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Abstract: By evenly mixing polytetrafluoroethylene-silicon energetic materials (PTFE-Si EMs) with tin
oxide (SnO2) particles, we demonstrate a direct synthesis of graphene-encapsulated SnO2 (Gr-SnO2)
nanoparticles through the self-propagated exothermic reaction of the EMs. The highly exothermic re-
action of the PTFE-Si EMs released a huge amount of heat that induced an instantaneous temperature
rise at the reaction zone, and the rapid expansion of the gaseous SiF4 product provided a high-speed
gas flow for dispersing the molten particles into finer nanoscale particles. Furthermore, the reaction
of the PTFE-NPs with Si resulted in a simultaneous synthesis of graphene that encapsulated the
SnO2 nanoparticles in order to form the core-shell nanostructure. As sodium storage material, the
graphene-encapsulated SnO2 nanoparticles exhibit a good cycling performance, superior rate capa-
bility, and a high initial Coulombic efficiency of 85.3%. This proves the effectiveness of our approach
for the scalable synthesis of core-shell-structured graphene-encapsulated nanomaterials.

Keywords: sodium-ion batteries; graphene; core-shell structure; energetic materials; tin oxide; nanomaterials

1. Introduction

Possessing synergetic properties of dissimilar materials, carbon-encapsulated mate-
rials with a core-shell structure have been reported to exhibit excellent performance in
energy storage, environmental applications, and biological applications [1–3]. Among
these applications, carbon-encapsulated materials are mostly utilized in energy storage
devices, especially in secondary batteries, such as lithium-(Li-) and sodium-ion (Na-ion)
batteries, as anode materials [4–8]. It has been proven that the combination of high-capacity
anode materials with conductive carbon coating simultaneously alleviates the cracks and
fractures of the active materials and increases the electrical conductivity of the electrodes,
hence greatly improving the performance of the anodes. As for core and shell materials,
research studies have demonstrated that the utilization of nanoscale active materials in
the inner core can efficiently prevent structural fracture [9–12] and that using graphene
as the outer shell can significantly improve the initial Coulombic efficiency compared to
its carbonaceous counterparts [12,13]. In this regard, intensive efforts have been made
toward the synthesis of graphene-encapsulated nanomaterials for secondary battery anode
materials [14–16]. However, most of the technological advances involve complex multistep
processing and the use of commercial nanomaterials, thus limiting their further application
in anode materials as a result of high costs [17].

In recent years, the synthesis of nanomaterials at high temperatures has drawn great
attention for its low-energy consumption, relatively low cost, and scalability [18–21]. In
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our previous study, we have demonstrated the production of graphene-encapsulated Si
nanoparticles through the intense exothermic reaction of polytetrafluoroethylene-silicon
(PTFE-Si) energetic materials (EMs) [22]. As anode material in Li-ion batteries, the core-
shell-structured graphene-Si nanocomposites exhibited a good cycling performance, prov-
ing the effectiveness of the exothermic reaction for the synthesis of graphene-encapsulated
nanomaterials. In this case, Si served a dual role as the metal fuel, which reacted with
the PTFE to release heat, and as the Si nanoparticles left after the reaction as the active
materials for the anode of Li-ion batteries. However, the majority of high-capacity anode
materials for Li- and Na-ion batteries cannot react exothermically with the PTFE, which
largely restricts the choices for the materials selection.

In this article, we demonstrate the energetic-materials-driven synthesis of graphene-
encapsulated tin oxide (Gr-SnO2) nanoparticles. Here, the SnO2 is chosen for its superior
storage capacity in secondary batteries, especially in Na-ion batteries (1378 mAh·g−1

for sodium storage), which is of particular interest due to the low toxicity and wide
availability of Na [23,24]. The PTFE-Si EMs are used and evenly mixed with commercial
SnO2 particles. Upon ignition, the intense heat released by the self-sustained solid-state
exothermic reaction of the PTFE-Si EMs melts the SnO2 particles, and the high-pressure
SiF4 gas produced breaks the molten SnO2 into smaller spherical shaped nanoparticles.
Concomitantly, the reaction results in a bottom-up synthesis of graphene that encapsulates
the SnO2 nanoparticles. Used as the anode material in Na-ion batteries, the Gr-SnO2
nanoparticles exhibit a long-term cyclability and superior rate capability. This demonstrates
the competence of our approach for the synthesis of graphene-encapsulated nanoparticles.

