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Abstract: Bimetallic cobalt (Co)-based coatings were prepared by a facile, fast, and low-cost electroless
deposition on a copper substrate (CoFe, CoMn, CoMo) and characterized by scanning electron
microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Prepared
coatings were thoroughly examined for hydrogen evolution reaction (HER) and oxygen evolution
reaction (OER) in alkaline solution (1 M potassium hydroxide, KOH) and their activity compared
to that of Co and Ni coatings. All five coatings showed activity for both reactions, where CoMo
and Co showed the highest activity for HER and OER, respectively. Namely, the highest HER
current density was recorded at CoMo coating with low overpotential (61 mV) to reach a current
density of 10 mA·cm−2. The highest OER current density was recorded at Co coating with a low
Tafel slope of 60 mV·dec−1. Furthermore, these coatings proved to be stable under HER and OER
polarization conditions.

Keywords: electroless deposition; cobalt-based coatings; hydrogen evolution reaction; oxygen
evolution reaction; water electrolysis

1. Introduction

The electrochemical water splitting is a simple method to produce high purity hy-
drogen (H2) through cathodic reaction (hydrogen evolution reaction, HER) and on the
other side, oxygen (O2) through anodic reaction (oxygen evolution reaction, OER) [1–5].
H2 gas produced by water electrolysis could be a great replacement for fossil fuels such as
coal and petroleum as its consumption produces no carbon dioxide (CO2) or other green-
house gasses [6]. Hence, the number of studies related to water electrolysis has increased
significantly every year during the last decade, aiming to increase the process efficiency
and decrease its cost [7–12]. OER proceeding via a 4-electron pathway is slower than HER
proceeding via a 2-electron pathway [6]. Platinum (Pt) showed the best catalytic activity
for HER, while iridium oxide (IrO2) and ruthenium oxide (RuO2) were presented as the
best electrocatalysts for OER in alkaline media with low overpotential [1,13]. The major
limitations of these electrocatalysts are their high cost, low abundance, and low catalytic
stability. It is very important to find appropriate low-cost electrocatalysts that can improve
HER and OER kinetics and efficiency. Transition metal-based electrocatalysts combined
with noble metals are presented as good electrocatalysts for both HER and OER in alkaline
media [14,15]. Also, transition metal phosphides [16,17], sulfides [18,19], selenides [20,21],
carbides [22,23] and nitrides [24] have been tested as bifunctional electrocatalysts for HER
and OER.
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Strained cobalt(II) oxide (S-CoO) exhibited a Tafel slope of 94 mV·dec−1, confirming
the Heyrovsky–Volmer HER mechanism [25]. Incorporation of a small amount of copper
(Cu) impurities into Co3O4 precursor led to the formation of Co3O4–CuO nanowires
and resulted in improved conductivity as well as good catalytic activity for HER [26].
This mixed transition metal oxide gave a current density of 10 mA·cm−2 at 0.288 V vs.
reversible hydrogen electrode (RHE) and Tafel slope of 65 mV·dec−1 [26]. Fe- and Mn-
doped CoP electrocatalysts were tested for HER in 1 M potassium hydroxide (KOH) with
a low overpotential of 163 mV·dec−1 observed for HER at CoP–FeP [2]. The excellent
activity of CoP–FeP for HER could be a consequence of the optimized electronic structure
of Co centers and P upon the introduction of Fe [2]. Co0.85Se/nitrogen-doped graphene
showed small Tafel slopes of 76.5 mV·dec−1 with a low HER onset potential of 111 mV
in 1 M KOH [21]. A hybrid electrocatalyst of FeCo alloy nanoparticles deposited on a
porous N-doped carbon (FeCo-TA@CMS) was also tested for HER in alkaline media where
Tafel slope value of 102 mV·dec−1 revealed that the Volmer process is the rate-controlling
step [27]. Factors affecting HER activity of bimetallic nickel MxNi1-x (M = Cr, Mo, and W;
x = 0.2) alloys were defined by density functional theory (DFT) revealing that OH species
on the surface preferred to adsorb on the top site of the M element, which could change the
hydrogen adsorption energy (∆GH

