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Abstract: This paper presents the current results of cooperation focused on automatic billet straight-
ening machine development. First, an experimental study of three-point bending realized on small
specimens is presented to explain the basic ideas of the straightening. Then, the main regimes of
straightening and the algorithm itself are described together. Subsequent finite element simulations
of operational experiments show the applicability of the developed theory. The significance of
material parameters estimation is depicted in this work. At least four parameters have to be properly
determined for a new material in the straightening process.

Keywords: straightening process; three-point bending; FEM; control strategy; billet straightening

1. Introduction

Modern steel factories and enterprises of heavy industry, whose field of activity in-
cludes the production of long metallic articles, meet the issue of effective straightening of
such products. Typical products that involve straightening during their production tech-
nology are billets [1,2], strips [3], railway rails [4], elevator guide rails [5], or more general
long linear guideways that enable precise linear motion of machines [6]. For the mentioned
commodities, there are only two straightening principles that mostly used in technical
practice. The first option is continuous straightening [7,8], where the bar is straightened
between two cross-rolling straighteners [9,10] or inside a multi-roller straightening ma-
chine [11]. This option, however, is very problematic for straightening bars with large
cross-sections [12,13], mainly owing to the requirements of employing mighty bearings.

This article is devoted to the issue of billet straightening, where the second type of
straightening is commonly used. The principle of this straightening type relies on three-
point bending [14,15], which is more accurate and admits higher dimension variability of
straightened billets cross-sections [16]. In ironworks, three-point bending is a necessary
operation performed before grinding billets. The straightening of billets is usually done
manually by operators in a manual regime based on human vision and joystick control [1].

The straightening process can be automated in accordance with the Industry 4.0
strategy, but this is a challenging task [17,18]. An automatic straightening machine can
achieve optimal effectivity only if the straightening algorithm is adopted to the various
profile curvatures of the billet (e.g., single-arc shape, “S” shape, or shape with multiple
vertices [19]). Each type of billet shape requires a unique approach to the straightening,
which minimalizes the time of the process. This is the so-called multi-step straightening
mechanism [6,19], for which functionality is necessary to correctly determine the velocity
of the straightening force/stroke, the distance of supports, the number of straightening
steps, and so on. Different parameter settings return differently straightened billets [5].
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The crucial thing is to achieve accurate prediction of spring back [20,21] after releas-
ing the straightening force. To achieve fast calculations, analytical and semianalytical
approaches are currently used. The finite element method (FEM) is time-consuming and
the solution is dependent on many parameters such as element type, and thus shape func-
tions, geometry, and time discretization (according to the material model implementation),
among others. For the purposes of the development of the straightening algorithm, the an-
alytical approach could be inspired by other research works using an analytical solution for
spring back prediction. During the last two decades, the strategy of multistep straightening
was enhanced for deflected shafts with the circular cross-section by the fuzzy self-learning
method [22], for steel wires using genetic programming [23] and for T-section beams using
neural networks [24]. The latter approach required finite element simulations to develop
the artificial neural network approach. The straightening history should be considered
for the prediction of residual stresses, which play an important role in the service of the
final products. Ling et al. [25] published an interesting study in this field including the
prediction of residual stresses after grinding.

A significant benefit of analytical methods is also the accuracy of the solution, espe-
cially when a robust material model is considered in the analysis. Eggertsen and Mattiasson
evaluated six cyclic plasticity models for spring back prediction [21]. They showed that the
Yoshida–Uemori model [26,27] and its modification can correctly describe the Bauschinger
effect, a transient behavior, a permanent softening, and a workhardening stagnation.
Hajbarati and Zajkani [28] used the modified Yoshida–Uemori two-surface hardening
model [21] to predict the spring back of an advanced high-strength steel. High-strength
steels reveal significant spring back. FE analyses of three-point bending experiments were
presented, for instance, by Zhao and Lee [29].

The following chapters of this article present the current results in the frame of a
long-term project devoted to the development of an automatic billet straightening machine.
The machine was designed, constructed, and manufactured by KOMA—Industry s.r.o. for
TŘINECKÉ ŽELEZÁRNY a.s. The camera system and visualisation of the straightening
was developed by experts from ELCOM, a.s. The focus of the article is to show the basic
ideas of the newly proposed algorithm and to explain the necessary optimisation procedure
needed to obtain some process parameters. This is very important for achieving reliable
and robust straightening.

