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Abstract: This work aims to investigate the effects of multi-walled carbon nanotubes (MWCNTs) on
the strength and electrical properties of cement mortar. MWCNTs were added to cement mortar in
four different concentrations: 0.00 wt.%, 0.01 wt.%, 0.015 wt.%, and 0.02 wt.% by the mass of cement.
The consistency, density, setting time and compressive and flexural strength of mixes were tested and
analyzed at 28 and 90 days curing time. Mechanical performance tests confirm an increase of 25%
and 20% in the ultimate compressive and flexural strength respectively, which results from MWCNT
0.02 wt.% loading at 90 days curing time. The resistivity measurements in mortars with 0.01 and
0.015 wt.% MWCNT loading result up to 10% decrement at both 28 and 90 days curing. Activation
energy calculations show fully accordance with these statements, resuming that 0.01 wt.% MWCNT
appears to be the most effective loading scheme to produce certain conductivity enhancement in
cement mortar.

Keywords: multi-walled carbon nanotubes; cement-based materials; flexural strength; compressive
strength; electrical resistivity; activation energy

1. Introduction

Concrete is a key material in the construction industry. It is in fact the most used
element both in building and infrastructures construction such as bridges, hydraulic
works, pavements, etc. Its attributes include easy and affordable manufacturing [1,2],
good durability if properly executed [3,4], and remarkable structural capabilities [5–7],
which make this material the most widely consumed globally. Concrete materials are
designed solely to carry compressive loads, although their continuos presence in structures
may induce to seek for additional properties which could make concrete a more exploitable
material. However, the very nature of cement based materials imposes limitations to
develop highly customizable features with added functionalities.

One of the properties that cement microstructure prevents from developing is the
electrical conductivity. Wet concrete behaves as a semiconductor, with resistivity in the
range of 105 Ω/mm. However, dry concrete has resistivity in the range of 1012 Ω/mm,
which makes the material be considered as an insulator. The variation in the measured
electrical resistivity in wet and dry concrete can be interpreted to find that concrete electrical
conductivity is an effect of the evaporable water present in the material [8].

The volume of evaporable water found in saturated concrete varies from 60% at
the time of mixing to 40% when cement is fully hydrated. This water contains ions
whose concentration varies over time, directly affecting concrete conductivity. When the
concentration of these ions is very high, ionic association begins, giving rise to C-S-H
gel formation and ettringite, which in turns generates an electrical insulation layer in the
cement grains. This leads to a decrease in ions mobility, therefore increasing the resistivity.
The increase in resistivity with time is also due to less porosity and more tortuosity [9].
After this abrupt rise, resistivity continues to increase at a much slower rate, due to the
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decrease in hydration reactions. In a porous medium such as concrete, resistivity reflects
the ability to transport electric charge throughout the ions dissolved in the aqueous phase
of a certain volume, assuming that aggregates are electrically inert since their resistivity
turns out to be several orders of magnitude higher than that of the porous solution.

This physico-chemical approach to analyze the capacity to carry electrical charge will
not only make it possible to develop a concrete with conductive properties-which will
surely lead to very interesting applications-but also, it will provide information on the
mechanical performance of the material. Upon mixing cement with water, a suspension is
obtained whose resistivity is very low, however, as the cement hydrates and the concrete
sets and hardens, the resistivity increases. The evolution of resistivity is therefore parallel
to the evolution of strength. In this way, resistivity allows to predicting performance and
can act as an indicator of the "age factor", which is essential for certain durability models.

At this point, we incorporate into our study carbon nanotubes (CNTs) within the ce-
mentitious material microstructure. CNTs are emerging nanomaterials that have captured
the interest of researchers in recent years due to their attractive physical and chemical prop-
erties. CNTs mechanical properties, such as strength, stiffness and toughness, have been
broadly studied and reported. In particular, Young’s modulus of CNTs is in the range of
1–1.2 TPa, which indicates elastic behavior, with a tensile strength in the order of 36 GPa,
denoting yield strains of up to 10% [10–14]. These outstanding mechanical characteris-
tics provide a promising horizon in the achievement of CNT-composites with very high
performance strength.