*) on the active site [28].
As for OER, Co-based materials could easily form hydroperoxo (-OOH) species and

after that deprotonate to O2 formation [29]. Co-, CoxFe-, and Fe-metal-organic frame-
works (MOFs) with different Co/Fe molar ratios were tested for OER in 1 M KOH [30].
Co2Fe–MOF presented the best electrocatalytic activity for OER with low overpotential
at 10 mA·cm−2 (280 mV) and low Tafel slope (44.7 mV·dec−1) [30]. Ag2S–CoS hetero-
nanowires showed excellent OER activity with an overpotential of 275 mV, low charge
transfer resistance, and high electrical conductivity due to the octahedral Co sites as active
sites for the OER in 1 M KOH [6]. Tafel slopes of 52, 66, and 60 mV·dec−1 were obtained for
OER at the activated multishell Mn–Co oxyphosphide, Mn–Co oxyphosphide, and Mn–Co
oxide particles, respectively, in 1 M KOH [16]. These metal phosphide-based materials
showed that during the electrochemical process, the oxyphosphides are oxidized to oxide or
hydroxide species presenting active sites for OER [16]. Post-phosphorization treatment of
NiMoO4 (P-NMO) induced new active sites and resulted in improved performance for OER
in alkaline solution so that OER onset potential at 5 mA·cm−2 (370 mV) was lower than that
of IrO2 (390 mV) along with lower Tafel slope (70.3 mV·dec−1) [31]. A three-dimensional
self-operated Co-doped nickel selenide nanoflowers (3D Co–NiSe/NF) electrode showed
low OER overpotential with Tafel slope of 111 mV·dec−1 in 1 M KOH [32].

Transition metal-based materials, such as molybdenum disulfide (MoS2) synthesized
by the hydrothermal method, showed to be bifunctional electrocatalysts for water splitting
with high HER and OER activities [1]. Furthermore, iron selenide on Ni foam (FeSe–NF)
proved to be a good electrocatalyst for HER and OER in 1 M KOH [33] with the lowest
OER onset potential (ca. 150 mV) compared to Se–NF (190 mV), Fe–NF (300 mV) and NF
(320 mV) [33]. Tafel slopes of 201, 181, 155 and 145 mV·dec−1 were obtained during HER at
NF, Se–NF, Fe–NF and FeSe–NF, respectively. Ni–Co alloy nanostructured electrodes with
four different amounts of Ni and Co were also examined for both HER and OER in KOH
aqueous solution. Ni–Co nanowires with ca. 95% of Co and 5% of Ni showed the highest
HER and OER activity with a low potential of –0.231 V and 1.494 V required to attain a
current density of 10 mA·cm−2 for HER and OER, respectively [34].

In this work, Co-based bimetallic coatings (CoM, M = Fe, Mn, Mo), as well as
monometallic Co and Ni coatings, were prepared by a facile, fast, and low-cost electroless
deposition method. The morphology and composition of prepared coatings were explored
by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX),
X-ray diffraction analysis and inductively coupled plasma–optical emission spectrometry
(ICP–OES) analysis. The effect of combining Co with left-hand side transition metals on
activity for HER and OER in alkaline media (1 M KOH) was then systematically studied
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by linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS), and chronoamperometry (CA).

2. Experimental
2.1. Preparation of Coatings

Electroless deposition of Co was performed on the copper (Cu) surface. Prior to
electroless deposition of Co, Cu sheets (1 cm × 1 cm) were pre-treated with 50–100%
calcium magnesium oxide, known as “Vienna Lime” (Kremer Pigmente GmbH & Co. KG,
Aichstetten, Germany), and rinsed with deionized water. Cu sheets were then activated
with Pd(II) ions by immersion in 0.5 g·L−1 PdCl2 solution for 10 s and again rinsed with
deionized water. Activated Cu sheets were placed into the electroless cobalt plating bath
containing 0.05 M cobalt sulfate (CoSO4), 0.05 M morpholine borane (C4H8ONH·BH3), and
0.2 M glycine (NH2CH2COOH). The bath operated at pH 7 at a temperature of 30 ◦C for
30 min. The thickness of the pure Co coating was determined gravimetrically and it was
found to be ca. 1 µm. The deposition conditions for the rest of the coatings are presented
in Table 1. Salts used were Na2MoO4·2H2O (≥99.5%), FeSO4·7H2O (≥99%), MnSO4·H2O
(≥99%), and NiSO4·6H2O (≥98%), all from Sigma–Aldrich (Taufkirchen, Germany).

Table 1. Deposition conditions during the preparation of the herein studied coatings.

