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Abstract: Polymer nanocomposites used in underground cables have been of great interest to
researchers over the past 10 years. Their preparation and the dispersion of the nanoparticles through
the polymer host matrix are the key factors leading to their enhanced dielectric properties. Their
important dielectric properties are breakdown strength, permittivity, conductivity, dielectric loss,
space charge accumulation, tracking, and erosion, and partial discharge. An overview of recent
advances in polymer nanocomposites based on LDPE, HDPE, XLPE, and PVC is presented, focusing
on their preparation and electrical properties.

Keywords: dielectric properties; polymer nanocomposites; polyethylene; polyvinylchloride; under-
ground cables

1. Introduction

Due to their reliability, availability, ease of fabrication, and low cost, polymers have
been widely used as electrical insulating materials for underground cables since the early
20th century [1]. In general, polymers are defined as macromolecules consisting of many
repeating units called monomers. On the basis of intermolecular forces acting within their
chains, polymers can be classified into three main classes: elastomers, such as natural
rubber and polyurethane; thermosets, such as epoxy resins; and thermoplastics, such as
polyethylene (PE) and polyvinyl chloride (PVC). PE and PVC are considered the most
commonly synthetic polymers used as electrical insulating materials due to their low
permittivity and high electrical breakdown strength [2]. PE can be found in several forms:
high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density
polyethylene (LLDPE), and cross-linked polyethylene (XLPE) [1,2].

The commercial homo-polymer form of HDPE (with density ranged from 0.941–
0.959 g/cm3) is a linear polymer that contains 94% crystalline phase and 6% amorphous
phase [3]. Its low chemical reactivity, stiffness, impermeability, thermal stability, and
moisture resistivity reveal HDPE to be applicable in electrical insulation [4–6].

Compared to HDPE, LDPE with lower density (0.910–0.925 g/cm3), lower chemical
reactivity, and lower tensile strength, due to the presence of short and long branched
chains [7], is widely used in the fabrication of cables for high-voltage direct-current (HVDC).
Further, LDPE can withstand a temperature of 95 ◦C for a short time and has a higher
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resistance to dilute, concentrated acids, and bases than many other organic compounds.
Nevertheless, it has poor resistance to halogenated hydrocarbons [8].

In addition to LDPE, LLDPE was also used in the insulation of wires and cables for
low, medium, and high voltage applications. It was first commercialized in the 1970s by
Union Carbide and Dow Chemical. The main difference between LLDPE and LDPE is
that the former has a narrow molecular weight distribution and no long chain branching,
therefore it has higher tensile strength and puncture resistance than LDPE [7]. Its density
(0.926–0.940 g/cm3) is higher than that of LDPE [9], and since it is a saturated hydrocarbon,
like polyethylene, it is generally unreactive; it resists alcohols, alkaline solutions, weak
organic or inorganic acids, and saline solutions [7,10,11].

Due to the drawbacks of PE; the limitation of the maximum operating temperature
(70 ◦C) and its deterioration due to the absence of antioxidants, a new type of PE was
introduced by crosslinking the PE in order to improve its thermal and aging stability [12,13].
Cross-linked polyethylene (XLPE) is typically a modified HDPE, with permanently chemi-
cally linked polymeric chains. The crosslinking proceeds through the chemical reaction of
polymeric chains with materials possessing multifunctional groups, which join the poly-
meric chains together through chemical bonds, forming a three-dimensional dense network,
thermosets polymers, with totally different properties, such as their chemical structure
and resistance, and their mechanical performance (environmental stress, toughness, abra-
sion and crack resistance), and chemical resistance [14–16]. Depending on the degree of
crosslinking, XLPE has been used in several applications, e.g., electrical insulation, pipes,
and packaging [12,13,17,18].

In addition to polyethylene and its different forms, polyvinylchloride (PVC) is another
thermoplastic polymer used in electrical insulation. It has excellent fire resistance due
to the presence of chlorine, which made it one of the most widely produced synthetic
polymers [2], with multiple applications in pipelines, ducts, and electrical insulation. PVC
is produced in a rigid or flexible form; the latter being preferred for electrical insulation.
Despite high hardness and good mechanical properties, PVC starts to decompose at 140 ◦C,
however, its thermal properties may be improved by the addition of heat stabilizers [19,20].

Recently, nanodielectrics have been developed for many applications. Nanodielectrics
are polymer dielectrics filled with a certain weight percent (wt %) of inorganic nanoparticles
homogeneously dispersed in the polymeric matrix. Such materials, containing low concen-
trations of nanoparticles, exhibit promising enhancement of their electrical, mechanical,
and thermal properties compared to conventional materials [21–23]. This enhancement
is largely due to the large surface area per unit volume of the nanoparticles. Nanodi-
electrics can also act as multifunctional materials: controlling the elevation and cryogenic
in temperature, controlling the thermal conductivity for the insulators, and increasing the
energy density of capacitor systems. This is because of the simultaneous enhancement of
the above-mentioned properties [24], and consequently, they satisfy in large measure the
current needs of the electrical power industry. Some examples are epoxy, polyethylene,
and polypropylene nanodielectrics [25].

Polymer nanocomposites used in underground cables have been of great interest to
researchers over the past years [26–28]. Figure 1 shows the growth of research articles in
nanocomposites based on polyethylene and polyvinylchloride in the last 15 years according
to Web of Science database. It is clear that there is an increasing trend in the number of
research articles covering this topic, which indicates the importance of this topic for the
academy and industry. The preparation and the dispersion of the nanoparticles through
the polymer host matrix are the key factors leading to the enhanced dielectric properties of
polymer nanocomposites used in underground cables. Their important dielectric properties
are breakdown strength, dielectric loss, space charge accumulation, tracking and erosion,
and partial discharge. We discuss these properties in this article.
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Figure 1. Annual publications on nanocomposites based on polyethylene and polyvinylchloride
according to Web of Science database.