2. Three-Point Bending

First of all, the terminology for three-point bending straightening should be introduced.
The simplified situation of the three-point bending case is shown in Figure 1, where the
initial shape of the billet is depicted by a dotted line. The maximal deflection w caused
by the applied force F can be visualised by the deformed shape of the billet drawn with a
dashed line. In the ideal case, the billet shape is straight after spring back, as displayed by
the solid line.
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In accordance with the additive rule, the total deflection w is composed of plastic
deflection wpl and elastic deflection wel , thus

w = wel + wpl (1)
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The irreversible deflection wpl is also important input for the algorithm, and it is sup-
posed that it can be accurately measured by a sensory system of an automatic straightening
machine for the given distance of supports L.

The plastic deflection wpl can be calculated considering an elastic stiffness kel and
applied bending force F according to the analogy to Hooke’s law.

wpl = w − wel = w − F
kel

(2)

The elastic stiffness kel is a function of the Young modulus E, moment of inertia Iz,
and support distance L. We will consider just a square cross-section of the billet in this
work, i.e., Iz = D4/12, where D is the dimension of the square cross-section.

A prediction of required total deflection (output quantity of the algorithm) is proposed
to be determined from the linear relationship.

w = kwwpl + wy, (3)

where wy and kw are material parameters. Substituting (3) into (2), one can obtain the linear
relation between the bending force and total deflection.

F = kel
wy

kw
+ kel

(
1 − 1

kw

)
w = A + B × w. (4)

It can be noted that the parameter wy expresses the total deflection of the billet
corresponding to the maximal bending stress in the cross-section for the elastic region of
loading, i.e., yield stress σy.

3. Laboratory Experiments and Their Numerical Simulations

In order to show the idea of the approximation of material response during straight-
ening by three-point bending, an experimental study on three-point bending performed
on 51CrV4 material at room temperature will be presented. First, the basic mechanical
properties were determined by tensile test; see Table 1. The bending tests were realised
on specimens with the square cross-section of variety of dimensions D and distances of
supports L. The proper ratio of D/L for each bending test had to be determined analytically
or numerically.

Table 1. Mechanical properties of 51CrV4 material obtained from the tensile tests.

Quantity Averaged Values

Yield strength Rp0,2 (MPa) 523
Ultimate strength Rm (MPa) 1005

Young modulus E (MPa) 207,000
Ductility (%) 15.6

In this study, finite element method (FEM) was used. The material model intro-
duces the nonlinear kinematic hardening rule of Chaboche [30]. According to Chaboche’s
superposition, two back-stress parts are considered to express the back-stress.

α =
2

∑
i=1

αi = α1 + α2 (5)

and the evolution equation of Armstrong and Frederick [31] for uniaxial loading is

dαi = Cidεp − γiαidp (6)
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where Ci and γi are material parameters, dεp is the increment of longitudinal plastic strain,
and dp is the increment of accumulated plastic strain.

The constitutive equation of the Chaboche model for uniaxial tension is

σ = σy + α1 + α2 = σy +
C1

γ1

(
1 − e−γ1εp

)
+

C2

γ2

(
1 − e−γ2εp

)
(7)

The tensile curve of the investigated material is used to calibrate the Chaboche
model [30] for preliminary simulations by FEM; see Figure 2. All material parameters
resulting from a non-linear least-square method application are stated in Table 2. Poisson’s
ratio ν = 0.3 was considered in the simulations too.
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Figure 2. Deformation curve of 51CrV4 material and its approximation by Equation (7).

Table 2. Material parameters of the Chaboche model for 51CrV4 material.

E σy (MPa) C1 (MPa) γ1 (-) C2 (MPa) γ2 (-)

207,000 391 97,000 877 22,000 34

All FE simulations within this paper were done in ANSYS 2020R1. The goal of the
numerical study was to find a proof of the relationship between the total deflection and
the plastic deflection described by Equation (3). The square cross-sections of 6 × 6, 8 × 8,
10 × 10, 12 × 12, and 14 × 14 were considered.