As nanoadditions incorporated into the cement microstructure, CNTs have been
widely studied expecting that, due to CNTs superb mechanical performance, an impressive
reinforcement in cement-based composites will be achieved. There are indeed a signifi-
cant number of researchers that have demonstrated great enhancements in flexural and
compressive strengths in cement composites by adding low concentration of CNTs. In par-
ticular, considering 28 days curing, Li et al. [15] achieved up to 19% and 25% increases
in compressive and flexural strength respectively, by adding CNTs 0.5 wt.% to Portland
cement paste. Hawreen and Bogas [16] incorporated CNTs additions varying between
0.05% and 0.5% by cement weight to concrete, obtaining improvement in the compres-
sive strength of concrete up to 21%. CNTs were added in ultra high strength concrete
by Lu et al. [17], achieving 4.63% increase in compressive strength with 0.05 wt.% CNTs
loading. More recently, Hu et al. [18] achieved 2.4% and 9.6% improvements in compressive
and flexural strength respectively with the addition of 0.05% CNTs in cement mortar at
28 days curing. However, these researchers reported detrimental effects in compressive
and flexural strength with the addition of 0.5% CNTs.

General discussions from these and other reported studies conclude that low loadings
of carbon nanotubes are very effective in improving the performance of cement-based
materials. However, the incorporation of higher amounts of 0.5% CNTs seems to lead
to lower compressive strengths. Furthermore, even the addition of 0.5 wt.% appears to
produce contradictory strength results in different cement-based materials, as indicated in
the previous paragraph. It seems necessary, therefore, to study in depth the incorporation
of CNTs in cementitious materials in order to refine the amounts of CNTs to be added
without producing detrimental effects.

However, researchers are clearly in agreement on the existence of a major downside to
incorporating CNTs into cementitious composites. CNTs are atomic crystals and therefore
do not dissolve in water. Furthermore, the large surface area of nanotubes induces strong
attractive forces between the CNTs themselves. These facts result in the formation of
clusters and agglomerations of CNTs when mixed with water. These clusters remain even
after their insertion into the clinker, due to the van der Waals forces between carbon nan-
otubes. Furthermore, as CNTs are chemically inert, they do not participate in the hydration
process. Consequently, agglomeration of CNTs around the cement grains hinders clinker
hydration promoting defects formation in cement composites during the development of
their microstructure [19]. All this results in deficiencies in the mechanical properties of the
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cement-base material, since optimal resistance is developed during the correct hydration of
the cement grains. In short, good CNTs dispersion is crucial and helps to obtain maximum
mechanical performance by filling the pores and increasing adhesion with cementitious
and hydration products [20–23].

Consequently, some authors have promoted surface modification processes to ensure
an adequate dispersion of CNT and a homogeneous inclusion in the cement-water mix-
ture [23–25]. Another interesting approach consists of using sonication to achieve a homo-
geneous dispersion of CNTs in the cementitious matrix. Many authors combine sonication
with other shear mixing methods, such as mechanical, magnetic, or/and hand-stirring mix-
ing methods [26–28]. On the other hand, cement type influences CNTs dispersion within
the matrix, mainly due to the clinker particle size. In fact, most of the tests are carried out
with cement of the CEM I 52.5 R type corresponding to Portland cement with a finer particle
size and therefore more similar to the size scale of the nanomaterials, as they can be worked
together in a more appropriate way. In any case, the hydrophobility of these nanostructures
is maintained in the absence of electric field, since the water molecules cannot enter into
the graphene layer spontaneously [29]. Consequently, due to their hydrophobility, we can
expect that the presence of CNTs in cement microstructure will give rise to movements of
evaporable water in the porous structure, and therefore variations in the intrinsic electrical
resistivity of the cement composite.

Apart from ionic current due to water presence, electrical conductivity can also be
developed in cement microstructure by means of CNTs connectivity, as this nanomaterial
exhibits electrical conductivity similar to those of metallic materials [30]. However, it is clear
that uniform CNTs distribution is essential to produce a continuous electrically conductive
network. In fact, Kim et al. [31] reported that CNTs agglomerations induce damage in
the electrically conductive pathways that CNTs should otherwise create. Remarkable
improvement in electrical conductivity was achieved by Kim at al. [32], obtaining more
than 1000 times reduction in electrical resistivity of well dispersed CNTs-cement paste
compared to that of plain cement paste at 28 days curing, whereas poorly-dispersed CNTs-
cement paste only achieves electrical resistivity approximately 2 times lower than that
of control.

