the base mix (without
FNSWA), which showed a compressive strength of 45 ± 1 MPa. All of the substitution
of natural aggregate, equal to 5%, 10%, 15%, 20%, and 25%, indicated an increase in
compressive strength by 8.8%, 17.8%, 20.0%, 24.4%, and 31.1%, respectively. For this
case, the highest value of compressive strength (59 ± 1 MPa) was obtained for samples
with the highest amount of FNSWA (400 kg/m3). The same phenomena was reported by
Qi et al. [31] as they noted the peak values of compressive strength for samples modified
with 50% of FNSWA (44.6 MPa). Another study in line with this trend was published
by Nuruzzaman et al. [29]. The authors tested the FNSW concrete with ferronickel slag
grading up to 9.50 mm and density of 2920 kg/m3 with its addition equal to 20%, 40%,
and 60%. They reported similar values of compressive strength (52.15 MPa) for samples
containing 20% of ferronickel slag compared to 20FNSW samples (56 ± 1 MPa). Moreover,
Sun et al. [30] used two types of ferronickel slag for concrete manufacturing—blast furnace
slag (BS) and electric furnace slag (ES). They showed that BS indicates an increase in
compressive strength by about 6%, 9%, and 11% for samples with 25%, 50%, and 75%
of ferronickel used as an aggregate. In the opposition to this were however results of
ES concretes, as they presented a decrease in compressive strength with an increase in
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ferronickel slag content. The opposite trend noted for samples containing ES may be due
to the type of ferronickel used, which showed a smooth surface. In turn, it can affect the
interactions between components and lower the results of mechanical tests. The lowest
compressive strength was reported for samples with 75% and 100% electric furnace slag
(58 MPa) and compared to the reference sample (65 MPa), it was a decrease by about 11%.

Figure 5. The impact of FNSWA on compressive strength and split tensile strength.

4.6. Split Tensile Strength

Table 6 shows the split tensile strength test results of concrete with a natural aggregate
replacement done with FNSWA. After substitution of granite aggregate with 5%, 10%, 15%,
20%, and 25% of FNSWA, the linear increase in split tensile strength was reported, see
Figure 6. Compared to BM, the samples modified with FNSWA showed higher values by
around 4%, 25%, 38%, 40%, and 43% values, respectively for 5FNSW, 10FNSW, 15FNSW,
20FNSW, and 25FNSW samples. As observed, the difference in split tensile strength for the
reference sample and the sample with the lowest amount of FNSWA (80 kg/m3) was not
significant. However, a further increase in FNSWA used in concrete resulted in a visible
increase in the split tensile strength, what also was reported by Nuruzzaman et al. [29].
Their FNSW concrete showed a 2%, 15%, and 11% increase in split tensile strength for 20%,
40%, and 60% ferronickel used as an aggregate. Furthermore, Qi et al. [31] tested FNSWA
as a substitute to natural aggregate. They used five different contents of ferronickel equal
to 10%, 20%, 30%, 40%, and 50%. As presented in their study, the highest split tensile
strength (3.96 MPa) showed samples with 50% of FNSWA, which was about 10% greater
than plain concrete. An increasing trend was also reported for BS concretes tested by
Sun et al. [30], however their ES concrete showed an opposite phenomena. This may be a
result of ES particles that contain a number of smooth glass surfaces, which can seriously
weaken the cohesion between cement paste and aggregates, and mechanical properties of
hardened concrete.



Materials 2021, 14, 2552 10 of 14

4.7. Flexural Strength

Table 6 presents the results of the flexural strength test of concrete samples with
FNSWA. For the 5%, 10%, 15%, 20%, and 25% substitution of natural granite aggregate,
the obtained flexural strength was about average 5%, 10%, 25%, 61%, and 66% higher
than for the plain concrete (5.9 ± 0.1 MPa), respectively. The flexural strength is directly
proportional to the FNSWA amount used in the concrete mixture, which is shown by a
linear increase in values. Furthermore, the determined R2 coefficient equal to 0.9, means a
good fit. This trend was also reported by Saha et al. [24], as well. They showed however,
that a peak in flexural strength is achievable for 50% FNSWA used in concrete and a further
increase in the amount of natural aggregate substitute decreases this property. Their study
complies with the Sun et al. research [30] as they reported after 28 days a constant value
of flexural strength for samples modified with 50% and 75% of ferronickel slag (8.2 MPa).
What is worth mentioning is that Sun et al. who used two types of the ferronickel slag
described above reported an increase for BS concretes, when the electric furnace slag
showed a decrease in flexural strength by about 4%, 6%, 10%, and 12% for 25%, 50%, 75%,
and 100% natural aggregate replacement, respectively.

