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Abstract: Reinforced concrete may corrode in anoxic environments such as offshore structures. Under
such conditions the reinforcement fails to passivate completely, irrespective of chloride content, and
the corrosion taking place locally induces the growth of discrete pits. This study characterised such
pits and simulated their growth from experimentally determined electrochemical parameters. Pit
morphology was assessed with an optical profilometer. A finite element model was developed to
simulate pit growth based on electrochemical parameters for different cathode areas. The model was
able to predict long-term pit growth by deformed geometry set up. Simulations showed that pit
growth-related corrosion tends to maximise as cathode area declines, which lower the pitting factor.
The mechanical strength developed by the passive and prestressed rebar throughout its service life
was also estimated. Passive rebar strength may drop by nearly 20% over 100 years, whilst in the
presence of cracking from the base of the pit steel strength may decline by over 40%.

Keywords: corrosion; anoxic conditions; reinforced concrete; chloride; pitting

1. Introduction

Offshore, port and deep geological nuclear waste storage structures must be built with
reinforced concrete designed for long-term durability in oxygen-free environments. Part
1 of this study addressed the electrochemistry of reinforcing steel embedded in concrete
located in an anoxic environment [1–3]. Corrosion rate was observed to be governed and
limited by the cathode reaction and unaffected by the chloride concentration in the concrete
at concentrations from 0 wt.% to 2 wt.%. The Tafel slopes and limiting current density were
calculated and corrosion was found to concentrate in discrete pits.

This second part deals with the geometric characterisation of such experimentally
generated pits and the simulation of their growth by entering experimentally determined
electrochemical values into a finite elements model (FEM) [4–8]. Model validation provided
grounds for the long-term extrapolation of pit development.

Earlier findings were also used to estimate the variation in mechanical strength in-
duced by pitting or related cracking [7,8]. Pit growth and geometry were then used to
determine steel ultimate tensile strength and draw a damage tolerance diagram factoring
in the effect of associated developments such as hydrogen embrittlement [6,9–13].

2. Materials and Methods
2.1. Materials

The six 10 × 10 × 10 cm3 cubic concrete specimens used for this study were prepared
with 350 kg of type I 42.5 R cement per m3 of concrete. Aggregate batching per m3 of
concrete was: fines (0 mm to 4 mm), 766.00 kg/m3; coarse aggregate (4 mm to 12 mm),
823.6 kg/m3; and gravel (12 mm to 20 mm), 325.60 kg/m3, whilst the water/cement ratio
was 0.45. The mixing water used contained chlorides in the form of sodium chloride (NaCl)
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at concentrations ranging from 0% to 2%, referred to cement weight. The specimens were
prepared by pairs, with specimens E01 and E02 bearing no chlorides; E11 and E12 1 wt.%
Cl− and E21 and E22 2 wt.% Cl−. All specimens bore an embedded 6 mm diameter B500SD
steel bar. After curing for 1 d in a humidity chamber they were removed from the moulds
and submerged in a 30 g/L solution of NaCl and stored in a glovebox through which
nitrogen was flowed to simulate an anoxic environment.

2.2. Methods

Upon conclusion of the 232 d test, the electrochemical values (see Part 1) were recorded
and the specimens were oven-dried and broken open. The steel surface was immediately
analysed under an optical microscope to identify the pits generated. The rebar was sub-
sequently pickled to remove the oxide from the pits. Pit morphology was assessed with
an Alicona InfiniteFocusSL (Bruker) focus variation optical profilometer fitted with a 10×
magnifying lens and featuring vertical resolution at 0.1 µm. A profilometer scan of the pits
previously identified and labelled delivered information on the form and depth of the pits.

The findings described here and in part 1 of this article were applied to develop
a finite element model to simulate pit growth based on electrochemical parameters for
different cathode areas. The model was able to predict long-term pit growth based on
calculations performed with COMSOL Multiphysics 6.5 software [14–16]. The ‘secondary
current distribution’ interface used was compatible with both Ohm’s law and the Tafel or
Butler–Volmer equations for calculating electrode charge transfer.

∇− ρ−1(∇∅) = Q (1)

where ρ is the resistivity, ϕ is the potential field and Q is the external current.
Current density, i, follows:

i = −ρ−1(∇∅) (2)

The activation overpotential, denoted η, is the following:

η = ∅− Eeq (3)

where Eeq denotes the equilibrium potential.
The anodic and cathodic Tafel equation is implemented as follows:

i = −i0 10η/A (4)

where i0 is exchange current density and A is the Tafel slope.
The model also deployed ‘deformed geometry’ from which pit growth could be simu-

lated from the values obtained in the preceding modulus. Inasmuch as corrosion adopted
the form of pits in this study, which aimed to predict their growth, 2D-axisymmetric (i.e.,
simulated 3D with symmetrical rotation) geometry was used. The FEM simulation scheme
depicted in Figure 1 shows the medium, concrete in this case, the anode and cathode areas
and the axis of symmetry or rotation.