For the discretisation of geometry, the BEAM188 element was used. Boundary condi-
tions applied to the FE model are shown in Figure 3. All nodes of the model are fixed in
rotations around the x-axis. Ramped displacement with time is applied in the middle of
the model in the y-direction, leading to maximal displacement of Uy = 4 mm at the end of
the computation.
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An optimization task was done (parametric study) to get proper distance of the
supports for each cross-section dimension D. Initially, the distance of supports of 80 mm
was chosen for the 6 × 6 specimen. After performing the FE analysis for this case, the
dependency of the total deflection on the plastic deflection was evaluated using Equation (2)
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and approximated by the linear function (3). Then, the largest cross-section of 14 × 14
was considered for simulations by trial and error to gain acceptable correlation with the
approximated curve of the first case (total deflection vs. plastic deflection). Other cases,
8 × 8, 10 × 10, and 12 × 12, were solved by repeated FE simulation with an initial guess
of the support length supposing the linear relationship between the support distance and
cross-section dimension from previous two limit cases.

The resulting curves, which describe the relation between the total deflection and
the plastic deflection, are shown in Figure 4. Good overall correlation is achieved for
particular cases of cross-sectional dimensions. The dependency is pretty linear in the
interval between 0.5 and 2.5 mm of plastic deflection, which confirms the validity of
Equation (3). The optimal distances of supports are as follows: 80, 90, 100, 110, and 120 mm
(for cross-sectional dimensions of 6 × 6, 8 × 8, 10 × 10, 12 × 12, and 14 × 14).

Materials 2021, 14, x FOR PEER REVIEW 5 of 16 
 

 

chosen for the 6 × 6 specimen. After performing the FE analysis for this case, the depend-
ency of the total deflection on the plastic deflection was evaluated using Equation (2) and 
approximated by the linear function (3). Then, the largest cross-section of 14 × 14 was con-
sidered for simulations by trial and error to gain acceptable correlation with the approxi-
mated curve of the first case (total deflection vs. plastic deflection). Other cases, 8 × 8, 10 × 
10, and 12 × 12, were solved by repeated FE simulation with an initial guess of the support 
length supposing the linear relationship between the support distance and cross-section 
dimension from previous two limit cases. 

The resulting curves, which describe the relation between the total deflection and the 
plastic deflection, are shown in Figure 4. Good overall correlation is achieved for particu-
lar cases of cross-sectional dimensions. The dependency is pretty linear in the interval 
between 0.5 and 2.5 mm of plastic deflection, which confirms the validity of Equation (3). 
The optimal distances of supports are as follows: 80, 90, 100, 110, and 120 mm (for cross-
sectional dimensions of 6 × 6, 8 × 8, 10 × 10, 12 × 12, and 14 × 14). 

 
Figure 4. The dependency of total deflection on plastic deflection from the numerical study con-
cerning optimal distances of supports (L in the legend) for each cross-section size D × D. 

Based on the numerical study, the curve describing the dependency of the optimal 
support distance L on the cross-sectional dimension D of specimens is constructed; see 
Figure 5. It is clear that the idea of linear dependency of the optimal support distance on 
the cross-sectional dimension is true. Concerning the available material of billet, the fol-
lowing appropriate dimensions of specimens were selected: 2.9, 4.75, 7.45, 9.55, and 14 
mm. The corresponding support distances are as follows: 65, 73, 89, 98, and 120 mm. The 
specimens for experiments were made by electric discharge machining (EDM) using a 
portion of the material chosen from the same position of the billet cross-section as for ten-
sile tests. 

Figure 4. The dependency of total deflection on plastic deflection from the numerical study concern-
ing optimal distances of supports (L in the legend) for each cross-section size D × D.

Based on the numerical study, the curve describing the dependency of the optimal
support distance L on the cross-sectional dimension D of specimens is constructed; see
Figure 5. It is clear that the idea of linear dependency of the optimal support distance
on the cross-sectional dimension is true. Concerning the available material of billet, the
following appropriate dimensions of specimens were selected: 2.9, 4.75, 7.45, 9.55, and
14 mm. The corresponding support distances are as follows: 65, 73, 89, 98, and 120 mm.
The specimens for experiments were made by electric discharge machining (EDM) using
a portion of the material chosen from the same position of the billet cross-section as for
tensile tests.
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All experiments were realized using a TESTOMETRIC M500-50CT universal testing
machine. The position rate was 5 mm per minute. Deflection was measured as the position
of the crossbar. A photo from a three-point bending test realization is shown in Figure 6,
where the deformed shapes of specimens are also presented.
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Figure 6. Photos from the three-point bending test: the whole setup (a) and selected deformed
specimens (b).