2. Preparation of Polymer Nanocomposites

The type, size, and surface morphology of the nanoparticles are the critical factors
in enhancing the properties of polymer nanocomposites. Nanoparticles may be obtained
through various preparation techniques, e.g., sol-gel [29], chemical precipitation [30,31],
and electrode deposition [32,33]. The selection of the appropriate method depends on the
physical and chemical characteristics of the host polymer matrices. The most common
nanoparticles dispersed in insulating polymeric hosts are clay, silica (SiO2), titania (TiO2),
alumina (Al2O3), and other metal oxides. The benefits of nanoparticle dispersion are
realized when the dispersion is uniform, with little particle agglomeration.

The overall physical and chemical properties of polymer nanocomposites are con-
trolled by the properties of both nanoparticles and polymers, the interactions between
them, and the polymer/nanoparticle interface [34]. It is reported that at this interface there
is a fraction of polymer is confined and grafted at the highly surface-area nanoparticles,
thus, there is a gradual transition of the physical and the chemical properties from “bulk”
matrix-controlled features to interphase or “surface” dominated characteristics [35]. There-
fore, the unique structure of this special region has dominated influence on the electrical
and mechanical properties of the nanocomposite materials, and its influence becomes more
significant in nanocomposites with larger interfacial areas compared with microcompos-
ites [36]. In order to observe such an influence, a uniform dispersion of the nanoparticles
through the polymer matrix is mandatory [35].

Unfortunately, the small size and the high surface area-to-volume ratio of nanopar-
ticles increases their tendency to agglomerate within the polymeric matrix, introducing
additional challenges compared to the preparation of microcomposites [37,38]. Agglomera-
tions of nanoparticles are considered weak points at which destructive processes, such as
electrical tree initiation or mechanical crack propagation, can occur, resulting in deteriora-
tion of the electrical, mechanical, and thermal properties of the nanocomposite.

The dispersion of nanoparticles within the polymer can be improved through physical
approaches, chemical modifications, or both [39]. Physical approaches include mechanical
mixing and ultrasonic agitation. The polymer and nanoparticles are mixed together with
stabilizing agents before compounding. In this way, nanoparticles can be separated from
each other without changing the chemical nature of the nanoparticles or the host polymer
matrix [40]. However, nanocomposites obtained by this approach suffer from poor adhesion
of the nanoparticles to the polymer matrix, due to incompatibility between hydrophilic and
hydrophobic constituents preventing optimal dispersion of the nanoparticles. To prevent
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this, chemical modification using compatibilizers, e.g., coupling agents, is used in order
to reduce the surface energy of the nanoparticles [41–44]. The best results are obtained
through chemical modification of the nanoparticle surfaces, allowing the nanoparticles to
graft to the polymer chains [45–47].

Materials such as aluminates, silicates, and borates are often involved in linking
dissimilar surfaces. The most commonly used coupling agents in polymer nanocomposites
are silanes which form durable chemical bonds between organic polymers and inorganic
additives in a such way, as shown in Figure 2 [48,49]. The general formula of a silane
coupling agent, R–(CH2)n–Si–X3, with two functional groups, namely the inorganic moiety
X, (such as alkoxy, acyloxy, halogen, and amino groups), and the organic moiety R (typically
amino, epoxy, and vinyl groups). Silane coupling agents may form a covalent bond directly
with the finished polymer (thermoplastic polymers) or may be copolymerized with the
monomer (thermoset polymers) [50].
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with silane coupling.

The effect of nanoparticle surface modification by a silane coupling agent has been in-
vestigated in detail for SiO2/XLPE nanocomposites [51]. The dielectric constant decreased
for nano-sized modified SiO2, compared to micro-sized modified SiO2. This observation
was explained in terms of the particle surface curvature, which is high for a nanoscale
diameter, resulting in a decrease in the amount of hydrogen bonding between the silanol
groups. Accordingly, the interfacial polarization and the nanocomposite dielectric constant
are reduced.

There are three different methods of preparing polymer nanocomposites [52], namely
in-situ polymerization, melt blending, and polymer dissolution mixing. The latter two
methods are used to prepare polymer nanocomposites for use in underground cables. In
the melt blending method, the polymer material is heated above its melting temperature,
e.g., 135 ◦C for LDPE [53], and nanoparticles are then mixed with and dispersed into
the melted polymer. Finally, the mixture is extruded, pressed into sheets of the required
thickness, and allowed to cool to room temperature. In the polymer dissolution mixing
method a suitable solvent for the host polymeric material is added, e.g., tetrahydrofuran
solvent for PVC [54] and xylene solvent for LDPE [55]. Nanoparticles are then added
directly to the solution or dispersed in the solvent before being added to the solution. In
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order to reduce the time required to obtain a homogeneous mixture and uniform dispersion
of the nanoparticles, magnetic stirring and ultrasonic homogenization may be used. The
resulting liquid is poured into a mold and the solvent is allowed to volatilize, either in the
air over several days or in a vacuum oven for a few hours.

3. Dielectric Properties of Polymer Nanocomposites

Polymer nanocomposites exhibit enhanced dielectric properties compared to conven-
tional polymeric materials. We consider now dielectric breakdown strength, permittivity,
conductivity, dielectric loss, space charge behavior, and partial discharge (PD) resistance.