Very large number of CNT modified cement-based materials studies in the current
literature aims at assessing the optimal CNT dosage to produce remarkable improvements
in strength performance. Despite their importance, these studies use small-scale specimens
that are not likely to reflect the actual mechanical behavior of large-scale structures. Taking
into account that the electrical resistivity of cement-based materials can be used in quality
control or for service life prediction of full size elements, this paper aims at providing more
insights at important features that may need to be captured in the ongoing development of
standard test methods to be used for CNT modified cement-based materials.

In this work, we present an experimental study on the effect of multi-walled carbon
nanotubes (MWCNTs) on the microstructure of cement mortars, in terms of mechanical
and electrical properties. For this, standard mortar prismatic samples will be modified with
different proportions of MWCNTs, i.e., 0.00 wt.%, 0.01 wt.%, 0.015 wt.%, and 0.02 wt.%
by the mass of cement. The nanomaterials will be introduced into the mortar material
by priorly prepared water-MWCNT nanofluids following a combined mechanical and
sonication dispersion procedure. The consistency, density, setting time and compressive
and flexural strength of mixes will be tested and analyzed at 28 and 90 days curing
time, in order to account for possible effects due to MWCNT presence in fully hydrated
mortar. Finally, this paper will also investigate the electrical resistivity of the different
MWCNT-mortar composites and the influence of temperature on the samples resistivity,
to confirm the correlation of mechanical and electrical properties of CNT modified cement-
based materials.
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2. Experimental
2.1. Materials
2.1.1. Carbon Nanotubes

Multi-walled carbon nanotubes, provided by Sigma-Aldrich in Spain, were used.
Their properties are given in Table 1. Figure 1 shows its transmission electron microscope
(TEM) image [33].

Table 1. Properties of multi-walled carbon nanotubes (MWCNTs).

External diameter 6–13 nm
Length 2, 5–20 µm
Size 10 µm
Form powder
Purity >98% carbon basis
Special Surface Area 220 m2/g
Density 2.1 g/mL at 25 ◦C
Average Wall Thickness 7–13 graphene layers

Figure 1. Transmission electron microscope image of MWCNT, adapted with permission from
Sikora et al. (2019) [33].

2.1.2. Cement, Sand and Mortar

CEM I 42.5 R type cement was used to manufacture the mortar. Table 2 summarises
composition and some physical-chemical properties of the cement used in this work,
suppled by Portland Valderrivas, in Spain. Siliceous sand from a nearby quarry, with con-
tinuous granulometry and 2 mm maximum size was used. The sand equivalent was 87.35%
and the density was 2.63 g/cm3.

Mortar mixes with 0.00 wt.%, 0.01 wt.%, 0.015 wt.% and 0.02 wt.% of MWCNTs
were prepared. The mix proportions are shown in Table 3. All samples were mixed in
a laboratory drum mixer. Then, the fresh mortar samples were placed in 40 × 40 × 160
mm3 prismatic moulds and homogenized using a vibrating table. Three specimens of
each mix were manufactured. The specimens were cured in a curing chamber at 100%
humidity and 20 ◦C temperature. Two curing periods were considered: 28 and 90 days.
Additionally, to study the thermal variation of electrical resistivity of MWCNT-mortars,
one sample of each MWCNT proportion, for every curing period, was manufactured with
a thermocouple inserted at the center of the beam. These specimens were cast and cured in
the same conditions as stated before.
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Table 2. Elemental composition (wt.%) of source cement and physical-chemical properties (according
to the supplier).

Elemental Content (%)

Si 7.78
Ca 48.2
K 0.28
Mg 0.49
Fe 3.53
Al 1.32
P 0.07
S 1.55
Ti 0.08

Physical

Blaine number (cm2/g) 3.75
Setting start time (min) 170
Initial setting time (min) 170
Final setting time (min) 220

Loss on Ignition (976 ◦C) 3.2

Table 3. Mortar mix proportions.