Obtained bending force versus total deflection diagrams are shown in Figure 7. The
target total deflection (position of crossbar) was 3 mm for D = 2.9, 5 mm for D = 14, and
4 mm for all others.
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Figure 7. Force response to total deflection for all considered cases.

For eventual straightening of billets with different cross-sectional dimensions, it is im-
portant to investigate how the dependences of the total deflection on the plastic deflection
differ for individual cross-sections, as presented in Figure 8.

An important finding from the performed experimental study is the fact that the
slope kw remains approximately the same even though the cross-sections are significantly
different in their dimensions. The curves on the graph shown in Figure 8 differ only in the
vertical offset. It should be noted that a slight nonlinearity is present in the initial part of
the curve of total deflection versus plastic deflection. However, the straightening of billets
will be done only in positions where it makes sense. The interventions will be proposed
only for significant deviation from a straight line created between supports based on billet
shape captured by the camera system.
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ing tests.

4. Camera System

As mentioned above, accurate measurement of the initial billet shape is important to
achieve reliable results in the straightening process. At the beginning of the straightening
process, a profile of the billet is scanned by the camera system for a given side of the billet.
The sensory system is composed of eight 2D monochrome cameras. Each camera is paired
with a projector that projects a strip pattern on the scanned billet (Figure 9). The projectors
are involved into the scanning process to eliminate poor contrast between the billet and
the straightening machine and improve the overall quality of received data that directly
influence the quality of the curve representing the billet shape.
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Figure 9. The case for a camera-projector subsystem (a), and scanned sector of the straightening machine with the billet (b).

The cameras are equally distributed above the straightening machine to capture
the whole area of the press technology (14 m × 1 m). Each camera captures a sector of
technology with a length of 2.2 m. Pictures from neighbour cameras are overlapping, so
we can get a picture of the whole billet by continuous junction of pictures from individual
sections. By processing the picture of the whole billet, we can detect one of the upper edges
of the billet. This is crucial for obtaining the curve representing the profile of the billet. An
example of a screen visible for operators with subsequently proposed two strokes is shown
in the Figure 10.
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5. Straightening Algorithm

The straightness of the billet is defined by two criteria that determine the type of the
billet based on its shape. Both parameters direct the straightening regime subsequently
applied in the algorithm.

The first parameter is the sum of the maximum and minimum deviation from the
linear regression line (Figure 11) considering the whole curve of the billet. It is marked as
p1 in the algorithm. The critical value of parameter p1 is marked as p1crit and should be
appropriately chosen according to the current billet length.
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Figure 11. Scheme of gathering parameter p1.

The second parameter called p2 contains the value of maximum deviation on a 1 m
segment. This is obtained when the 1 m segment is virtually moved along the whole length
of the curve. The deviation on the 1 m segment is determined by the maximum deviation
of the curve point from the line connecting the two ending points of the segment. The
critical value of the parameter p2 will be marked as p2crit and influences the output accuracy
of the straightening process.

The objective of the straightening algorithm is to straighten the billet i.e., to reduce
both billet parameters below their critical values. The definition of a straight billet depends
on subsequent technological processes and customer requirements. The most commonly
applied technological process is grinding. Currently acceptable values by customers are
p1crit = 15 mm (12 m billet length) and p2crit = 2 mm.

Four different straightening regimes of the algorithm are currently applied. The regime
of the straightening algorithm is chosen based on the parameters mentioned above, sup-
plemented by p0 and pmax, which help to distinguish slightly curved billets and strongly
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crooked ones, respectively. The values of p0 and pmax are constant for a given material. The
regime of the algorithm is chosen based on the billet shape according to schema of the
algorithm; see Figure 12.
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The first regime is applied in the case of valid conditions p1 > p0 and p2 > p2crit. This
variant is usually the most effective one for “snake-like” billets. The billet is divided into
particular sections with a length of 1 m. In each section, a regression line is determined and
the value of w is calculated by Equation (3) based on the value of wpl , which is given from
the measured shape within the 1 m segment. If w > wignor then an intervention is performed
in the given position. This variant of straightening is usually quite time-consuming for a
large number of interventions, thus the value of wignor should be optimized to achieve an
acceptable speed of straightening without compromising accuracy. The parameter wignor
has the meaning of the minimal applied stroke in the first regime.

