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Abstract: Cellularized scaffold is emerging as the preferred solution for tissue regeneration and
restoration of damaged functionalities. However, the high cost of preclinical studies creates a gap
between investigation and the device market for the biomedical industry. In this work, bone-tailored
scaffolds based on the Ti6Al4V alloy manufactured by electron beam melting (EBM) technology
with reused powder were investigated, aiming to overcome issues connected to the high cost of
preclinical studies. Two different elementary unit cell scaffold geometries, namely diamond (DO)
and rhombic dodecahedron (RD), were adopted, while surface functionalization was performed by
coating scaffolds with single layers of polycaprolactone (PCL) or with mixture of polycaprolactone
and 20 wt.% hydroxyapatite (PCL/HA). The mechanical and biological performances of the produced
scaffolds were investigated, and the results were compared to software simulation and experimental
evidence available in literature. Good mechanical properties and a favorable environment for cell
growth were obtained for all combinations of scaffold geometry and surface functionalization. In
conclusion, powder recycling provides a viable practice for the biomedical industry to strongly
reduce preclinical costs without altering biomechanical performance.

Keywords: titanium implants; additive manufacturing; reused powder; unit cell topology; tissue
engineering; mechanical properties; stem cells; surface functionalization

1. Introduction

Recently, an approach to bone tissue regeneration based on cellularized-scaffold
implantation was used to overcome the risks connected to bone grafts when self-healing
fails [1].

The focal point of scaffolds for bone tissue regeneration is unit cell topology which
influences mechanical and biological performance [1]. Suitable mechanical properties
are required in load-bearing applications while suitable mass transport properties are
necessary for biological activities [2]. Both these features relate to porosity, pore size
and pore interconnectivity, that in turn are determined by scaffold elementary unit cell
geometry. Therefore, scaffold design must be balanced to allow nutrients and oxygen
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supply, metabolic waste removal, cell penetration and reduction of stress shielding to
prevent mechanical failure [3,4].

Two main elementary unit cell geometries for the scaffold are proposed in the lit-
erature: (a) diagonal symmetrical and (b) midline symmetrical. Finite element analysis
(FEA) [5] showed that a porous structure with midline symmetry exhibited superior com-
pressive performances than diagonal symmetry, while the opposite trend was observed in
the case of torsion. Therefore, rhombic dodecahedron (RD) unit cell geometry (midline sym-
metrical) is well suited for load-bearing implants, while diamond (DO) unit cell geometry
(diagonal symmetrical) is preferable for implants subjected to torsional forces. In addition,
numerical analysis by computational fluid dynamics (CFD) [6] has demonstrated that DO
shows advantages in implant fixation (greater tortuosity and larger aperture), cell growth
environment (more appropriate adhesion areas), and tissue regeneration (due to regular
mechanical stimulation), while RD shows a superior mass transport performance (higher
flow velocity value). Therefore, DO and RD elementary unit cells are valid alternatives for
bone tissue regeneration.

Accurate control of the anatomical shape, size and topology of the scaffold’s ele-
mentary unit cell can be efficiently obtained by additive manufacturing (AM) technology
alternatives to traditional subtractive methods. Typically, AM processes for metal alloys
consist of melting powders through an energy source (laser or electron beam) in a layer-
by-layer process, according to a CAD file [7,8]. Laser-manufactured parts show lower
surface roughness in comparison to electron beam melting (EBM) products, that generally
exhibit residual stresses and gas contamination. Laser-melting technology is widely used
for dental implants [9,10], while EBM is commonly employed in a patient’s customized
bone implants [11,12].

Titanium alloys have an elastic modulus in the range 50–118 GPa, closer to natural
cortical bone (10–30 GPa) than any other widely investigated alloy for permanent implant,
such as cobalt chromium (240 GPa) and stainless steel (216 GPa) [13]. However, the
difference in elastic modulus between cortical bone and titanium alloys leads to stress
shielding with reabsorption of the unstressed bone portion and consequent risk of implant
failure [14].

A combination of EBM technology and Ti6Al4V alloy has been investigated by Popov
et al. [11], that produced biomedical patient-specific implants for clavicle, mandibular bone,
foot osteotomy and hip. In the reported clinical cases, EBM revealed a reduction of time in
operation and patient recovery.

Despite the key advantages of combining EBM technology with Ti-based alloys, only
a small percentage of tissue engineering research in this field achieves clinical application,
due to the high cost of preclinical studies. To overcome this gap, Martinez−Marquez
et al. [15] proposed a step model to ensure the cost-effectiveness of customized scaffolds.
In particular, they proposed material feedstock recycling as the first step in cost reduction.
Material feedstock in EBM processes can affect up to 31% of the cost of built parts [16].
Therefore, recycling Ti6Al4V metal powder represents an affordable solution to reduce
waste and save costs [17]. However, powder reuse means repeated preheating steps
and prolonged thermal treatments in a vacuum during the EBM process that can induce
changes in the reused powder, in terms of chemical composition, morphology and physical
properties [18]. In Ti6Al4V alloy thermal cycling due to powder reuse induces variations
in particle size distribution and oxygen uptake that can lead it to exceed the O < 0.2 wt.%
condition required by ASTM F2924-14 [19]. Oxygen stabilizes the α-Ti phase which pins
dislocation during part deformation. Thus, with powder reuse, ultimate yield strength
slightly increases, while ductility decreases [18,20,21].