Reference MWCNTs Content (wt.%) Sand (g) Cement (g) Water (g)

Control 0.00 1350 450 225
CNT-0.01 0.01 1350 450 225
CNT-0.015 0.015 1350 450 225
CNT-0.02 0.02 1350 450 225

Inclusion and dispersion of MWCNTs in the mortar were achieved by prior prepa-
ration of MWCNT nanofluids. The corresponding amount of MWCNTs was dispersed
in 100 g mixing water by mechanical stirring for 3 min, followed by magnetic stirring for
30 min and sonication for 1 h. Model 505 Sonic Dismembrator (Fisher Scientific, Waltham,
MA, USA) was used for sonication. This probe is designed as 20 kHz operating frequency
and a maximum power of 500 W. During the sonication, 50% amplitud, and 2 s ON and
2 s OFF pulses were applied. This so-prepared nanofluid was then incorporated to the
cement-sand-remain water mix, that kept mixing in the drum mixer for the necessary time
(approximately 4 min) until homogeneity.

2.2. Methods
2.2.1. Testing Procedures

Technological tests were performed to evaluate the mechanical behavior and durability
properties of the cement mortars, namely: consistency, density and setting time of fresh
mortars, and flexural strength and compressive strength of hardened mortars at the ages
of 7, 28 and 90 days, following UNE-EN 1015-3:2000/A2:2007, UNE-EN 12390-3:2020 and
UNE-EN 12390-5:2020 [34–36], respectively.

2.2.2. Electrical Resistivity Measurements

The electrical resistivity was measured by means of the four point probe Wenner
technique [37] which is an electrical resistivity determination test performed on the surface
of the structure or test body. According to Wenner method, by using four equally-distanced
electrodes placed on the mortar surface, an alternating current I (A) is sent through the
two outer electrodes and the voltage V (V) is measured through the two inner electrode to
finally calculate the apparent resistivity ρa (kΩ· cm) through Ohm’s law, as expressed in
Equation (1)

ρa =
2πaV

I
(1)
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where a (cm) is the distance between electrodes.
This experimental methodology to calculate resistivity assumes that the mortar is

semi-infinite and homogeneous. As mortar confined in laboratory specimens cannot be
considered semi-infinite, a correction should be made according to the geometry of the
specimen [38], by means of a cell constant K, so that the real resistivity ρreal is obtained
from the following expression given in Equation (2):

ρreal =
ρa

K
(2)

In this work, the electrode spacing used was 2.5 cm, and all measured resistivity values
were corrected for the geometry effect with a cell constant K = 3.1, according to [39]. An al-
ternating current was applied by a waveform generator (National Instrument, 9263) which
imposed a peak amplitude voltage of ±10 V at 500 kHz frequency. Values of the voltage
and current intensity were recorded by National Instrument 9227 and 9222 respectively.

Figure 2A shows a graphic scheme of the described measurement method. In addition
to the thermocouple, four pure copper pins were fixed in the mortar samples surface using
a conductive epoxy. Figure 2B shows a schematic of the beam dimensions, spacing and
position of the electrodes and temperature probe.

Figure 2. Diagram of Wenner method for resistivity measurements in mortar specimens (A),
and (B) electrode spacing and dimensions.

To investigate the electrical transport within the MWCNT-mortar microstructure
in terms of activation energy, we introduce the effect of temperature on the resistivity
of MWCNT-mortar composites. The resistivity/temperature response is presented in
an Arrhenius format thereby allowing evaluation of the activation energy for electrical
conduction processes. Specimens were placed in a temperature controlled heater and their
resistivity tested over the range 20–60 ◦C, following the so-called dynamic temperature
test (DTT) as described by Liu and Presuel–Moreno [40]. This procedure consists of the
monitoring the thermal-electrical behavior of the mortar samples when a thermal gradient
is applied. The test was carried out in a controlled environment of constant temperature
and relative humidity.

3. Results and Discussion
3.1. Consistency, Density and Setting Time

Consistency of the fresh MWCNT-mortar samples was determined by flow table.
The loading of MWCNTs in mortars resulted in consistency values lower than that of the
control mortar. As the MWCNT addition ratio increased, the consistency values decreased
(Table 4). However, density values increased as the MWCNT loading increased (Table 4).