The electrochemical parameters used in the model, determined in part 1, are sum-
marised in Table 1. On the one hand, the medium, which in this case is concrete, is taken
into account through the value of its resistivity (ρ) which was measured in the experiments.
The cathodic reaction is defined by the cathode equilibrium potential (Eeq,c), cathode ex-
change current density (i0,c) and the cathode Tafel slope (Ac). Likewise, the anodic reaction
has been defined through the anode equilibrium potential (Eeq,a), anode exchange current
density (i0,a), anode Tafel slope (Aa) and anode limiting current density (ilim,a).

The MUMPS (multifrontal massively parallel sparse direct solver) solver was applied,
defining step times of under 1 d over 100 years. Intermediate findings were automatically
remeshed as the pit grew. The mesh used was a triangular element defining the cathode
area with at least 100 elements. The full mesh consisted in over 500 elements, generating
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around 8000 degrees of freedom, as shown in Figure 2. The convergence tolerance criterion
was set at 10−3.
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Calculations were performed at a work station featuring two Intel Xeon E5-2690 v3
12-core CPU processors and a 125 GB RAM.

Calculations were run for different anode area/cathode area ratios at a fixed anode
area radius of 50 µm and varying the cathode area from 0.1 cm to 10 cm.

3. Results and Discussion
3.1. Pit Geometry

Irrespective of the chloride content in the specimen, optical microscopy revealed a
mean of three pits on each bar, subsequently assessed with a profilometer. In the scans
reproduced in Figures 3 and 4 by way of example, the rebar is depicted both in its natural
colour on the left and colour-coded to denote depth on the right. In one case, sample E12,
pitting has been generated next to the rebar ribs, while in another case, sample E21, pitting
has been generated between the ribs. Two examples have been taken to show that pitting
growth can occur anywhere on the rebar.
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Figure 4. Pit in specimen E21: (a) natural colour; (b) depth-based colour coding.

Pit geometry was analysed with the profilometer findings. From the 3D geometry
of the pit, the profile was obtained by cutting through a plane containing the pit growth
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axis. Once this profile had been obtained, the pit was fitted to an ellipsoid defined by two
perpendicular axes, one that defines the depth of the pit and the other that represents the
lateral growth of the pit. Figure 5 shows two examples, in which pit growth was defined
along two perpendicular axes, Py (half-width) and Px (pit depth).
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Figure 5. Pit profiles for specimen E12 (a) and E21 (b) as determined by plotting Py (pit half-width) against Px (pit
depth) values.

Table 2 lists the values of the two parameters, depth (Px) and half-width (Py), in µm,
for all the pits found on the bars embedded in concrete specimens. Since the differences
found among them were not significant, all the pits were deemed to constitute a single
population. The mean 232 d depth of the pits identified was found to be 97 µm. That
information is of immense utility in long-term structural durability studies, for it provides
insight into rebar degeneration that can be used as grounds for establishing its service life.

Table 2. Rebar pit depth (Px) and half-width (Py) (in µm).

No.
Px/Py

E01 E02 E11 E12 E21 E22

1 50.5/59.3 78/80 96/170 103/170 174/197 127/152

2 60/54 76/90 81.5/69.2 155/313 132/180 50/76

3 — 51/75 101.6/183 127/152 53/100 126/163

4 — — — 118/245 63/120 124/150

3.2. Finite Element Simulation of Pit Growth

The findings delivered by COMSOL Multiphysics finite element software are dis-
cussed in this section. Figure 6 shows pit growth, the current lines between anode and
cathode and their distribution in the concrete for a 2 mm cathode area with time = 360 d.
The figure also shows the variation in pit dimensions between 360 d and 720 d. Pit growth
generated an ellipsoid, one of whose axes being depth and the other two half-width.

Figure 7 graphs the variation in pit depth with time as simulated with FEM for all
the simulated cathode areas. Since the cathode reaction governed the process, for any
given time pit depth increased with the cathode area, as expected. At the end of the 232 d
experiment the cathode area was observed to have a 1 mm to 2 mm radius.
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As the experimental data show, the pits were not spherical but ellipsoid. Growth
was likewise ellipsoid according to the FEM findings. The findings for a pit with a 1 mm
cathode radius are plotted in Figure 8. Pit half-width, Py, was observed to be greater than
depth, Px. The Py/Px ratio calculated from the experimental data was 1.45.
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The Px and Py values found with the FEM simulations were used to calculate pit
volume under the assumption that the pits were spheroids or, equivalently, ellipsoids of
revolution, whereby:

Vcorr(t) =
4
3

π Px(t) (Py(t))2 (5)

The simulated data were applied to calculate corrosion rate (icorr) using Faraday’s
law [2]:

icorr(t) =
F z ρ

A P
∂Vcorr(t)

∂t
(6)

where F is the Faraday constant, z the number of electrons involved in the anode reaction,
ρ density, A area, P molecular weight, V pit volume and t time.