Deposition Conditions

Coating CoSO4/M Morpholine
Borane/M Glycine/M Mo6+/mM Fe2+/mM Mn2+/mM Ni2+/mM Trisodium

Citrate/mM pH T/◦C t/min

Co 0.05 0.05 0.2 - - - - - 7 30 30
CoMo 0.1 0.2 - 1 - - - - 7 60 30
CoFe 0.07 0.06 0.2 - 5 - - 18 7 50 30
CoMn 0.07 0.06 0.2 - - 5 - 18 7 50 30

Ni - 0.02 0.2 - - - 50 40 7 30 30

2.2. Characterization of CoM (M = Fe, Mn, Mo), Co and Ni Coatings

The morphology and composition of the prepared coatings were investigated by scan-
ning electron microscopy (SEM) using a SEM/FIB workstation Helios Nanolab 650 (Hills-
boro, OR, USA) with an energy dispersive X-ray (EDX) spectrometer INCA Energy 350 X-
Max 20 (Oxford Instruments, Abingdon, UK).

The coatings’ composition and structure were further confirmed by X-ray diffraction
(XRD) analysis with diffraction data collected using Rigaku Ultima IV diffractometer in
Bragg–Brentano geometry over the scattering angle 2θ range 20–80◦.

Mass of the elements and metal loadings were determined by inductively coupled
plasma optical emission spectrometry (ICP–OES) analysis. Prior to the analysis, all the
prepared coatings were dissolved in HCl solution and diluted up to 10 mL. The ICP–OES
spectra were recorded using an Optima 7000DV spectrometer (Perkin Elmer, Waltham, MA,
USA) at wavelengths of λCo 228.616 nm, λCo 238.892 nm, λB 249.677 nm, λMo 202.031 nm,
λMo 203.845 nm, λFe 238.204 nm, λMn 257.610 nm, and λNi 231.604 nm.

2.3. Electrochemical Measurements

All electrochemical measurements were done using Ivium V01107 potentiostat (Eind-
hoven, The Netherlands) in a three-electrode system with saturated calomel (SCE) as a
reference, graphite rod as counter and CoM (M = Fe, Mn, Mo), Co or Ni as the working
electrode, in 1 M potassium hydroxide (KOH) as supporting electrolyte. All potentials
in this work were converted to the reversible hydrogen electrode (RHE) scale using the
following equation: ERHE = ESCE + 0.242 V + 0.059 V × pHsolution. Current densities were
calculated using the electrodes’ geometric area of 1 cm2.

CVs were recorded from 1.02 to 1.22 V, at different polarization rates in the range from
5 to 100 mV·s−1 in 1 M KOH saturated with nitrogen (N2).
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HER polarization curves were recorded from the open circuit potential (OCP) to
−0.38 V at a polarization rate of 5 mV·s−1. HER electrochemical impedance spectroscopy
(EIS) analysis was conducted in the frequency range of 100 kHz to 0.1 Hz, with 5 mV
amplitude at a potential of −0.33 V.

OER polarization curves were recorded from OCP to 2.12 V at a polarization rate of
5 mV·s−1. OER EIS measurements were done at a potential of 1.67 V with an amplitude of
5 mV in the 100 kHz–0.1 Hz range.

Polarization curves and EIS measurements were recorded at several temperatures
from 25 to 85 ◦C, setting the temperature with a water jacket connected to a Haake water
bath.

Stability was studied by recording chronoamperometry (CA) curves under HER
(potential of−0.24 V) and under OER (potential of 1.67 V) conditions for 1 h for all coatings
and then for 24 h for the coatings that showed the highest HER/OER activity.

3. Results
3.1. Characterization of Coatings

Mass of the elements deposited onto Cu substrate surface and their loadings, deter-
mined by ICP–OES analysis, are given in Table 2. It can be seen that the formed Co, CoMo,
CoFe, and CoMn coatings contained more than 90 wt.% of Co and between 0.64–1.8 wt.% of
B. In the case of Ni coating, it contained more than 97 wt.% of Ni and ~3 wt.% of boron (B).

Table 2. Mass of the elements and total metal loading in the coatings as determined by inductively
coupled plasma optical emission spectrometry (ICP–OES) analysis.

Coating
Mass of Element/mg Total Metal

Loading/mg·cm−2Co B Mo Fe Mn Ni

Co 2.027 0.01413 - - - - 1.02057
CoMo 3.198 0.06367 0.2275 - - - 1.74459
CoFe 0.5472 0.00384 - 0.05282 - - 0.30193
CoMn 3.064 0.02331 - - 0.0017 - 1.54451

Ni - 0.01591 - - - 0.525 0.27046

SEM analysis revealed somewhat different morphology of the prepared coatings
(Figure 1A–E), with EDX analysis verifying uniform distribution of components. Namely,
layers of the prepared catalysts were polycrystalline, but with particles of different sizes
exhibiting agglomerates of oval structure. Surface morphology plays an important role
in electrocatalysis as it determines both the contact surface area as well as the number
of edge active sites where the charge distribution is localized [35]. Furthermore, it plays
an important role in the generation of H2/O2 gas bubbles that might block access to the
active sites [36]. In the competition between the nucleation and growth of gas bubbles, a
flat surface will favor the growth process leading to the formation of large bubbles, while
cracks will limit the growth of O2 bubbles within them [36,37].