Both density and consistency are related to MWCNTs dispersion, since these fresh
mortar properties are indicative of homogeneity and porosity. Well dispersed MWCNTs
are expected to contribute to better homogeneity and promote filling effects on the porous
structure of cement composites. Our results show an increase in density with MWCNTs
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content, which can be attributed to the reduction of air content in the cement matrix as CNTs
are added and occupy empty sites within the pore structure. This itself is an indicative of
good MWCNTs dispersion. Coherently, increase in consistency with MWCNTs content
should be expected, leading to more fluid mixes as porous structure is refined and mix
fine particles get better dispersed. However, taking in account that no superplastifier nor
surfactant agent was added along with MWCNTs, the decrease in consistency displayed
in our results should be understood as an effect of large water retention in the mortar,
mainly due to the higher water-demand of the pastes because of the MWCNTs’ high
specific surface.

Table 4. Physical properties of the fresh mortars.

Reference MWCNTs Consistency (mm) Density (g/cm3) Setting Time (min)

Content (wt.%) UNE-EN 1015-3 UNE-EN 1015-6 UNE-EN 196-3
Initial Final

Control 0.00 188.00 1939 140 242
CNT-0.01 0.01 162.50 2001 130 237

CNT-0.015 0.015 158.50 2035 123 228
CNT-0.02 0.02 144.00 2056 119 224

Regarding the setting time, it was observed that for MWCNT-mortar both the initial
and final setting times are shorter than that of the control mortar. Some researchers [41]
state the same results. However, initial setting time differences are more significant than
final time, although changes in the MWCNT loading did not significantly modify the
overall trend. According to [42], this behavior can be explained by a rapid nucleation
during the initial steps which later leads to a barrier effect, slowing the formation of
additional hydration products in the MWCNT-mortar [14].

3.2. Compressive and Flexural Strength

The compressive and flexural strength results obtained for each mixture are shown
in Figure 3. The maximum failure load and its failure pattern is noted and results are
presented in Table 5 below.

Figure 3. Compressive (a) and flexural strength (b) of MWCNT-mortar specimens.
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Table 5. Compressive and flexural loads and strength.

MWCNTs Compressive Flexural

Content (wt.%) Failure Strength Increase Failure Strength Increase
Load (N) (MPa) % Load (N) (MPa) %

28 days

0.00 8.74 53.31 – 3.12 7.18 –
0.01 8.88 54.15 1.6 3.27 7.53 4.9
0.015 9.0 54.93 3.0 3.35 7.71 7.4
0.02 9.20 56.11 5.3 3.53 8.12 13.3

90 days

0.00 9.21 56.20 – 3.57 8.21 –
0.01 9.59 58.48 4.1 3.88 8.93 8.8
0.015 9.65 58.85 4.7 3.97 9.14 11.3
0.02 11.55 70.48 25.4 4.30 9.88 20.3

The results confirm an increase in compressive strength in all the specimens with
MWCNT content in the cement matrix for the two curing periods, in agreement with
related works which also studied low CNT loading [17,43,44]. In particular, all mortars
manufactured with 0.01 wt.% MWCNT showed 1.6% and 4.1% higher compressive strength
values than those manufactured with ordinary cement (control) for 28 and 90 days curing
periods, respectively. Furthermore, the improvements were significant in mortars prepared
with 0.015 wt.% MWCNT, which showed 3.0% and 4.7% increases in compressive strength
at 28 and 90 days curing period respectively. This increase in strength can be explained by
the CNTs-induced formation of highly dense zones in the cement microstructure, as seen in
the strength-density relationship shown in Figure 4. The densification of cement, forming
virtual aggregate clusters (cement-MWCNTs) with presumably rounded shapes, minimizes
crack initiation, propagation and distribution [45]. More remarkable effect was shown in
cement mortars with 0.02 wt.% MWCNT loading at the age of 90 days, that exhibited an
improvement of 25.4% in compressive strength.

Flexural strength results show the same trends in increasing flexural strength when
low MWCNT loading in present in mortar. MWCNT 0.02 wt.% demonstrates to be the
optimum dosage in accommodating in the cement matrix, achieving improvements up to
20.3% in flexural strength at 90 days curing period. Additions 0.01 and 0.015 wt.% also
showed satisfactory results, with an increase of the ultimate strength of about 8.8% and
11.3%, respectively, at the same curing period of 90 days.