2. Experimental Section
2.1. Synthesis of Gr-SnO2 Nanoparticles

First, 20 g PTFE microparticles were immersed into the 400 mL analytical grade ethanol.
The PTFE microparticles have an average diameter of ~60 µm (Shenyang Micro Powder
Factory Co., Ltd., Shenyang, China). Second, the PTFE microparticles were disintegrated
into nanometer-thick PTFE nanoparticles through ultrasonic processing. The ultrasonic
processing was performed for ~4 h at a frequency of 20 kHz and a power of 2.4 kW. Third,
10 g of commercial Si particles (average diameter of ~800 nm, Beijing Xingrongyuan Co.,
Ltd., Beijing, China) and 7.5 g of SnO2 particles (Aladdin, see Supplementary Figure S1)
were added into the solution. Next, the sonication processing was continued for ~1 h at a
power of 1 kW to mix the three components evenly. Finally, the PTFE/Si/SnO2 mixture
was obtained after the filtration and drying processes.

The PTFE/Si/SnO2 mixture (1 g) was placed in a metal groove (80 × 20 × 10 mm),
and the exothermic reaction of the mixture was triggered using an electrically heated
wire (~0.16 mm Nickel-chromium alloy wire) at one end of the groove. After passing a
current of 3 A through the wire, the reaction occurred and a huge amount of soot was
produced. The black powders were collected after the reaction and then magnetically
stirred in the NaOH solution (1 mol/L) for ~6 h to remove the remaining Si particles. Last,
centrifugation and then drying was conducted in a vacuum oven for ~12 h to obtain the
Gr-SnO2 nanoparticles.

2.2. Characterization

The structure of the Gr-SnO2 nanoparticles was characterized by X-ray diffraction
(XRD) (Rigaku, Japan) (D-8 Advance, Bruker Inc., Rigaku, Japan, 40 kV, 150 mA, Cu
Kα radiation, λ = 1.5406 Å). The X-ray photoelectron spectroscopy (XPS) (ThermoFisher,
Waltham, MA, USA) analyses were performed with a Thermo ESCALAB 250 Xi spectrome-
ter instrument (monochromatic Kα X-rays at 1486.6 eV). An aluminum anode was used
as the source. An Invia/Reflex Laser Micro-Raman spectroscope (Renishaw-invia) was
utilized to carry out the Raman measurements (Renishaw, Wotton-under-Edge, Britain).
The excitation laser beam wavelength used was 514 nm. The images of the Gr-SnO2
nanoparticles were obtained using Scanning electron microscopy (SEM) (GeminiSEM 300)
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(ZEISS, Oberkochen, Germany). Transmission electron microscopy (TEM) (JEOL, Tokyo,
Japan) was carried out using JEM-2100F. High-angle annular dark-field scanning TEM
(HAADF-STEM) images were obtained using an FEI Titan G2 microscope (FEI, Hillsboro,
OR, USA), where an aberration corrector was equipped and a Bruker Super-X EDS detector
operated at 300 kV. The in situ TEM (ZepTools, Tongling, China) characterization of the
sodiation processes of the Gr-SnO2 nanoparticles was performed using JEM 2100 TEM
operated at 200 kV.

2.3. Electrochemical Measurements

Using a sodium counter/reference electrode (Lizhiyuan, Taiyuan, China), a CR2025
type coin cell (Lizhiyuan, Taiyuan, China) was assembled in an Ar-filled glove box to
evaluate the electrochemical performance of the sample. By mixing active material (Gr-
SnO2 nanoparticles) in a ratio of 80:10:10 with polyvinylidene fluoride (PVDF) binder
and conductive super P in 1-methyl-2-pyrrolidinone (NMP) solvent, the working elec-
trode slurry was prepared and then coated on the copper foil and dried in a vacuum at
60 ◦C for 12 h. The glass fiber membrane was used as the separators. The galvanostatic
charge/discharge tests were carried out on a LAND CT-2001A cell test system between
0.01 to 3 V vs. Na+/Na at room temperature. Cyclic Voltammetry (CV) was carried out on
an IM600e electrochemical workstation (CH Instruments Ins, Shanghai, China).