The compositions of the five coatings were further investigated by XRD analysis
(Figure 1F). In case of the Ni and CoFe coatings, with low metal loading, the peaks related
to the Cu substrate are also visible at 2θ of ca. 43.5, 50.5 and 74.2◦, overlapping with the
reflections from the Ni (111), (200) and (220) planes, respectively, and Co (002), (101) and
(110) planes, respectively [5].
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Figure 1. (A–E) SEM images (with EDX spectra in inset of (A,C,E)) of the five prepared coatings and (F) their XRD patterns.

Electrochemical characterization of coatings was conducted by recording CVs in N2-
saturated 1 M KOH at different polarization rates (not shown). These results were used for
the investigation of charge storage capability of the studied coatings, i.e., for determination
of their double-layer capacitance (Cdl), which is proportional to their electrochemical active
surface area (ECSA) [38–40]. Namely, adsorption of H and O (underpotential deposition)
on the electrode material’s surface is a requirement for HER and OER, respectively [41].
CVs at different polarization rates indicate the rate capability of an electrode material,
i.e., its efficiency to adsorb a substantial H/O amount and desorb with a high coulombic
efficiency. Cdl was found to decrease in order CoMo (21.2 µF·cm−2) > Ni (21.0 µF·cm−2) >
CoFe (6.2 µF·cm−2) > CoMn (3.0 µF·cm−2) > Co (2.1 µF·cm−2), with a value of 20 µF·cm−2

being reported as average Cdl value of a smooth metal surface [42]. Cdl values several times
higher for CoMo and Ni than Cdl values of CoFe, CoMn, and Co coatings reflected the
notably higher number of active sites at the former that could take part in the adsorption
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processes and lead to higher HER electrocatalytic activity. Nevertheless, the electrocatalytic
reactivity of the active sites depends on their accessibility as well as their oxidation state.

3.2. Hydrogen Evolution Reaction Study

HER activity of studied coatings was evaluated in 1 M KOH by LSV method. CoMo
gave the highest current density (j), followed by CoMn and Co coatings, and then by
CoFe and Ni with notably lower current density during HER (Figure 2A). For instance,
the current densities of −124.2, −74.1, −67.1, −16.6 and −9.5 mA·cm−2 were reached at
−0.3 V using CoMo, CoMn, Co, CoFe, and Ni coatings, respectively. Overpotential to
reach current density of 10 mA cm−2 (η10) was found to be as low as 61 mV for CoMo and
increased in the order CoMo (61 mV) < CoMn (238 mV) < Co (246 mV) < CoFe (285 mV)
< Ni (308 mV).
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Figure 2. (A) Hydrogen evolution reaction (HER) polarization curves (iR-corrected) of five studied coatings at 5 mV·s−1

with (B) corresponding Tafel plots, (C) Nyquist plots at −0.33 V (amplitude of 5 mV in the 100 kHz–0.1 Hz range) with the
corresponding Bode plots in the inset, and (D) chronoamperometric curves at −0.24 V for 1 h with the chronoamperometric
curve of CoMo at the same potential for 24 h (inset). All measurements were done in 1 M KOH.

The HER kinetics was explored by Tafel analysis (Figure 2B), i.e., determination of
Tafel slope (b) as a measure of a rate at which current density increases with the increase of
overpotential, and exchange current density (j0), reflecting the electrode’s intrinsic activity
for HER. Tafel slope values were found to be 83, 94, 100, 131, and 184 mV·dec−1 (Table 3)
for CoMn, Co, CoFe, Ni, and CoMo, respectively. The exchange current density (j0) was
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calculated for HER at all five coatings by extrapolation of the Tafel plots, η vs. log j. Thus,
j0 of 0.31, 0.04, 0.04, 0.02 and 0.01 mA·cm−2 were calculated for CoMo, Ni, Co, CoMn, and
CoFe, respectively (Table 3). It is worth noting that the j0 value determined for HER at
CoMo coating was ca. seven times higher than that determined for the rest of the studied
coatings.