3.1. AC Breakdown Strength

Many experimental studies of the breakdown strength of nanocomposites have been
reported [56–65]. In most cases, the measurements were carried out under a uniform
electric field or semi-uniform electric field using sphere-to-sphere electrode or sphere-to-
plane electrode, respectively, as shown in Figure 3. For both electrode configurations, they
are immersed in oil in order to prevent surface flashover. The frequency of the applied AC
voltage is the power frequency, either 50 Hz or 60 Hz.
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(b) semi-uniform field.

For AC breakdown strength of polymer nanocomposites based on PE and PVC,
Table 1 summarizes the key findings obtained in the literature. Also, Figure 4 shows some
experimental data for AC breakdown strength as a function of nanoparticle weight fraction.
Most enhancements do not exceed 20%, i.e., Eactual/Ebase < 1.2. There are some differences
between the results obtained by different authors for nominally identical nanocomposites.
Thus, for HDPE/nanoclay, at 10 wt % nanoparticle fraction, an increase of approximately
130% was reported in [58], but only about 10% in [57]. On the other hand, for LDPE/Al2O3,
very small increases were reported in [56,59] for small nanoparticle fractions. The decreases
in AC breakdown strength might be due to the use of untreated SiO2 nanoparticles, which
could have limited compatibility with the polymer matrix.

Table 1. AC breakdown strength of polymer nanocomposites based on PE and PVC.

Ref. Polymer
Nanocomposites

Mean
Size (nm) Concentrations Best

Concentration Key Findings

[5] HDPE/CaCO3 20–40 1, 2, and
4 wt % 2 wt %

Breakdown strength of HDPE + 1% g-maleic
anhydride enhanced with 21% than the

neat sample.

[19] PVC/SiO2 20 1, 2.5, 5, and
7.5 wt % 5 wt % Breakdown strength enhanced with 7% rather

than the neat sample.

[43] LLDPE/SiO2 12 2.5 wt % 2.5 wt %
Sample with treated octa-silica has higher

breakdown strength than neat and/or
untreated one.

[56] LDPE/Al2O3 40 1.5, 3, 6, 12,
and 15 wt % 1.5 wt % Breakdown strength enhanced with 0.88% than

neat, and the others decreased.
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Table 1. Cont.

Ref. Polymer
Nanocomposites

Mean
Size (nm) Concentrations Best

Concentration Key Findings

[57] HDPE/clay 10 2, 6, 10, and
15 wt % 6 wt % Breakdown strength enhanced with 15.4%

rather than the neat sample.

[58] HDPE/clay
LDPE/clay 10 1, 5, and

10 wt % 10 wt %
Breakdown strength of HDPE/clay and

LDPE/clay enhanced with 128.5% and 123.5%
than the neat sample.

[58] HDPE/SiO2
LDPE/SiO2

10 1, 5, and
10 wt % 1 wt %

The breakdown strength of HDPE/SiO2 and
LDPE/SiO2 has the lowest reduction with 6.4%

and 10.8% than the neat one.

[59] LDPE/Al2O3 45 1 and 3 wt % 3 wt % Breakdown strength enhanced with 13.5%
rather than the neat sample.

[60] PVC/TiO2 21 0.5, 1, 3, and
5 wt % 5 wt %

Breakdown strength enhanced with 10.9% for
treated TiO2 and with 4.5% for un-treated one

rather than a neat sample.

[61] XLPE/SiO2 12 5 wt % 5 wt %
Breakdown strength enhanced with 2% for

treated SiO2 and decreased by 5% for
un-treated one rather than a neat sample.

[62] LDPE/TiO2
Not

specified 3 wt % 3 wt %
Breakdown strength enhanced with 9.2% for

treated TiO2 and with 7.7% for un-treated one
rather than a neat sample.

[63] LDPE/POS <500 µm 1 and 5 wt % 1 wt % Breakdown strength enhanced with 7.2% for
isooctyl-POS rather than the neat one.

[64] PVC/SiO2 10–20 0.5, 1, 3, and
5 wt % 0.5 wt %

Breakdown strength enhanced with 14.1% for
treated SiO2 and with 7.7% for un-treated one

rather than a neat sample.

[65] PVC/TiO2 21 0.5, 1, and
3 wt % 3 wt %

Breakdown strength enhanced with 8% for
vinyl-treated TiO2 and with 3% for un-treated

one rather than a neat sample.
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There are two main factors responsible for the variability seen in these results. The
first is the varying extent of nanoparticle agglomeration due to differences in preparation
procedure, choice of coupling agent, and choice of surface treatment. Even small differences
can cause significant differences in dielectric properties [66]. Nanoparticle agglomerates less
than 3 µm in diameter were found in LDPE/Al2O3 nanocomposites, and no enhancement
was obtained in the breakdown strength [56]; increasing nanoparticle agglomerate size
resulted in a reduction in breakdown strength relative to the host LDPE matrix. On the
other hand, LDPE/Al2O3 nanocomposites [59] exhibited a slight enhancement in AC
breakdown strength despite the use of nanoparticles of the same type and almost the same
size as specified in [56]. Scanning electron micrographs presented in both publications
show that nanoparticle agglomeration was smaller in [59] than in [56], probably due to the
use of ultrasonic bath mixing in the latter.

The second factor causing variability in the results is the breakdown strength of the
base material itself. Thus in [58], the host polymer matrices (LDPE and HDPE) had low
breakdown strength, leading to greater enhancements following the addition of nanoparti-
cles.