Figure 4. Relationship between compressive strength and density of MWCNT-mortar specimens.
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These findings show that the modification of cement microstructure after inclusion of
low dosage of MWCNTs results in an increase in the ultimate strength, both compressive
and flexural, specially at long curing time. These results also lead to the importance of
caring cement paste hydration parameters at long ages, when microstructure development
is almost completed, and CNTs can contribute to a filled porous structure with enhanced
strength properties. If mortar curing has developed properly under cared curing conditions,
hardened material can take advantage of CNTs for an improved loads distribution.

3.3. Electrical Resistivity Analysis

Figure 5 shows the average results of the electrical surface resistivity of MWCNT-
mortars versus the amount of MWCNTs for each curing time. In agreement with Konsta-
Gdoutos and Aza [46], a decrease in resistivity is observed with the presence of MWCNTs
in the cement matrix even for very low nanomaterial additions. In general, similar decre-
ment range is observed regarding the curing times, regardless of the MWCNT loading.
For example, in the case of mortar specimens with 0.01 wt.%, the registered resistivity
values were 3.32 kΩ · cm and 3.82 Ω · cm, at curing times of 28 and 90 days respectively,
which corresponds to a decrease of 11% and 6%, respectively. A similar behavior happened
in the case of mortar specimens with 0.015 wt.% MWCNT, where electrical resistivity
values reached decrements of 8% and 5% at curing times of 28 and 90 days respectively.
Thus, in the case of both MWCNT loadings, average values of electrical resistivity are
in a similar range, although our findings demonstrate that the curing time does have an
influence on the electrical resistivity of the specimens. This statement is in agreement
with relevant works where findings on nearly linear increment of resistivity as degree
of hydration increases are reported [47,48]. Surprisingly, the sample with the addition
of MWCNTs 0.02%, manages to increase the resistivity by 27% at 90 days curing time.
These very MWCNT-mortar specimens did show a remarkable increase in compressive
strength test at 90 days curing time, which in indeed should explain this different trend
at electrical resistivity variation, that is presumed to be a physical property related to
mechanical performance of cement-based materials.

Figure 5. Average electrical surface resistivity of MWCNTs-mortar samples.

Regarding the variation of resistivity with respect to the MWCNTs content in the
samples, it is clear from the results that there is a slight detriment in conductivity as the
addition of MWCNTs increases. No significant improvement in conduction properties is
obtained from an increasing loading of MWCNTs. Once electrical conduction is established
in the material, the presence of a greater amount of nanomaterial does not imply a gain in
electrical flux. Although in this work we cannot warranty good MWCNTs dispersion within



Materials 2021, 14, 79 10 of 13

the matrix of our samples, we can derive, however, that good dispersion was achieved
from the fresh properties results. Therefore, we believe that conduction paths do not break
due to bad MWCNT dispersion, but that resistivity increases due to polarization effects
caused by the amount of water and the dissolved ions in the mixes [46], as consistency
results proved large water retention in our samples.

Measurements of the dependence of resistivity with temperature are presented in
Figure 6a. All samples were tested at the age of 90 days. Temperature significantly influ-
ences the measured resistivity, with higher temperatures leading to lower resistivity values,
as demonstrated in Figure 6a. From these experimental findings, it is clear that all the
profiles of resistivity versus temperature follow a trend of exponential decay, as previously
reported [49].

To reach a better insight in this topic, we analyze the activation energy as provided by
the Arrhenius equation, given by Equation (3)

ρ = A · exp
Ea

RgT
(3)

where ρ is the electrical resistivity measured at temperature T(K), A is the pre-exponential
factor and represents the nominal resistivity at infinite temperature, Rg is Universal Gas
constant (8.314 J · mol−1 · K−1), and Ea is the activation energy for the conduction process
(J · mol−1). In Figure 5b below, natural logarithm of the inverse of resistivity (natural loga-
rithm of conductivity σ), is plotted against 1000/T, therefore multiplying the slope of the
plot by the Universal Gas constant Rg, Ea is obtained in kJ · mol−1. Results of the calculated
activation energy of MWCNT-mortar specimens are presented in Table 6.