Table 3. Electrochemical performance of the tested coatings toward HER in alkaline media.

Coating Tafel Slope (mV·dec−1) j0 (mA·cm−2) η10 (mV) Rct (Ω) Electrolyte

CoFe 100 0.02 285 2.10 1 M KOH
CoMn 83 0.02 238 1.03 1 M KOH
CoMo 184 0.31 61 1.15 1 M KOH

Co 94 0.04 246 2.80 1 M KOH
Ni 131 0.04 308 1.07 1 M KOH

The EIS measurements were used for additional investigation of the coating/electrolyte
interface and the related processes occurring at the coating surface under HER conditions
in 1 M KOH. Figure 2C shows the Nyquist and Bode (inset) plots of the five coatings. The
solution resistance (Rs) (2.48–3.20 Ω range), as well as the charge transfer resistance (Rct)
(1.08–2.80 Ω range), were calculated using the equivalent circuit presented in Scheme 1
and found to be comparable for the studied coatings (Table 4).
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Scheme 1. Equivalent electric circuit used to fit the electrochemical impedance spectroscopy (EIS)
data, where Rs is the electrolyte resistance, Re is the electronic resistance of the material and the
associated capacitance Rct is the resistance of the charge transfer reaction, Qe is the constant phase
element, and Qdl is an ideal double-layer capacitor.

Table 4. EIS parameters of the herein prepared coatings in 1 M KOH at –0.33 V (amplitude of 5 mV
in the 100 kHz–0.1 Hz range).

Coating Rs (Ω) Re (Ω) Rct (Ω) Qe (mF) Qdl (mF)

CoMo 2.56 6.60 1.15 100.0 40.0
CoFe 3.20 3.90 2.10 0.4 0.4
CoMn 2.48 0.02 1.03 637.4 6.8

Co 2.85 0.43 2.80 16.9 6.9
Ni 3.06 2.42 1.07 1.8 3.3

Rs—the electrolyte resistance, Re—the electronic resistance of the material and the associated capacitance,
Rct—resistance of the charge transfer reaction, Qe—the constant phase element, Qd—the ideal double-layer
capacitor.

Another crucial criterion for an advanced electrode material is its electrochemical
stability. Chronoamperometric measurements with five coatings were done in 1 M KOH
at −0.24 V for 1 h. CA results confirmed the result of LSV analysis in terms of CoMo
giving the highest current density (−50.2 mA·cm−2 at 200 s) during HER (Figure 2D).
More than two times lower current density was recorded with Ni (−22.4 mA·cm−2), CoMn
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(−21.7 mA·cm−2) and Co (18.2 mA·cm−2) coatings and notably lower value with CoFe
(−5.7 mA·cm−2). Activity for HER of all coatings (in terms of the recorded current density)
was found to be stable during one-hour measurement. Thus, current density under HER
conditions at CoMo decreased ca. 13% after 1 h. Furthermore, CoMo showed relatively
stable current density during 24 h with a decrease of ca. 18.6%. Thus, HER current density
of CoMo was found to be −54.3 mA·cm−2 at 800 s and −44.2 mA·cm−2 at 86,400 s.

HER at five coatings was studied at temperatures ranging from 25 up to 85 ◦C. The cur-
rent densities of CoMo increased from −124.2 to −164.8 mA·cm−2 with increasing temper-
ature from 25 to 65 ◦C, respectively, and then somewhat decreased at 75 and 85 ◦C (e.g.,
to 156.3 mA·cm−2 at 85 ◦C). Ni and CoFe showed the same trend of increasing current
densities with the increase of temperature, whereas CoMn and Co did not show a signifi-
cant difference in current densities with increasing temperature during HER. Furthermore,
Tafel slopes were calculated for HER at five studied coatings at different temperatures
(Figure 3). A decrease of Tafel slope value with increasing temperature was observed, e.g.,
Tafel slope for HER at CoMo was determined to be 184 and 126 mV·dec−1 at 25 and 85 ◦C,
respectively.
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3.3. Oxygen Evolution Reaction

The activity of CoM (M = Fe, Mn, Mo), Co, and Ni coatings for oxygen evolution
reaction was also thoroughly examined in alkaline media (1 M KOH). The polarization
curves of studied coatings are presented in Figure 4, where it can be observed that the
highest current density during OER was recorded at Co and CoMn, followed by CoFe and
Ni, and then CoMo coating. An overpotential to reach a current density of 10 mA·cm−2

was found to be similar for Co (438 mV), CoMn (431 mV) and CoMo (431 mV) and ca.
120 mV higher for CoFe (553 mV) and Ni (559 mV) coatings (Table 5). Furthermore, the
current density of 150 mA·cm−2 was reached at potential increasing in the following order
Co (1.77 V) > CoMn (1.79 V) > Ni (1.86 V) > CoFe (1.92 V). Current density at CoMo coating
did not reach a value of 150 mA cm−2 in the investigated potential range; it reached a value
of only 99 mA cm−2 at 1.90 V.
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Table 5. Electrochemical performance of the tested coatings toward OER in alkaline media.