In addition to the effect of the type and weight fraction of nanoparticles on dielectric
breakdown strength, several studies have highlighted the important effects of nanoparticle
surface modification. Huang et al. [43] showed that SiO2 nanofillers modified by octasi-
lane slightly increased the AC breakdown strength of LLDPE; similarly, functionalized
fumed SiO2 nanofillers slightly increased the AC breakdown strength of XLPE [61]. How-
ever, modification of TiO2 nanoparticles [62] and SiO2 nanoparticles [63] by polyhedral
oligomeric silsesquioxane increased the AC breakdown strength of LDPE by 9% and 7%,
respectively. Surface modification of TiO2 nanoparticles by vinyl silane coupling also
caused an 11% increase in the AC breakdown strength of PVC/TiO2 nanocomposites [60].

3.2. DC Breakdown Strength

The electrode configuration used for measuring DC breakdown strength follows the
same configurations depicted in Figure 3. Table 2 summarizes the key findings obtained
in the literature for DC breakdown strength of polymer nanocomposites based on PE
and PVC, while Figure 5 shows some experimental data for DC breakdown strength as a
function of nanoparticle weight fraction [42,54,67–73]. There are considerable differences
between the results obtained by different authors for nominally identical nanocomposites,
e.g., LDPE/Al2O3 at 0.5% nanoparticle wt fraction reported in [67,69], and LDPE/MgO at
5% nanoparticle wt fraction reported in [42,68,70]. These differences have been attributed
to the high dependence of DC breakdown strength on space charge behavior, which in
turn is sensitive to preparation processes and purity of materials [74,75]. Dispersion of
SiO2 nanoparticles in PE resulted in a reduction in the DC breakdown strength over the
nanoparticle wt fraction range 1–10% [72], similar to the AC breakdown strength behavior
results reported in [58]. However, SiO2 nanoparticles in PVC greatly increased the DC
breakdown strength [71]. The decrease in DC breakdown strength could be due to the
use of untreated SiO2 nanoparticles [58], or inappropriate type/chain length of coupling
agent [72]. Effective surface modification of SiO2 nanoparticles could increase the DC
breakdown strength by as much as 30% [74].
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Table 2. DC breakdown strength of polymer nanocomposites based on PE and PVC.

Ref. Polymer
Nanocomposites

Mean
Size (nm) Concentrations Best

Concentration Key Findings

[42] LDPE/MgO 50 0.1, 0.5, 1, 2,
and 5 wt % 1 wt % Breakdown strength enhanced with 9.6%

rather than the neat sample.

[47] XLPE/GO <80 0.01 wt %
(fGO-QWs) 0.01 wt %

Breakdown strength enhanced with 33.3% for
functionalized graphene oxide quantum wells

(fGO-QWs) than those of the neat XLPEs.

[54] PVC/ZnO 28–41.5 0.3, 0.5, 0.7, 1, 3,
and 5 wt % 0.5 wt % Breakdown strength enhanced with 45% rather

than the neat sample.

[60] PVC/TiO2 21 0.5, 1, 3, and
5 wt % 5 wt %

Breakdown strength enhanced with 14.2% for
treated TiO2 and with 4.8% for un-treated one

rather than a neat sample.

[64] PVC/SiO2 10–20 0.5, 1, 3, and
5 wt % 0.5 wt %

Breakdown strength enhanced with 16.3% for
treated SiO2 and with 8.8% for un-treated one

rather than a neat sample.

[65] PVC/TiO2 21 0.5, 1, and
3 wt % 3 wt %

Breakdown strength enhanced with 10% for
vinyl-treated TiO2 and with 4.5% for

un-treated one rather than a neat sample.

[67] LDPE/Al2O3 30 ± 5
0.1, 0.5, 1, 2, 5

and
10 wt %

0.5 wt % Breakdown strength enhanced with 35% rather
than the neat sample.

[68] LDPE/MgO 10 0.2, 0.5, 1, 2, 5
and 10 wt % 2 wt % Breakdown strength enhanced with 46% rather

than the neat sample.

[69] LDPE/Al2O3 50–100 0.1, 0.2, 0.5,
and 1 wt % 1 wt %

The treatment of nanoparticles does not
change breakdown mechanisms of the

composites rather than the neat sample.

[70] LDPE/MgO 40 1, 3, and
5 wt % 1 wt % Breakdown strength enhanced with 42.5%

rather than the neat sample.

[71] PVC/CaCO3 10–30 2.5, 5, and
7.5 wt % 5 wt % Breakdown strength enhanced with 59.5%

rather than the neat sample.

[71] PVC/SiO2 10–30 2.5, 5, and
7.5 wt % 5 wt % Breakdown strength enhanced with 48.8%

rather than the neat sample.

[72] PE/SiO2 10–20 2, 5, and
10 wt % 5 wt %

The lowest decrease in breakdown strength is
9% for treated SiO2 and all other samples

including un-treated ones are lower than a
neat sample.

[73] XLPE/ZnO 20 & 200 1, 3, and 5 wt % 3 wt %
Breakdown strength enhanced with 9% (for
ZnO = 200 nm) rather than the small size of

ZnO samples and/or neat one.
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3.3. Impulse Breakdown Strength

Few researchers have studied the impulse breakdown strength of nanocompos-
ites [68,76–78]. In this regard, Table 3 and Figure 6 summarize the key findings obtained in
the literature. As shown in Figure 6, the impulse breakdown strength tends to decrease
with increasing nanoparticle concentration above approximately 1%, with the exception of
the [68] data. The percentage increases also tend to be smaller than those under AC and
DC [77]. The reasons for the differences between impulse and AC/DC breakdown strength
are still unclear. It seems that impulse breakdown strength for PVC nanocomposites is not
available in the open literature and needs to be studied.