Figure 6. The impact of FNSWA on flexural strength.

4.8. Modulus of Elasticity and Poisson’s Coefficient

The modulus of elasticity was slightly influenced by the aggregate substitution done
with FNSWA. Results given in Table 6, range from 31.5 ± 0.4 to 33.6 ± 0.3 GPa. The highest
values of modulus of elasticity were reported for 25FNSW samples, which compared to
BM showed a 6.7% increase in value. This trend was reported for the rest of the samples
as well, as the noted values were higher than the plain concrete (0.3%, 1.0%, 1.9%, and
2.9% increase for 5FNSW, 10FNSW, 15FNSW, and 20FNSW samples, respectively). An
increasing trend, after replacing 50% of natural sand aggregate with FNSWA, was reported
by Sakoi et al. [50] and Saha and Sarker [26], as well. However, their increase was about
14% and 12%, respectively, which is almost two times higher compared to this study. Such
a difference was caused by the greater FNSWA amount used by other researchers, which
could result in an increase of modulus of elasticity as it is related with the density of
concrete components.

On the other hand, the results of the Poisson’s ratio, presented in Table 6, indicate no
influence of FNSWA to this concrete property, as they are in the measurement error range.
Therefore, it can be said that the substitution of natural granite aggregate done with FNSWA
in the range from 5% to 25% did not affect the Poisson’s ratio. A similar conclusion was
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made by Qi et al. [31] as they stated that Poisson’s ratio of concrete containing ferronickel
slag is consistent with that of conventional concrete.

4.9. Thermal Conductivity

The obtained results of the thermal conductivity test ranged from 1.53 to 1.88 W/mK
(Table 6). The concrete modified with 25% FNSWA showed the lowest values of thermal
conductivity, which were 18.6% less than the plain concrete. Moreover, a linear decreasing
trend can be reported as thermal conductivity drops with an increase in the amount of
the aggregate substitute. The same phenomena was reported by Saha et al. [32]. Their
plain concrete reduced its thermal conductivity from 2.34 to 1.58 W/mK, 1.65 W/mK,
1.36 W/mK, and 1.16 W/mK, with 25%, 50%, 75%, and 100% FNSWA replacement, respec-
tively. As presented in Figure 7, the thermal conductivity values reported for concretes
with 25% ferronickel slag waste in this study and by Saha et al. are almost equal.

Figure 7. The impact of FNSWA on thermal conductivity.

5. Conclusions

The aim of this study was to evaluate the possibility of using the ferronickel slag waste
aggregate stored in dumps in Szklary (Lower Silesian, Poland) as an aggregate substitute
in concrete production. To do so, tests on new laboratory concrete mixtures were carried
out, from which final key conclusions can be made:

• The highest air content was reported for 25FNSW samples (3.6%);
• The density of hardened concretes were proportional to the amount of FNSWA

used. The density increased with the increasing FNSWA and the highest density
(2378 kg/m3) was found for concrete with 25% FNSWA and the lowest density
(2187 kg/m3) for plain concrete;

• The substitution of 80, 160, 240, 320, and 400 kg/m3 natural granite aggregate with
FNSWA caused an increase in the compressive strength by about 1.09, 1.18, 1.20, 1.24,
and 1.31 times and in flexural strength by about 1.05, 1.10, 1.25, 1.61, and 1.66 times,
respectively compared to plain concrete, while the obtained split tensile strength was
increased compared to BM by 4.0%, 25%, 38%, 40%, and 43%, respectively

• A slight influence of FNSWA on the modulus of elasticity was noted as reported
values showed an increase in the range of 0.3% up to 6.7%, depending on the amount
of substitute used;

• All of the concretes with FNSWA showed lower thermal conductivity values compare
to BM. The highest decrease was reported for 25FNSW samples (18.6%);
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• The substitution of natural aggregate done with FNSWA did not affect consistency,
the pH value, and Poisson’s ratio of concrete.

This research presents a solution to air, soil, and groundwater pollution caused by the
remains of post-war mining activities in Szklary (Lower Silesia, Poland). The set goal of
this case study, which was to determine the physical, mechanical, and thermal properties
of concretes containing FSWA, was successfully achieved. All of the new concretes showed
increased strength parameters, crucial in building materials, which can indicate a great
application capacity in the current construction industry.
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21. Małek, M.; Łasica, W.; Kadela, M.; Kluczyński, J.; Dudek, D. Physical and Mechanical Properties of Polypropylene Fibre-Reinforced
Cement–Glass Composite. Materials 2021, 14, 637. [CrossRef]
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