Coating Tafel Slope (mV dec−1) η10 (mV) Rct (Ω) Electrolyte

CoFe 96 559 7.44 1 M KOH
CoMn 94 431 20.16 1 M KOH
CoMo 114 431 1.01 1 M KOH

Co 60 438 7.9 1 M KOH
Ni 53 553 2.24 1 M KOH

OER polarization curves were then further used for constructing the Tafel plots and
calculating the Tafel slope. Tafel slope values of 53 and 60 mV·dec−1 were found for OER
at Ni and Co, respectively. Higher values of 94, 96, and 114 mV·dec−1 were determined for
OER at CoMn, CoFe, and CoMo, respectively.

To get a deeper insight into the OER kinetics at studied coatings, EIS analysis was also
performed in 1 M KOH under the OER conditions. Figure 4C shows the Nyquist plots
at 1.67 V (amplitude of 5 mV in the 100 kHz–0.1 Hz range) and the Bode plots (inset of
the figure) of the five coatings with Rct determined (using the equivalent circuit presented
in Scheme 1) to be 1.01, 2.24, 7.44, 7.90, and 20.16 Ω for CoMo, Ni, CoFe, Co, and CoMn
coatings, respectively (Table 6). Furthermore, Co coating showed a favorable Cdl value of
9.6 mF.
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Table 6. EIS parameters of OER at the studied coatings in 1 M KOH at 1.67 V (amplitude of 5 mV in
the 100 kHz–0.1 Hz range).

Coating Rs (Ω) Re (Ω) Rct (Ω) Qe (mF) Qdl (mF)

CoMn 5.16 25.5 20.2 3.0 1.0 × 10−10

CoFe 2.38 3.10 7.44 1.0 × 10−10 7.1
CoMo 3.29 3.44 1.01 32 25

Co 0.45 1.82 7.90 8.3 × 10−3 9.6
Ni 0.02 1.29 2.24 1.7 × 10−4 4.3

Rs—the electrolyte resistance, Re—the electronic resistance of the material and the associated capacitance,
Rct—resistances of the charge transfer reaction, Qe—the constant phase element, Qdl—the ideal double-layer
capacitor, W—Warburg element.

As mentioned, the electrode’s electrochemical stability is another key criterion for the
evaluation of its potential application. Figure 4D presents chronoamperometric curves of
studied coatings at the potential of 1.67 V where the highest current density at 3600 s was
recorded at CoMn (27.9 mA·cm−2) and Co (23.5 mA·cm−2), followed by CoFe (7.76 mA·cm−2),
Ni (5.08 mA·cm−2) and CoMo (3.48 mA·cm−2) coatings. Chronoamperometric curves of
CoMn and CoFe coatings revealed somewhat lower stability of these two coatings as they
showed a current density decrease of about 50 and 40%, respectively, when comparing
the values in 180 and 3600 s. Co showed good stability during 24 h where current density
decreased from 28.6 mA·cm−2 at 800 s to 25.5 mA·cm−2 at 27,700 s.

Additionally, the impact of temperature on OER activity of five studied coatings in
1 M KOH was thoroughly tested at temperatures ranging from 25 to 85 ◦C. A pronounced
increase of current density with temperature was observed. Thus, the potential to reach a
current density of 120 mA·cm−2 at Co coating decreased from 1.74 V at 25 ◦C to 1.52 V at
85 ◦C (Figure 5A). Figure 5B shows the corresponding Tafel plots of Co coating at different
temperatures where Tafel slope values changed slightly; the same behavior was observed
for the other coatings as well.
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4. Discussion

HER in alkaline solution proceeds by the following three steps:

M + H2O + e− ↔MHads + OH− (Volmer step, b = 120 mV·dec−1), (1)

MHads + H2O + e− ↔ H2 + M + OH− (Heyrovsky step, b = 40 mV·dec−1), (2)