3. Result and Discussion

The efficient production of Gr-SnO2 nanoparticles highly depends on the mixing
uniformity of the PTFE/Si/SnO2 mixture. The high uniformity greatly enhances the
reaction efficiency of the PTFE/Si EMs and also leads to the homogeneous heating of the
SnO2 particles, which is of importance for the synthesis of uniform nanoparticles [25].
Thus, a solution-processing technique is employed for mixing the powders. First, the PTFE
microparticles were processed in ethanol solution using high-power ultrasonic waves to
form a stable colloid dispersion consisting of nanometer-thick PTFE-NPs. In our previous
work, by using the PTFE-NPs as the solid-state carbon source, we have demonstrated the
successful synthesis of graphene nanosheets and graphene-encapsulated Si nanoparticles
through the intense exothermic reaction of PTFE-based energetic materials [22,26]. Second,
the Si particles, which had an average size of ~800 nm, and the SnO2 particles, which had
an average size of 190 ± 10 nm, were added into the solution, and the sonication processing
continued for ~1 h to evenly mix the three different powders. After the drying process, the
PTFE/Si/SnO2 mixture was obtained as the starting materials for producing the Gr-SnO2
nanoparticles. For the synthesis of Gr-SnO2 nanoparticles, the mixture was placed in a
metal groove and ignited at one end of the groove in an ambient atmosphere using an
electrically heated metal filament. Once ignited, self-sustained combustion occurred and a
huge amount of soot was produced (see Supplementary Figure S2). After the removal of
residual Si in the reaction products, the Gr-SnO2 nanoparticles were obtained.

The TEM image of a typical Gr-SnO2 nanoparticle and the selected area’s electron
diffraction (SAED) pattern are presented in Figure 1a(i,ii), respectively. In Figure 1a(i), it
can be observed that the Gr-SnO2 nanoparticle has a near-spherical shape and exhibits
an obvious core-shell structure. The lattice fringes in the inner core have a spacing of
0.27 ± 0.01 nm, which corresponds to the (101) planes of SnO2. It can also be seen that
few-layer graphene with an interlayer spacing of 0.39 ± 0.02 nm coated conformally on the
SnO2 nanoparticle to construct the core-shell structure. The SAED pattern corroborated the
crystalline structure of the atomized SnO2 nanoparticles. The core-shell structure of the
Gr-SnO2 nanoparticles is further verified by the elemental analysis using HAADF-STEM,
as shown in Figure 1b. Besides, free-standing graphene nanosheets, including single- and
few-layer graphene, are also observed (see Figure 1c). The particle size distribution of the
Gr-SnO2 nanoparticles is characterized by TEM, and the histogram of the particle size is
presented in Figure 1d, where the mean particle size is determined to be 29.9 ± 0.3 nm.
The representative TEM images of the Gr-SnO2 nanoparticles are shown in the inset of
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Figure 1d. The reduction of the particle size and the observation of the graphene outer
layer demonstrate the formation of core-shell nanostructures, with the SnO2 nanoparticles
as the core and the graphene as the shell.
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Figure 1. (a) i: The high-resolution TEM image of the Gr-SnO2 nanoparticle and ii: the selected area’s electron diffraction
pattern corresponding to crystalline SnO2. The interplanar spacing of the SnO2 core and graphene outer layer is determined
to be 0.27 ± 0.01 and 0.39 ± 0.02 nm. (b) The HAADF-STEM image along with the elemental analysis of the Gr-SnO2

nanoparticle. (c) The TEM images of single-layer and few-layer free-standing graphene nanosheets. (d) The histogram of
the particle sizes of the Gr-SnO2 nanoparticles. The insets are the TEM images of the Gr-SnO2 nanoparticles.