The variation in corrosion rate over time for the simulated cathode areas is shown
below. Although as a rule the lower the cathode area the higher the rate, due to pit growth
icorr peaked at a 2 mm cathode radius and an age of around 40 years.

For that reason, whilst greater pit depth was favoured by greater cathode area
(Figure 7), as Figure 9 shows, the peak corrosion rate was reached at the minimum cathode
area. Further to the experimental data, the predominant parameter was corrosion rate; i.e.,
in anoxic corrosion the rate maximised while cathode area tended to minimise. This study
showed that the cathode area was defined by a circle with a 1 mm to 2 mm radius, inferring
that pit growth took place every 3.1 mm2 to 12.6 mm2.
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Pitting factor α is defined as the ratio between mean pit depth and mean thickness
loss due to pervasive corrosion [4]. That parameter is plotted across a full 100 year service
life for all the cathode radii studied in Figure 10. Very high factor values were observed
at the outset of corrosion and when the cathode area was greatest. For a 1 mm or 2 mm
cathode area, the α values were under 10 and tended to decline to 1 to 4 in the longer term.
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3.3. Rebar Mechanical Performance

Earlier reports [7,8,17–19] and the present findings for anoxic conditions were used
to estimate the mechanical performance of concrete-embedded steel rebar. Further to
finite element model predictions, growth was expected in a pit with an aspect ratio Py/Px
of approximately 1.2 (Figure 11), a value consistent with the experimental data for long
periods of time.
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The forecasts for up to 100 years’ pit growth for the cathode areas studied are graphed
in Figure 12. In keeping with the experimental results, only the mechanical performance
estimates for cathode area radii of 0.1 cm to 0.2 cm are discussed below.
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Two scenarios were envisaged to estimate mechanical performance: growth of a pit
with an aspect ratio of 1.2; and cracking initiated at the pit.

Variation in mechanical strength was calculated for the following conditions and
assumptions: rebar diameter, 6 mm; steel fracture toughness, 50 MPa·m1/2 [7,20,21];
cold-drawn pearlitic steel (commonly used in prestressed structures) ultimate strength,
1800 MPa [19,22,23].

Where induced by pit growth, ductile failure is found with the following equation:

Fu/Fu0 = 1.0− 0.0636
(

Px

R

)
− 0.0065

(
Py

R

)
− 1.6050

(
Px

R

)2
+ 0.0004

(
Py

R

)2
(7)

where Fu/Fu0 is the ratio between ultimate strength in the presence of a pit and ultimate
strength in a non-deteriorated rebar, and R is rebar radius.

For steel bars, the stress intensity factor (KI) and consequently the failure criterion can
be calculated with the Valiente and Elices equation [1,16,17]. Assuming the presence of semi-
ellipsoid surface cracks, those authors developed the following expression to determine the
stress intensity factor with the principal semi-axes Px (depth) and Py (half-width):

KI

σ
√

πPX
=

4

∑
i=0 i 6=1

3

∑
j=0

Cij

(
PX
d

)i(PX
Py

)j
(8)

where α is stress, Cij are constants and d is diameter.
The failure diagram in Figure 13 shows the decline in steel ultimate strength for

cathode radii of 0.1 cm and 0.2 cm. Two scenarios were envisaged: steel ductile failure
due to pit growth and brittle failure due to cracking at the base of the pit, assuming the
crack to be the same size as pit [5,9,10]. Pit growth-induced ductile failure was deemed
to entail plasticisation of the remaining section. In that case failure would take place at a
stress level of 80% to 90% of the ultimate strength in the 100th year of service life. In the
second scenario, with a crack emanating from the pit, failure mechanics had to be taken
into consideration and the stress intensity factor for surface cracks in a cylindrical geometry
calculated [8,18,24,25]. The hydrogen effect was also deemed to be present, lowering failure
toughness [7,13,26–28] due to the weakening of inter-iron bonds [9–12].
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The calculations performed under those conditions predicted that failure would be
reached at a load of 60% to 70% of the ultimate strength in the 100th year of service life. The
significant decline in strength in that case could obviously lead to sudden failure, which
would entail greater risk for members exposed to high stress.

4. Conclusions

The conclusions to be drawn from rebar corrosion geometry in anoxic environments
are set out below.

1. A mean of three pits per bar was found, irrespective of chloride content. Pit mor-
phology fitted an ellipsoid pattern. The mean pit depth in 232 d specimens was
97 µm.

2. FEM simulation showed that pit growth-related corrosion tends to maximise as
cathode area declines, although the largest pits did not form under those conditions,
which lower the pitting factor.

3. Simulation afforded estimates of rebar mechanical performance across a structure’s
service life. In a passive rebar, strength may decline by nearly 20% over 100 years,
whilst in the presence of cracking from the base of the pit, which may occur in an
active (prestressed) rebar, steel strength may decline by over 40%.
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