Table 3. Impulse breakdown strength of polymer nanocomposites based on PE and PVC.

Ref. Polymer
Nanocomposites

Mean
Size (nm) Concentrations Best

Concentration Key Findings

[68] LDPE/MgO 10 1, 2, 5, and
10 wt % 2 wt %

Impulse wave; front duration 1.2 µs, and one
shot impulse 800 kV/mm.

Breakdown strength enhanced with 21% rather
than the neat sample.

[76] LDPE/MgO 50 1, 5 and
10 wt % 1 wt %

Impulse wave; three shot (-ve) impulse each
step of 2 kV.

Breakdown strength slightly enhanced with 4%
rather than the neat sample.

[77] LDPE/SiO2 30 ± 5 0.1, 0.5, 1, 2,
and 5 wt % 1 wt %

Impulse wave; 1.2/50 µs, and one shot impulse
30 kV, then increased in steps of 1.5 kV/min.

Breakdown strength enhanced with 10% rather
than the neat sample.

[78] LDPE/Al2O3 <100 0.5, 1, 5 and
10 wt % 0.5 wt %

Impulse wave; 1.2/50 µs, and one shot impulse
20 kV, then increased in steps of 2 kV/min.
Breakdown strength enhanced with ~30%

rather than the neat sample.
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3.4. Breakdown Mechanisms

Two main mechanisms have been proposed to explain the mostly increase in the break-
down strength of polymer nanocomposites, relative to the host polymer matrix. The first
emphasizes the role of nanoparticles and the nanoparticle/polymer interfaces in forming
barriers capable of preventing the growth of discharge channels [79,80]. Other studies have
emphasized the role of the interfacial regions in creating a rigid barrier around the nanopar-
ticles [81,82], resulting in increased charge carrier energy loss. The second mechanism
emphasizes the role of deep traps in capturing charge carriers, thereby decreasing their
mobility and energy [67,83]. Thus, both mechanisms depend on the total surface provided
by nanoparticles. For most cases depicted above, there is an optimal weight fraction, above
which a decrement in breakdown strength is observed. This is can be attributed to the
effect of distribution and agglomeration of nanoparticles as shown in Figure 7. With a low
weight fraction of nanoparticles in Figure 7a, they are distributed uniformly all over the
polymer sample leading to an elongation in the discharge path and an existence of multiple
trapping sites for charge carriers, thereby enhancing breakdown strength. Increasing the
weight fraction of nanoparticles in Figure 7b provides a larger surface area with further
enhancement in breakdown strength. At high nanoparticle loadings in Figure 7c, the ag-
glomeration of nanoparticles and the overlap between interfacial regions result in transport
paths for charge carriers, and consequently a reduction in breakdown strength.

3.5. Permittivity, Conductivity, and Dielectric Loss

Considerable research has been reported on the permittivity, conductivity, and dielec-
tric loss of nanodielectrics in general [81,84–87]. However, very few corresponding data
are available for PE and PVC based nanodielectrics. The permittivity considered in the
literature refers to relative permittivity or dielectric constant. Table 4 summarizes most of
the key results obtained regarding the dielectric properties of polymer nanocomposites
based on PE and PVC.
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The permittivity of LDPE has been reported to increase with the addition of 0.015%
volume fraction of graphene oxide [88]. Increased permittivity has also been observed
with the addition of multiwall carbon nanotubes (MWCNT) [89]; at a volume fraction
0.08% of MWCNT, the permittivity was 100, compared with 2.2 for LDPE. As reported
in [69], the permittivity of an LDPE/Al2O3 nanocomposite containing Al2O3 nanoparticles
functionalized through vinyl silane coupling was lower than that of neat LDPE. The
authors suggested that the functionalized Al2O3 nanoparticles lowered the permittivity by
inhibiting the movement of charge carriers. The permittivity was independent of frequency
over the frequency range 100 Hz–1 MHz, suggesting electrode polarization originating
in blocking of charge carriers at the electrode/LDPE interfaces [90]. A similar trend
was observed in PVC/functionalized TiO2 nanocomposites [60], in which the permittivity
decreased by about 43% relative to neat PVC, and by about 33% relative to PVC/unmodified
TiO2 nanocomposites. It appears that the permittivity increases/decreases depending on
the type and the size of the nanoparticles, and on the surface modification coupling agent.

In relation to conductivity, Wang et al. [67] showed that the DC volume resistivity
of LDPE/Al2O3 nanocomposites increased with increasing Al2O3 weight fraction, the
increase being a factor of about 10 at 0.5 wt % loading, but limited at higher loading.
Modified Al2O3 nanoparticles with vinyl silane coupling also increased the DC volume
resistivity to about three times that of neat LDPE [69]. On the other hand, uncoated MgO
and Al2O3 nanoparticles caused a reduction of approximately 98% in the conductivity
of LDPE nanocomposites at a weight fraction of 3% [91]. However, Al2O3 nanoparticles
coated with silanes of terminal alkyl groups of different lengths caused a similar decrease
in the conductivity of LDPE nanocomposites, but at a loading of 1 wt % [92].

Field-dependent DC conductivity has been reported in LDPE/graphene oxide nanocom-
posites [88]. Below approximately 4 kV/mm the nanocomposites showed lower conductiv-
ity than neat LDPE. The authors suggested that the LDPE/nanoparticle interfaces acted
as physical barriers to current flow, thereby decreasing conductivity. However, above
4 kV/mm the nanocomposites showed conductivity values higher than that of LDPE. A
much greater increase in the conductivity of these nanocomposites with increasing tem-
perature was observed than for LDPE; this was attributed to the thermal energy gained
by charge carriers at higher temperatures being sufficient to enable them to overcome the
electrical potential barriers presented by the nanoparticle interfaces.
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Table 4. Dielectric properties of polymer nanocomposites based on PE and PVC.