MHads + MHads ↔ H2 + 2M (Tafel step, b = 30 mV·dec−1). (3)
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The Volmer step represents electrosorption of the hydrogen proton (H+) to form the
surface adsorbed hydrogen atom (MHads) on the active metal sites (M), the Heyrovsky
step is the electrochemical desorption of MHads to form H2, and the Tafel step represents
recombination of two MHads on the metal surface to form H2 [32,33]. Tafel slope values
suggest that HER at CoMn, Co, and CoFe proceeds by the Volmer–Heyrovsky mechanism
where the electrochemical desorption of the MHads is the rate-limiting step [32,34], while
during HER at Ni and CoMo, the Volmer step, i.e., electrochemical sorption of H+, repre-
sents the rate-determining step. It could be seen that the determined Tafel slope values
deviated from the theoretical ones toward higher values that might have been caused by
the formation of surface oxides of lower conductivity compared to the metallic surface [34].

The notably higher double-layer capacitance of CoMo coating could account for its
higher activity toward HER compared to the other coatings. Furthermore, the overpoten-
tial value to reach the current density of 10 mA·cm−2 determined for CoMo was lower
than the values of 73 and 288 mV reported for S-CoO nanorods [19,20] and Co3O4–CuO
electrocatalyst [19,20], respectively (Table 7). It was also lower than the overpotential of
163.0 mV to achieve a current density of 10 mA·cm−2 for HER at CoP–FeP in alkaline
electrolyte solution [2]. Furthermore, it was lower than the overpotential of 119 and 297 mV
at 10 mA·cm−2 at Mo2C@C and Ni foam, respectively [37,38].

Obtained results showed that the combination of Co as right-hand side transition metal
with Mo as left-hand side transition metal results in enhancement of the coating’s intrinsic
activity. Material electrocatalytic activity for HER is governed by the H adsorption free
energy [41]. The well-known volcano plot indicates noble metals as the best electrocatalysts
for HER, while the activity of transition metals can be improved by combining multiple
metals with different, weak and strong, bonds with hydrogen [43]. Consequently, metal
forming a strong bond with H initiates the H adsorption, with the possibility of Hads
moving via surface diffusion. Metal forming a weak bond with H then facilitates the H2
generation and its release from the electrode surface. Furthermore, the presence of a second
metal of different size changes the lattice structure, which can result in the generation of
active sites. Finally, a combination of two transition metals can improve the electrochemical
stability compared to the components [41].

Table 7. Electrochemical performance of herein tested coatings towards HER in alkaline media and comparison with that of
transition metal-based electrodes reported in the literature.

Electrode Tafel Slope (mV·dec−1) j0 (mA·cm−2) η10 (mV) Rct (Ω) Electrolyte Ref.

CoFe 100 0.02 285 2.10 1 M KOH This work
CoMn 83 0.02 238 1.03 1 M KOH This work
CoMo 184 0.31 61 1.15 1 M KOH This work

Co 94 0.04 246 2.80 1 M KOH This work
Ni 131 0.04 308 1.07 1 M KOH This work

Co3O4-CuO 65 - 288 173.20 1 M KOH [26]
Co3O4 94 - - 384.50 1 M KOH [26]
CuO 243 - - 656.90 1 M KOH [26]

P-CoO NRs * 164 - 208 - 1 M KOH [25]
CoP-FeP 51.2 - 163 141 1 M KOH [2]
Mo2C@C 51 - 119 - 1 M KOH [44]

Ni-rGO/Ni foam ** 108 0.5 187 32.30 1 M NaOH [45]
Fe1.89Mo4.11O7/MoO2 79 - 197 - 1 M KOH [46]
Co9S8-MoS2@3DC *** 83.6 - 177 41.42 1 M KOH [47]

MoS2@3DC 102.8 - 252 316.3 1 M KOH [47]
Co9S8@3DC 97.1 - 242 162.4 1 M KOH [47]

* NRs—nanorods, ** rGO—the reduced graphene oxide, *** 3DC—the three-dimensional interconnected hierarchical pore carbon.

As for the state of the surface, it has been suggested that the presence of oxides on
the metal surface is crucial for HER activity due to the oxides’ affinity to form OHads and
thus promote water splitting [35]. Formed OH species adsorb on the metal oxide, while
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H atoms formed adsorb at the neighboring metal active sites. Thus, adequate tailoring
metal/metal oxide interfaces can lead to a bifunctional HER mechanism.