The XRD pattern of the Gr-SnO2 nanoparticles is compared with that of commercial
SnO2 particles in Figure 2a. Clearly, after the combustion process, the crystalline structure
of the SnO2 nanoparticles was well-maintained, with all the diffraction peaks being indexed
to the tetragonal rutile structure of SnO2. Besides, the byproducts of the reaction, silicon
carbide (SiC), are also observed in Figure 2a,b, which presents the Raman spectrum of
the Gr-SnO2 nanoparticles. As can be seen, the peaks located at ~1343 cm−1, ~1589 cm−1,
~2691 cm−1, and ~2926 cm−1 correspond to the D, G, 2D, and D+G bands of graphene,
respectively [27,28]. The absence of the characteristic bands of SnO2 can be ascribed
to the highly intense graphitic peaks of graphene, which greatly suppress the peaks of
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SnO2 [29]. The Gr-SnO2 nanoparticles were also characterized by XPS. In Figure 2c, the
peaks located at 486.5 eV, 495.0 eV, and 531.6 eV can be assigned to Sn 3d5/2, Sn 3d3/2,
and O 1s, respectively, which agrees with the reported data for SnO2 [30–32]. The C 1s
spectrum of the Gr-SnO2 nanoparticles is presented in Figure 2d. The peak observed at
283.1 eV corresponds to the SiC, while the peaks at 284.5, 285.3, and 288.5 eV correspond to
the C-C, C-O, and −C=O groups, which indicate that the graphene produced is slightly
oxidized [22,26]. Furthermore, no peak corresponding to the Si0 (see Supplementary Figure
S3) is seen, demonstrating the complete removal of the unreacted Si particles.
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Figure 2. (a) The XRD patterns of the commercial SnO2 particles and Gr-SnO2 nanoparticles. (b) The Raman spectrum of
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The high-resolution C 1s spectrum of the Gr-SnO2 nanoparticles.

The formation of the core-shell-structured Gr-SnO2 nanoparticles can be explained
and interpreted as the atomization and encapsulation processes driven by the intense
exothermic reaction of PTFE-Si EMs. During this fast reaction process, which is generally in
the range of hundreds of microseconds, the highly exothermic reaction of the PTFE-Si EMs
releases a huge amount of heat and gaseous SiF4 product [33]. For the Si/PTFE mixture
with a similar composition, it has been reported that the average combustion temperature
is in the range of 1708 to 1889 K [34], which is comparable to the melting point of SnO2
(1630 °C); hence, the released heat melted the SnO2 particles and induced an instantaneous
temperature rise at the reaction zone. This temperature rise caused a rapid expansion
of the SiF4 gas and the subsequent pressure rise. The pressurization rate experiments
were carried out using a special-designed vessel with a 220 mL internal volume, and the
detail of the experimental setup can be found elsewhere [35]. The pressurization rate of
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the PTFE/Si EMs of a similar composition was measured to be 5.75 MPa/s, and the peak
pressure was determined to be 0.545 MPa (see Supplementary Figure S4). Hence, the
rapid expansion of the SiF4 gas provides a high-speed gas flow for dispersing the molten
particles into finer nanoscale particles. Furthermore, the reaction of the PTFE-NPs with Si
resulted in a synthesis of graphene, including the graphene outer layers that encapsulated
the SnO2 nanoparticles and free-standing single- and few-layer graphene nanosheets. This
is corroborated with our previous studies [22,26]. According to the above discussion, the
energetic-materials-driven atomization and encapsulation processes for the production of
Gr-SnO2 nanoparticles are schematically illustrated in Figure 3.
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of graphene-encapsulated SnO2 nanoparticles.

The capability of the Gr-SnO2 nanoparticles in energy storage applications was further
evaluated as anode materials in Na-ion batteries. As shown in Figure 4a, assembled in a
half-cell configuration, the cycling performance of the Gr-SnO2 nanoparticles was evaluated
using deep galvanostatic cycling at a current density of 200 mA·g−1 between 0.01 and 3.00 V.
It can be seen that the Gr-SnO2 electrode delivers a high discharge capacity of 469 mAh·g−1

at the 100th cycle. Figure 4b shows the typical galvanostatic charge/discharge profiles of
the Gr-SnO2 nanoparticles for the 1st, 2nd, and 3rd cycles tested at a current density of
200 mA·g−1. The core-shell-structured nanoparticles deliver an initial discharge/charge
capacity of 1230.0/1048.8 mAh·g−1 and an initial-cycle Coulombic efficiency (ICE) of 85.3%.
As the number of cycles increases, the Coulomb efficiency gradually increases to about
100% due to the formation of a relatively stable solid electrolyte interphase (SEI) [22]. The
sodiation reaction is also investigated by in situ TEM technique. Figure 4c presents the TEM
high-resolution images of the Gr-SnO2 nanoparticles and the corresponding SAED pattern
before and after the first sodiation cycle. The second SAED pattern confirms the existence
of crystalline Na15Sn4 phases after the sodiation, indicating that the SnO2 nanoparticles in
the inner core were fully sodiated [24,36].
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nanoparticles.