Ref. Polymer
Nanocomposites

Mean
Size (nm) Concentrations Best

Concentration Key Findings

[60] PVC/TiO2 21 0.5, 1, 3, and
5 wt % 3 wt %

Frequency range: 20–106 Hz.
The maximum reduction in permittivity was
about 43% and dielectric loss about 41% for

treated TiO2 rather than a neat sample at
50 Hz.

[64] PVC/SiO2 10–20 0.5, 1, 3, and
5 wt % 0.5 wt %

Frequency range: 20–106 Hz.
The maximum reduction in permittivity was
about 25% and dielectric loss about 39% for

treated SiO2 rather than a neat sample at
50 Hz.

[65] PVC/TiO2 21 0.5, 1, and
3 wt % 3 wt %

Frequency range: 20–106 Hz.
The maximum reduction in permittivity and

dielectric loss are 43% and 41% for
vinyl-treated TiO2, while equal 22% and 27%

for amino-treated one, respectively, rather than
a neat sample at 50 Hz.

[67] LDPE/Al2O3 30 ± 5 0.1, 0.5, 1, 2, 5
and 10 wt % 0.5 wt %

The highest DC resistivity increase by a factor
of about 10 compared with that of neat LDPE

sample.

[69] LDPE/Al2O3 50–100 0.1, 0.2, 0.5,
and 1 wt % 1 wt %

Frequency range: 102–106 Hz.
The maximum reduction in permittivity at

600 Hz was about 19.8% for treated Al2O3, and
the DC resistivity increased about three times

that of neat LDPE.

[88] LDPE/GO

Thick =
1 nm,

lateral di-
mension
0.5–5 µm

0.015 vol%
coated

0.015 vol%
coated

Frequency range: 10−1–105 Hz.
The permittivity slightly increased with

thermal treated GO at all frequencies.
Otherwise, below 4 kV/mm the

nanocomposites showed lower conductivity
than neat LDPE.

[89] LDPE/
MWCNT 20–30 0.02, 0.04, 0.08,

and 0.1 vol% 0.02 vol%

Frequency range: 102–106 Hz.
Permittivity increases to 100 compared to 2.2

for neat LDPE over 0.08 vol% at
100 Hz. Also, the minimum increase in

conductivity happens for 0.02 vol%.

[91] LDPE/MgO 10–20 0.1, 1, 3, 6,
and 9 wt % 3 wt %

The conduction current is significantly
dropped up to three orders in magnitude and

DC conductivity decreased by 104% rather
than a neat sample at 60 ◦C.

[92] LDPE/Al2O3 50 1, 3, 5, and
10 wt % 1 wt % The greatest reduction in DC conductivity

happens by two orders of magnitude.

[93] LDPE/CB 30 0.01, 0.03, 0.06,
and 0.09 wt % 0.01 wt %

Frequency range: 1–105 Hz.
Permittivity, dielectric loss, and DC resistivity

are slightly increased by 0.5%, 1%, and 5%,
respectively compared with a neat LDPE at

50 Hz.

Few data on dielectric loss in nanocomposite insulation materials have been published.
Figure 8 shows some results for PVC/TiO2 nanocomposites, with and without vinyl silane-
based surface modification of the TiO2 nanoparticles [60]. Similar decreases in dielectric
loss following the addition of SiO2 nanocomposites functionalized by amino silane to PVC
have been observed [64], but only at frequencies below 1 kHz. LDPE/MgO nanocomposites
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also exhibited a lower dielectric loss than either base LDPE or LDPE microcomposites [94].
However, at frequencies below about 300 Hz, dielectric losses measured in LDPE/carbon
black nanoparticles were considerably higher than those in LDPE [93].
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Figure 8. Dielectric loss of PVC/TiO2 nanocomposites; (a) un-modified nanoparticles and (b) surface-
modified nanoparticles.

3.6. Space Charge Profiles

Insulating materials in high voltage cables exhibit space charge accumulation, which
can distort the electric field distribution within the insulation and possibly lead to break-
down [95]. Many studies have investigated the space charge profile in polymer nanocom-
posites used in cable insulation [96–105].

Several methods of measuring space charge profiles in insulators have been developed
over the last 30 years [106–108]. Of these, the pulsed-electro-acoustic (PEA) method [109]
and the thermal-step-method (TSM) [110] are frequently used. Space charge in the insu-
lation of power cables can originate in charge injection from the central conductor and
the semiconductor layer, and in ionization of residual additives and cross-linking by-
products in the insulation. Homo-charges (with the same charge polarity as the injecting
electrode) can decrease the electric field at and near the electrode/insulator interface, and
therefore increase the electric field in the bulk of the insulator. In contrast, hetero-charges
(with polarity opposite that of the injecting electrode) can increase the electric field at the
electrode/insulator interface, and decrease the electric field in the bulk of the insulator.

LDPE and XLPE exhibit hetero-charge accumulation in the vicinity of the electrodes [96].
The measurements were made with the electric field applied. Hetero-charge concentra-
tion, especially at the cathode, increases with increasing applied field [42,96,99] and with
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increasing temperature gradient [101,111]. As stated above there are two main sources of
space charge, namely injection from the electrodes and ionization of impurities, usually
present throughout the bulk of the sample [42,99]. Injection from the electrodes usually
leads to homo-charge accumulation near the electrodes, while ionization of impurities
throughout the bulk and transport of charge carriers across the sample to the electrodes
usually leads to hetero-charge accumulation near the electrodes.