An OER Tafel slope value lower than 60 mV·dec−1 suggests a four-electron transfer
determining step while a value higher than 60 mV·dec−1 suggests a three-electron transfer
determining step [36], with increased multiple electron transfer process (case of Ni and Co),
indicating better electrocatalytic performance of a coating. Tafel slope for OER at NiFeMo
oxide catalyst was reported to be 64 mV·dec−1 [38] and at NiCo2O4 89 mV·dec−1 [40] in
0.1 M KOH, i.e., higher than the values for herein tested Co coating (Table 8).

Overpotential at a current density of 10 mA·cm−2 values are somewhat higher than
those given in the literature reports for OER at different transition metal-based electrodes
(Table 8). Thus, CoMn, CoMo, and Co can be seen as good materials for OER, and CoFe and
Ni as satisfactory ones [42]. Transition metals’ activity towards OER is governed, among
other factors, by the number and accessibility of active sites, their oxidation state (+2, +3,
or +4), 3D electrons number, and surface oxygen binding energy [48]. Namely, OER is
reported ideally not to be a surface reaction, but to occur in a ca. 10 nm layer of the electrode
material [37]. Furthermore, it has been reported that parallel with the OER occurs the phase
conversion of Co-based materials (metal to oxides, oxides to hydroxides or oxyhydroxides),
taking an active role during OER. Active sites in their high oxidation state, with the
transition occurring at potentials lower than that of OER via a pseudocapacitive behavior,
will favor activity for the OER [37]. Incorporation of a second transition metal typically
should boost the OER activity by altering intermediate bonds and electronic structure,
and, thus, increasing the electric conductivity [49]. The strength of the OHads–M2+δ bond
increases in the order Ni < Co < Fe < Mn [50].

Table 8. Electrochemical performance of herein tested coatings toward OER in alkaline media and comparison with that of
transition metal-based electrodes reported in the literature.

Electrode Tafel Slope (mV·dec−1) η10 (mV) Rct (Ω) Electrolyte Ref.

CoFe 96 559 7.44 1 M KOH This work
CoMn 94 431 20.16 1 M KOH This work
CoMo 114 431 1.01 1 M KOH This work

Co 60 438 7.9 1 M KOH This work
Ni 53 553 2.24 1 M KOH This work

Co3Fe-MOF 55.6 314 - 1 M KOH [51]
NiCoFeOx NSs/NF basal

growth NHS 61 260 1.52 1 M KOH [3]

Ultrathin NiCoFeOx
NSs/NF 84 305 - 1 M KOH [3]

P-NMO 70.3 370 at 5
mA·cm−2 - 1 M KOH [31]

NMO 80.6 440 at 5
mA·cm−2 - 1 M KOH [31]

Co–P/NF-10 51.1 306 20 1 M KOH [5]
c-NiFeMo 64 440 85 0.1 M KOH [52]
GFC20800 180 - 110.3 1 M KOH [53]
GFC20700 154 - 90.3 1 M KOH [53]
NiCo2O4 89 - - 0.1 M KOH [54]

Co3O4 113 - - 0.1 M KOH [54]
Pt/C 133 - - 0.1 M KOH [54]

NSs—nanosheets; NF—nickel foam; NHS—nanoheterostructure; P-NMO—phosphorized NiMoO4; NMO—NiMoO4; GFC20800 and
GFC20700—gadolinium ferrite perovskite doped with divalent cation Cu2+, GdFe1-xCuxO3 (0 ≤ x ≤ 0.3), calcination temperature of 800 and
700 ◦C, respectively.

5. Conclusions

CoM (M = Fe, Mo, Mn), Co, and Ni coatings were prepared by electroless deposition
with SEM revealing somewhat different morphology. The effect of combining Co with
left-hand side transition metals (Fe, Mo, Mn) on the electrocatalytic activity for water
electrolysis, i.e., for both HER and OER in alkaline media, was evaluated. CoMo coating
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gave the highest current densities as well as exchange current density during HER in
1 M KOH, showing a faster charge transfer through the metal–solution interface during
HER. Low charge transfer resistance in the case of CoMo was confirmed by EIS analysis.
Furthermore, CoMo showed the highest value of double-layer capacitance, reflecting the
highest number of active sites.

On the other hand, Co and CoMn coating showed the highest current density during
OER with ca. 120 mV lower overpotential to reach a current density of 10 mA·cm−2,
compared to CoFe and Ni coatings. Co coating showed faster HER kinetics in terms of
low Tafel slope (60 mV·dec−1) resulting from lower charge transfer resistance and higher
double-layer capacitance.

Stability tests under HER as well as OER conditions in alkaline media revealed high
stability of coatings studied.
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