The second regime of the algorithm is chosen for p1 < p0 and p2 < p2crit. The billet can
be categorized as slightly curved “S-shaped” billet or “single-arc” type billet. Therefore, it
is straightened either by two strokes or just one.

The third regime of straightening is used in the interval p1 > pmax. The condition
corresponds to a strongly crooked billet. The straightening is boosted according to the
given material. An empirically determined multiplier is used for all strokes calculated by
Equation (3).

The last regime is when p1 < p1crit and p2 > p2crit. It is evident from the condition that
it usually corresponds to the case where the billet is curved in just one place. The largest
deviation on the 1 m segment is found and the stroke is proposed using Equation (3).

The detailed flowchart of the complete straightening algorithm is shown in Figure 12.
The part of the algorithm determining the positions and stroke proposals was written in
NI LabView 2014 interface.

6. Operational Experiments and Their Numerical Simulations

To show the efficiency of the straightening algorithm in the second regime of the algorithm,
two exemplar billets made from 100Cr6 material with a cross-section of 150 mm × 150 mm
corresponding to “single-arc” and “S-shaped” type were selected for reporting as operational
experiments.
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Input parameters of the first billet shape were p1 = 29.8 mm and p2 = 2.4 mm. After one
stroke application (w = 7.76 mm, in the position x = −3889 mm), the output parameters
evaluated by the sensory system were 11.9 and 1.3 mm. The initial and final shape of the
first exemplar billet is shown in Figure 13a. The input parameters of the second billet shape
were p1 = 20.8 mm and p2 = 2.4 mm. After two strokes application (w = 8.37 mm, in the
position x = −4350 mm and w = −8.1 mm, in the position x = −1580 mm), the output
parameters evaluated by the sensory system were 14.4 and 1.8 mm. The initial and final
shape of the second exemplar billet is shown in Figure 13b.
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Finite element simulations were performed using the same strategy as in Section 3.
Each billet was modelled using a spline curve created from points with an increment of
10 mm in the x-axis based on data obtained from the camera system. All nodes of the FE
model are fixed in rotations around the x-axis. In the simulation of the “S-shaped” billet,
two load steps were used. First, the boundary conditions of load step one will be described.
Displacement boundary conditions were applied according to Figure 14. The force applied
in the middle of the support distance (L = 1 m) was applied as a linear function of time.
The maximal size of force is reached for 1 s with the corresponding value calculated from
Equation (4). Then, a linear decrease of force to 10 N (because of convergency) is applied
during the unloading phase, which ends after 2 s. In the second load step of the simulation,
the maximal force is applied for 3 s considering Equation (4), and displacements were fixed
similarly as shown in Figure 14 (supports moved to the new positions). The unloading
phase is finished at 4 s with 10 N of force in the computation. The boundary conditions for
the “single-arc” billet straightening simulation were analogous to those described for load
step one of the “S-shaped” billet straightening simulation.

The Chaboche material model was calibrated to give an acceptable response of force
for a given total deflection and to give a similar curve of total deflection versus plastic
deflection; see Figure 15. Poisson’s ratio ν = 0.3 was considered in both simulations. All
other material parameters of the Chaboche model are stated in Table 3.
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Table 3. Material parameters of the Chaboche model for 100Cr6 material.

E σy (MPa) C1 (MPa) γ1 (-) C2 (MPa) γ2 (-)

220,000 550 202,000 802 61,600 44

A comparison of experimental and predicted final billet shapes is provided in Figure 16.
It is clearly shown that the strategy for numerical prediction gives acceptable results.
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An exemplary result of regime 3 application on a very curved billet is shown in
Figure 17. The input parameters of the third considered billet were p1 = 95.4 mm and
p2 = 2.7 mm. After straightening, the output parameters evaluated by the sensory system
were 17.8 mm and 1.8 mm. Thus, the straightening in regime 2 followed.
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Figure 17. Shape of the third exemplary billet before straightening (solid curve) and after straightening (dashed curve) in
regime 3.