Figure 6. Thermal evolution of electrical resistivity of MWCNT-mortar at 90 days curing time (a),
and Arrhenius plots for MWCNT-mortar at 90 days curing time presented over the temperature
range 20–55 ◦C (b).

Table 6. Summary of activation energy values, calculated with Arrhenius equation of MWCNTs-
mortar at 90 days curing time. Conductivity of the MWCNT-mortar at 20 ◦C, σ20 is also presented.

MWCNT wt.% Ea (KJ · mol−1) σ20 × 10−4 (S · cm−1)

Control 8.68 2.46
0.01 wt.% 7.83 2.62
0.015 wt.% 7.38 2.59
0.02 wt.% 17.14 1.93
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The above figures are in agreement with resistivity results as plotted in Figure 6a;
high resistivity correlates with high activation energy and vice versa. The activation energy
slightly decreases for mortars containing MWCNTs 0.01 and 0.015 wt.%, which implies
that in these mortars the energy barrier that must be overcome for an ion to conduct is
lesser than the control specimen.

Further understanding of the above facts can be obtained from the analysis of electrical
resistivity behavior in porous materials, as mortar, which can be described by using the
following Equation (4):

ρT = ρo
1

φβ
(4)

where ρT is the total resistivity, ρo is the resistivity of the pore solution, which in turns
is a function of the ions composition and concentration in solution; φ is the porosity
of the system that is accessible to fluids, and β is the connectivity of the pores in the
system [48]. The term 1/φβ is ofter called Formation Factor F, which comprises the
material microstructural characteristics, such as the water-to-cement ratio, volume of paste,
and degree of hydration.

Since electrical conduction through saturated cement mortar occurs via ions in the con-
tinuous (percolated) aqueous phase between the electrodes [50]; the fact that samples with
MWCNT 0.01 wt.% loading show better conductivity than samples with 0.015 wt.% could,
in part, be attributed to microstructural changes resulting from further hydration in sample
0.01 wt.% (being hydration reactions thermally activated processes). Another plausible ex-
planation could be the effect of a smaller formation factor in this specimens, which reflects
either a higher porosity or a higher connectivity. Higher porosity directly comes out of a
more hydrated mortar, as introduced before. Higher connectivity, however, can only be
explained by the presence of MWCNTs in the microstructure. From the results, it seems
that 0.01 wt.% be more efficient in developing conductive paths within the microstructure.
Nevertheless, these findings indicate that the MWCNT loadings studied in this work are
insufficient to produce conductive cement mortar.

Similarly, the increase in activation energy, and subsequently increased resistivity,
with respect to the control sample for mortars with MWCNT 0.02 wt.% wt can be explained
considering that these specimens have better developed their hydration products, as con-
firmed by the results of mechanical resistance, therefore the formation factor has been
enlarged as result of decrease porosity.

4. Conclusions

The effect of 0.01, 0.015 and 0.02 wt.% MWCNT loading on mechanical strength
and electrical resistivity of cement mortar is studied in the present work. MWCNTs are
dispersed in mortar microstructure and tested through mechanical performance analysis
at 28 and 90 curing period. The electrical resistivities of MWCNT-mortar are measured at
different temperatures up to 60 ◦C, using the four point probe Wenner setup and dynamic
temperature test (DTT). Activation energies corresponding to different MWCNT loadings
are calculated using Arrhenius equation.

It is found that an increase in both compressive and flexural strength is achieved in
mortars with MWCNT contents. Remarkable improvements of 25.4 and 20.3% at 90 days
are found in compressive and flexural strength respectively, for an addition of 0.02 wt.%
MWCNTs. Shorter initial and final setting times are obtained for 0.02 wt.% MWCNT
loading, which implies a denser microstructure and finer porous structure.

The resistivity measurements in mortars with 0.01 and 0.015 wt.% MWCNT loading
result up to 10% decrement to respect to control mortar at both 28 and 90 days curing.
Mortar with 0.02 wt.% MWCNTs, however, depicts a sudden 27% increase in resistivity at
90 days curing time, due to well hydrated microstructure as confirmed by the mechanical
tests. Activation energy calculations show fully accordance with these statements, resuming
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that 0.01 wt.% MWCNT seems to be the most effective loading scheme to produce certain
conductivity enhancement in cement mortar.
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