Figure 5a presents the first CV curves of the Gr-SnO2 nanoparticles with a scan rate of
0.1 mV·s−1 in a potential window of 3 to 0.01 V. In the cathodic scan, the peak observed at
around 1.0 V may originate from the formation of SEI layers and the conversion of SnO2 to
Sn. The peak that appears at around 0.7 V can be assigned to the alloying reaction between
Sn and Na ions. The characteristic peak at 0.01 V can be associated with the intercalation
reaction of carbon with Na ions [37,38]. In the anodic scan, the peaks at around 0.25 V
and 0.6 V correspond to the dealloying reaction of Na15Sn4. In addition, the broad peak
at around 1.25 V corresponds to the conversion reaction of Sn to SnO2 [37]. Figure 5b
shows the rate capability of Gr-SnO2 nanoparticles at diverse current densities ranging
from 0.1 A·g−1 to 1 A·g−1, respectively. The Gr-SnO2 nanoparticles deliver discharge
capacities of 444.9, 378.8, 304.8, 280.8, and 209.5 mAh·g−1 at current densities of 0.1, 0.2,
0.4, 0.5, and 1 A·g−1, respectively. Even after cycling at a current density of 1 A·g−1, the
reversible capacity can still return to 448.1 mAh·g−1 at a current density of 0.1 A·g−1, which
demonstrates a superior cycle stability. At a higher rate, the coated tin dioxide materials
show a better mechanical adjustment ability, thus achieving a good rate performance [39].



Materials 2021, 14, 2550 8 of 10
Materials 2021, 14, x FOR PEER REVIEW 8 of 10 
 

 

 

Figure 5. (a) CV curves of the Gr-SnO2 nanoparticles. The voltage window is 3–0.01 V. (b) Rate performance of the Gr-

SnO2 nanoparticles. Current densities of 0.1, 0.2, 0.4, 0.5, and 1 A·g−1 are used for the cycles. 

As a critical parameter of the energy density of Na-ion full batteries, the ICE of the 

Gr-SnO2 nanoparticles is amongst the highest reported for the anode materials of Na-ion 

batteries [37,40–46]. The high ICE can be ascribed to the structural features of the Gr-SnO2 

nanoparticles, where the nanoscale core material shortens the ion diffusion path and the 

graphene coating facilitates the transport of electrons and ions to the core material [13,47]. 

Additionally, the outer layer graphene also exhibits a good mechanical stability that sup-

ports the formation of a stable SEI layer during cycling [13]. Table 1 compares the electro-

chemical performance of the Gr-SnO2 nanoparticles with that of the reported SnO2-based 

composites. It can be found that the electrochemical performance of the Gr-SnO2 nanopar-

ticles is one of the best among the SnO2-based composites. 

Table 1. Comparison of the electrochemical performances of the SnO2-based materials for SIBs. 

Materials Cycling Performance Rate Capacity Coulomb Efficiency Ref. 

SnO2 NRs@GA 232 mAh·g−1 @50 mA·g−1 96 mAh g−1 @1 A·g−1 58.4% [42] 

NC@SnO2 270 mAh·g−1 @100 mA·g−1 193 mAh·g−1 @1 A·g−1 38.2% [43] 

SnO2 QDs/GA 319 mAh·g−1 @50 mA·g−1 150 mAh·g−1 @800 mA·g−1 54% [46] 

CNT@SnO2@G 323 mAh·g−1 @25 mA·g−1 119 mAh·g−1 @1 A g−1 43% [45] 

PCS@SnO2@C 326 mAh·g−1 @50 mA·g−1 82 mAh·g−1 @1.6 A·g−1 53.5% [44] 

SnO2/NC-2 342.2 mAh·g−1 @100 mA·g−1 212.6 mAh·g−1 @1 A·g−1 59.2% [41] 

C/SnO2/C 370 mAh·g−1 @100 mA·g−1 105 mAh·g−1 @10 A·g−1 - [37] 