The results of the fourth regime, which treats the situation of significant curvature in
one place, will be presented on the exemplary billet with input parameters p1 = 10.3 mm and
p2 = 2.4 mm. The stroke of w = 7.9 mm was realized in the position x = −4575 mm . The
output values observed after straightening were p1 = 10.5 mm and p2 = 1 mm. The initial
and final shapes are displayed together with the symbol of applied stroke in Figure 18.
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The efficiency of the first regime in the straightening algorithm will be shown on
the exemplar “snake-like” billet with input parameters p1 = 66.2 mm and p2 = 3.9 mm.
After the first application of regime 1 (strokes w = 9 mm for x = −5731 mm, w = 11 mm
for x = −5211 mm, w = 10.3 mm for x = −3951 mm, w = 9.3 mm for x = −2981 mm,
w = 8.9 mm for x = −1801 mm, w = 9 mm for x = −401 mm, and w = 8.4 mm for
x = 839 mm), the output parameters evaluated by the sensory system were 45.8 mm
and 3 mm, which means that the first regime was applied again. The second application
of regime 1 (strokes w = 9 mm for x = −5731 mm, w = 11 mm for x = −5211 mm,
w = 10.3 mm for x = −3951 mm, w = 9.3 mm for x = −2981 mm, w = 8.9 mm for
x = −1801 mm, w = 9 mm for x = −401 mm, and w = 8.4 mm for x = 839 mm) gave
acceptable output parameters of p1 = 8.6 mm and p2 =1 mm.

The initial and straightened experimental shapes of the “snake-like” exemplar billet
are shown in Figure 19. The results of corresponding FE simulations are presented in
Figure 20. Strokes proposed by the algorithm in reality were applied in particular load-
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steps in a stroke by stroke manner. The boundary conditions used in each load-step of
simulations were analogous to those presented in Figure 14.
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regimes of the straightening algorithm considering different shapes of the billet were de-
scribed. The algorithm was adopted on chosen steels in The New Long Billet Treatment 

Figure 20. Comparison of experimental and predicted shapes of the exemplary “snake-like” billet: after first straightening
(a) and after second straightening (b).

7. Conclusions

An automatic billet straightening machine was developed in cooperation between the
university and industrial companies. The nature of the algorithm proposing interventions
during the straightening process is described in this scientific work.

While the algorithm currently works for a 150 × 150 mm2 cross-section, it can be
expanded into a more general form based on findings shown in the laboratory experiments
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(Section 3) to be applicable for the straightening of billets with various cross-section sizes. In
that case, the most important outcome of the laboratory study is the possibility of constant
value consideration for the plastic hardening parameter kw. Then, it is necessary to increase
the support distance for a larger cross-section according to the linear approximation shown
in the Figure 5. The material parameter wy depends on the yield strength of the material,
Young modulus E, and the cross-section dimension of the billet. Both material parameters,
kw and wy, must be properly identified for the considered material of billet from the force
versus total deflection curve obtained for the chosen cross-section size. The algorithm
itself is based on the assumption of a linear relationship between the total deflection and
the plastic deflection. In fact, there is a slight nonlinearity for very small values of plastic
deflection and this interval corresponds to the nonlinear part of the force versus total
deflection diagram (for example in Figure 7). However, this interval is rarely used in the
straightening algorithm. There is the parameter wignor, which corresponds to the minimal
applied stroke for regime 1. In other regimes, it was experimentally proven that even a small
intervention can help to straighten the billet (“single-arc” or “S-shaped” billets, usually).

Numerical simulations of operational experiments were done based on the Chaboche
material model with two backstress parts to show the relevance of the algorithm. The
basic regimes of the straightening algorithm considering different shapes of the billet were
described. The algorithm was adopted on chosen steels in The New Long Billet Treatment
Plant of Třinecké železárny a.s. The process and material parameters are optimised using a
Python code. The billet straightening strategy currently works properly for ten materials
under consideration.

The next step of research is the application of rigid body movement calculations
(a simplified approach to predict the impact of performed stroke on the billet shape change)
to speed up the straightening process by minimizing the necessity of scanning.
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