The addition of nanoparticles to LDPE and XLPE may significantly reduce or suppress
hetero-charge accumulation. Homo-charge suppression following nanoparticle addition
is less pronounced than that of hetero-charge [42]. Factors such as nanoparticle weight
fraction and grain size, sample thickness, and mechanical stressing may also be important.
Space charge profiles in LDPE/MgO [42] and in LDPE/ZnO nanocomposites [99] have been
studied at several nanoparticle weight fractions. In both types hetero-charge accumulation
at the cathode was suppressed up to 1% nanoparticle loading; above this loading, hetero-
charge accumulation near the cathode was observed. Hetero-charge accumulation was not
observed at the anode, either for neat LDPE or for LDPE nanocomposites. In LDPE/ZnO
nanocomposites homo-charge accumulation was also suppressed near both electrodes up
to 0.1% nanoparticle loading [99]. To explain these results, it has been proposed [79] that a
large concentration of charge carrier traps exists at the nanoparticle/polymer interfaces
(the loose layer of the multi-core model) throughout the sample bulk. When such traps
near an injecting electrode are occupied by charge carriers, they constitute a concentrated
homo-charge layer which decreases the electric field at the electrode interface, thereby
increasing the potential barrier to further charge injection and decreasing the accumulated
homo-charge concentration. On the other hand, the deep traps introduced at the interface
zones between fillers and polymer matrix [112] limit charge transport from the counter
electrode (mainly anode in case of LDPE) through the sample bulk, leading to a suppression
of hetero-charge accumulation. The higher the trap level density, the lower the charging
current, and the slower the transport of charges injected from the electrode [99].

The size of nanoparticle clusters increases with increasing nanoparticles’ weight frac-
tion. Such agglomeration increases again the hetero-charge density at the cathode similar
to neat LDPE, presumably by reducing the number of traps at the nanoparticle/polymer
interfaces within the sample bulk making again easy charge transport from the anode to
the cathode and accumulation of hetero-charges at the cathode.

The effect of nanoparticle grain size on space charge accumulation in LDPE/MgO
nanocomposites has been investigated using the PEA method [96]. The main observation
was that the hetero-charge density near the electrodes decreased with the addition of
MgO nanoparticles compared to the hetero-charge density observed in untreated LDPE,
presumably due to reduced charge transport through the sample bulk as mentioned above.
Homo-charge density for MgO nanoparticle sizes in the range 100–500 nm became greater
than that for 30 nm, presumably because the height of the potential barrier between the
electrodes and the LDPE bulk decreases with increasing nanoparticle size. Increasing
nanoparticle size decreases the overall surface area at the interface zone between nanopar-
ticles and polymer matrix. For homo-charges, this results in a decrease in the height of the
potential barrier and causes further charge injection. For hetero-charges, this limits charge
trapping and facilitates charge transport through the sample bulk causing an increase in
hetero-charge accumulation similar to that occurred with nanoparticles agglomeration.

The influence of sample thickness on space charge formation in XLPE/SiO2 nanocom-
posites [101] and in LDPE/SiO2 nanocomposites has been compared with that in untreated
XLPE and LDPE, at the same electric field strength. High hetero-charge concentrations were
measured close to the cathode in all three untreated samples, but not in the nanocomposites,
and small hetero-charge concentrations were measured close to the anode in both types
of 0.1 mm thick samples. It was suggested [102] that charge carrier transport through the
sample bulk is reduced in the nanocomposite sample due to the total number of deep traps
provided by nanofillers along the path of charge transport from the anode to the cathode.
The thicker the nanocomposite sample the larger number of deep traps and the lower the
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hetero-charge density. However, for all considered thicknesses in [102], hetero-charges
were suppressed at all. A small amount of hetero-charge was observed close to the anode
in a 0.1 mm thick nanocomposite sample, but not in 0.3 and 0.5 mm thick samples.

The effect of mechanical stretching on space charge formation in LDPE/MgO nanocom-
posites has been studied [70]. The elongation ratio normal to the electric field direction was
1.1. This ratio is defined as the ratio between final stretched length and initial un-stretched
one [113]. It was suggested that the loose layer surrounding the nanoparticles, as envisaged
in the multi-core model [79], increased in width as a result of the stretching, resulting in
an increase in the concentration and depth of charge traps. The stretching may also have
converted some shallow traps to deep traps, causing an increase in volume resistivity.

A bipolar charge transport (BCT) model has been used to simulate space charge
accumulation in untreated polymers and nanocomposites. This model is consistent with
an increase of hetero-charge accumulation at both electrodes with increasing electrode
temperature difference observed in untreated XLPE [104], and with the observation in
LDPE nanocomposites that increasing trap density reduces the electric field at the interface
between the electrodes and the nanocomposite, due to the creation of a large barrier to
charge injection [105].

It seems that the space charge profile for PVC nanocomposites is not available in the
open literature and needs to be studied.

3.7. Partial Discharge and Treeing Resistance

Partial discharge (PDs), and its impact on polymer dielectrics, have been attracted
the interest of researchers for many years. This is because PD is one of the main degra-
dation mechanisms [114], and also it can be used as a diagnostic indicator in polymer
dielectrics [115–119]. PD is defined as localized discharge within the dielectric that par-
tially bridges the insulation between two adjacent conductors. It has many types such as
internal discharge, corona, and surface discharge. Many studies have been made on the
resistance of nanocomposites based on polyethylene to electrical treeing [80,120,121], or
water treeing [122]. It was found that dielectric nanocomposites effectively enhance the
resistance against PD. Accordingly, several researchers investigated the enhancement of
PD resistance for PE and PVC nanocomposites. For investigating PDs in polymer nanocom-
posites, a rod to plane electrode has been used with two different configurations as shown
in Figure 9. The first configuration in Figure 9a is used for the PD erosion test, while, the
second configuration in Figure 9b is used for testing tree initiation and growth.
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and (b) tree growth.