Gr-SnO2 469 mAh·g−1 @100 mA·g−1 209.5 mAh·g−1 @1 A·g−1 85.3% This work 

4. Conclusions 

In summary, we have presented a scalable approach for the synthesis of graphene-

encapsulated SnO2 nanoparticles as sodium storage materials. Using a solution-pro-

cessing technique, commercial SnO2 particles are evenly mixed with PTFE-Si EMs consist-

ing of nanometer-thick PTFE and Si particles. Upon ignition, the intense heat and gaseous 

SiF4 product was released, leading to the atomization of the SnO2 particles, and the syn-

thesis of graphene at a high temperature resulted in a simultaneous encapsulation process 

in order to form core-shell-structured graphene-SnO2 nanoparticles. Used as anode mate-

rials in Na-ion batteries, the graphene-encapsulated SnO2 nanoparticles exhibit a good 

cycling performance, rate capability, and high ICE, demonstrating the structural integrity 

of the Gr-SnO2 nanoparticle. Our approach provides a direct way to synthesize graphene-

encapsulated nanomaterials through the highly exothermic reaction of EMs. 

Figure 5. (a) CV curves of the Gr-SnO2 nanoparticles. The voltage window is 3–0.01 V. (b) Rate performance of the Gr-SnO2
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As a critical parameter of the energy density of Na-ion full batteries, the ICE of
the Gr-SnO2 nanoparticles is amongst the highest reported for the anode materials of
Na-ion batteries [37,40–46]. The high ICE can be ascribed to the structural features of
the Gr-SnO2 nanoparticles, where the nanoscale core material shortens the ion diffusion
path and the graphene coating facilitates the transport of electrons and ions to the core
material [13,47]. Additionally, the outer layer graphene also exhibits a good mechanical
stability that supports the formation of a stable SEI layer during cycling [13]. Table 1
compares the electrochemical performance of the Gr-SnO2 nanoparticles with that of the
reported SnO2-based composites. It can be found that the electrochemical performance of
the Gr-SnO2 nanoparticles is one of the best among the SnO2-based composites.

Table 1. Comparison of the electrochemical performances of the SnO2-based materials for SIBs.

Materials Cycling Performance Rate Capacity Coulomb Efficiency Ref.

SnO2 NRs@GA 232 mAh·g−1 @50 mA·g−1 96 mAh·g−1 @1 A·g−1 58.4% [42]
NC@SnO2 270 mAh·g−1 @100 mA·g−1 193 mAh·g−1 @1 A·g−1 38.2% [43]

SnO2 QDs/GA 319 mAh·g−1 @50 mA·g−1 150 mAh·g−1 @800 mA·g−1 54% [46]
CNT@SnO2@G 323 mAh·g−1 @25 mA·g−1 119 mAh·g−1 @1 A g−1 43% [45]
PCS@SnO2@C 326 mAh·g−1 @50 mA·g−1 82 mAh·g−1 @1.6 A·g−1 53.5% [44]

SnO2/NC-2 342.2 mAh·g−1 @100 mA·g−1 212.6 mAh·g−1 @1 A·g−1 59.2% [41]
C/SnO2/C 370 mAh·g−1 @100 mA·g−1 105 mAh·g−1 @10 A·g−1 - [37]
Gr-SnO2 469 mAh·g−1 @100 mA·g−1 209.5 mAh·g−1 @1 A·g−1 85.3% This work

4. Conclusions

In summary, we have presented a scalable approach for the synthesis of graphene-
encapsulated SnO2 nanoparticles as sodium storage materials. Using a solution-processing
technique, commercial SnO2 particles are evenly mixed with PTFE-Si EMs consisting
of nanometer-thick PTFE and Si particles. Upon ignition, the intense heat and gaseous
SiF4 product was released, leading to the atomization of the SnO2 particles, and the
synthesis of graphene at a high temperature resulted in a simultaneous encapsulation
process in order to form core-shell-structured graphene-SnO2 nanoparticles. Used as anode
materials in Na-ion batteries, the graphene-encapsulated SnO2 nanoparticles exhibit a
good cycling performance, rate capability, and high ICE, demonstrating the structural
integrity of the Gr-SnO2 nanoparticle. Our approach provides a direct way to synthesize
graphene-encapsulated nanomaterials through the highly exothermic reaction of EMs.
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Figure S4: Curve of the pressure versus time of 0.5g of 70PTFE-30Si (wt.%) in closed bomb with 220
mL internal volume. The size of Si particles is 500 nm.
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