Tanaka et al. [120] investigated PD in LDPE/MgO nanocomposites with an applied
voltage of 4 kV and a frequency of 720 Hz for a duration of 48 h. They found that the
erosion depth decreased with increasing filler concentration. At 10% weight fraction of
MgO the erosion depth was about 36% of its value in untreated LDPE. In [121], the PD
inception voltage decreased slightly in LDPE/MgO nanocomposites at MgO loadings
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below 2%, and then increased at higher loadings. The PD detection sensitivity considered
in [121] was 4 pico-columns (pC). It was suggested that the reduced erosion depth could be
attributed to increasing resistance of exposed polymer surfaces to PD when they contain
nanoparticles and to the multi-core morphology formed at polymer/nanofiller interfaces
(bonded, bound, and loose layers). In addition, after PD is induced from the rod tip in a
rod-plane electrode configuration, nanofillers around the tip are detached from the polymer
matrix and accumulate on the sample surface, thereby providing additional PD resistance.
The mechanism behind reducing PD erosion and enhanced PD resistance was explained in
terms of the role of nanofillers in protecting the polymer matrix, and this is due to their
strong PD resistance, Figure 10a. In addition, after PD erosion, nanofillers are separated
from the polymer matrix and are grouped together on the surface resulting in an increase
in PD resistance as shown in Figure 10b.
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Figure 10. Mechanisms behind reducing PD erosion in polymer nanocomposites; (a) before PD
erosion and (b) after PD erosion.

Studies of tree initiation and growth in LDPE/alumina nanocomposites were reported
in [80]. The maximum suppression was obtained at 3% alumina weight fraction, when the
average PD tree inception voltage was 20 kVrms, compared with 10 kVrms for unfilled LDPE.
Branch-type tree growth was found in unfilled LDPE, but bush-type in the nanocomposites,
resulting in an increase in the density of tree branches and a reduction in branch length in
nanocomposites. The authors suggested that the bush-type pattern in the nanocomposites
could be due to the formation of charge traps at the nanoparticle surfaces, leading to the
formation of secondary branches from the main tree branch. In LDPE/MgO nanocompos-
ites the tree length decreased with increasing MgO loadings up to 2 wt %, but changed
little at higher loadings [121].

Zhou et al. [122] found that TiO2 nanoparticles tended to fill voids in XLPE which
otherwise would be filled with water. The distortion of the electric field in the volume
surrounding a nanoparticle-filled void is much smaller than that in the volume surrounding
a water-filled void, so that the breakdown strength is greater in the former case. Thus,
inorganic nanoparticles effectively protect the XLPE chains against PD erosion.

For PVC nanocomposites, there are limited studies on PD activity [123,124]. For neat
PVC, the inception voltage applied to a needle tip was 2 kVrms and the average discharge
magnitude was 589 pC. While, the inception voltage increased to 2.35 kVrms and the
average discharge magnitude decreased to 494 pC when using amino-treated PVC/TiO2
nanocomposites [124].

4. Suggested Future Work

In spite of many researches have investigated the breakdown strength and dielec-
tric properties of PE and PVC nanocomposites, it is challenging to disperse nanoparti-
cles homogeneously within the polymer matrix. This issue is critical for industrial-scale
nanocomposites and has to be dealt in-depth in the future studies. The studies in this field
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can include developing advanced chemical and physical techniques capable to achieve
homogeneous dispersion on the long-term operation of these materials. Additionally, it is
desired to develop on-line techniques capable to observe the dispersion condition during
real field operation of such materials.

Another future trend that can be beneficial for PE and PVC nanocomposites is to
use special types of nanoparticles. The first promising type is porous nanoparticles that
have embedded cavities in the nanosized scale. Porous nanoparticles could achieve lower
permittivity for epoxy nanocomposites [125], but there are no available studies on the
breakdown strength and dielectric properties of PE and PVC nanocomposites filled with
such nanoparticles. The second promising type of nanoparticles is core-shell nanoparticles.
A core-shell nanoparticle is composed of a nanoparticle in the core encapsulated by a thin
shell of another material. Such structures can exhibit properties different than those of both
materials. Using core-shell nanoparticles will aid in designing functional nanocomposites
that can achieve multiple enhancements [126,127].

5. Conclusions

There are considerable discrepancies between the results reported by different authors
for very similar nanodielectrics based on polyethylene and polyvinylchloride hosts. Some
very general and tentative observations are as follows:

• Increases in breakdown strength have often been reported, and sometimes decreases,
depending on the type and weight fraction of the nanoparticles.

• Permittivity also increases or decreases, depending on the type and size of the nanopar-
ticles and on the coupling agent used for modification of their surfaces.

• DC conductivity and dissipation factor tend to decrease with the addition of nanopar-
ticles.

• The addition of nanoparticles to polyethylene significantly suppresses hetero-charge
accumulation observed at the cathode for neat LDPE; provided the nanoparticles are
not agglomerated and have grain size less than about 100 nm. The enhancement is
more pronounced in thicker samples.

• Nanoparticles tend to increase PD inception voltages and reduce surface erosion
caused by PD. They also delay the onset of tree formation, as a function of applied
voltage, and favor bush type trees.
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