In addition to elementary unit cell geometry and scaffold production technology, the
engineering aspect to be improved for implant success is surface functionalization, which
must fulfill scaffold–bone interface requirements. The most common functionalization
treatment is coating the scaffold’s surface with a layer of biocompatible material or a



Materials 2021, 14, 224 3 of 20

combination of biocompatible compounds [22–24]. Surface coating plays a double role: (a)
avoids the release of toxic ions [3,4,25,26] and (b) improves implant osteointegration.

Currently, the researchers’ interest is focused on synthetic bioresorbable and biocom-
patible polymers such as polylactide (PLA), polycaprolactone (PCL) and polyglycolide
(PGA) [27]. Among them, PCL is the most promising due to slow degradation time
(>24 months) with respect to PLA (12–16 months) and PGA (6–12 months) [28]. How-
ever, to overcome the PCL drawbacks concerning structural (elevated hydrophobicity)
and biological aspects (poor bioactivity and low cell adhesion), PCL is usually combined
with ceramic materials such as hydroxyapatite (HA). HA shows excellent biocompatibil-
ity, bioactivity and osteoconductive properties, allowing enhanced bone formation and
implant-site recovery [29,30].

In this paper, the elementary unit cell geometry, surface functionalization, mechanical
properties and biological response of scaffolds based on Ti6Al4V alloy, produced with a
mixture of reused and virgin new powders by the EBM technology, were considered for
bone tissue regeneration. The aim of the work is to fabricate suitable scaffolds for in vivo
perspectives starting from industrial EBM process based on cost and waste reduction in
order to overcome issues connected to the high costs of preclinical studies. Starting from
reused powder blended with virgin new powder as the raw material of the EBM process,
scaffolds with DO and RD elementary unit cell geometry were produced. After production,
scaffolds were submitted to topological and mechanical characterization to compare their
performances with the experimental and simulated results reported in literature [5] for
identical structures (same alloy composition, production technology and elementary unit
cell geometries). Afterwards, scaffolds were coated with a single layer of PCL or PCL/HA
for surface functionalization and then submitted to biological tests. Human mesenchymal
stem cell cultures for 24 h and 4 days were used as a fast check of the scaffold’s biological
response. The role of unremoved residual powder in the scaffold core on mechanical and
biological behavior was also considered. Results evidenced mechanical and biological
performance of scaffolds produced by EBM industrial methods fully comparable to the
literature data from scaffolds produced by virgin new powder, thus providing an indication
for viable industrial processes for cost reduction of preclinical studies.

2. Materials and Methods
2.1. Material

Scaffolds were produced using Arcam Ti6Al4V powder. The raw material was a
mixture of Arcam powder in recycled and virgin new conditions blended in unknown
proportions. In this paper, from now on, the blended raw powder is indicated as P1,
while the virgin new powder, used as reference, is indicated as P2. As provided by the
manufacturer (Arcam website [31]), the virgin new powder P2 has a particle size in the
range 45–106 µm, density 2.47 g/cm3 and the nominal chemical composition reported in
Table 1.

Table 1. Nominal chemical composition (wt.%) of the Arcam Ti6Al4V powder in virgin new condi-
tion (P2).

Al V C Fe O N H Ti

6.0 4.0 0.03 0.1 0.1 0.01 <0.003 Bal.

2.2. Scaffold Geometry

The scaffolds’ local geometries adopted in this study are schematically shown in
Figure 1. Scaffolds were designed using Magics 21.0 in diamond (DO, Figure 1A) and
rhombic dodecahedron (RD, Figure 1B) elementary unit cell. Scaffold volume, indepen-
dently on elementary unit cell geometry, corresponds to a cube 1 cm side length.
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vations carried out by optical (Nikon OPTIPHOT-100, Tokyo, Japan) and scanning elec-
tron microscopy confirmed the presence of residual powder that partially and sometimes 
totally occluded pores in the scaffold core. The unremoved residual powder was partially 
sintered during scaffold production and could not be removed even after repeated blast-
ing processes. 
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Figure 1. Schematics of the scaffolds’ elementary unit cell geometry: (A) diamond (DO) and (B)
rhombic dodecahedron (RD).

Nominal porosity and strut size are reported in Table 2 for diagonal symmetrical (DO)
and midline symmetrical (RD) elementary unit cells. Theoretical porosity is constant (80%)
for both geometries, while strut size changes on the basis of pore size and interconnectivity.

Table 2. CAD values of porosity and strut size for DO and RD geometries.

Geometry Porosity (%) Strut Size (µm)

DO 80 420
RD 80 460

2.3. Scaffold Manufacturing

Scaffolds were additively manufactured using Arcam A2X electron beam melting
(EBM) system. The entire procedure was carried out in a vacuum with the powder bed
heated to 750 ◦C before the production process to induce partial sintering of powder
particles. Sintering improves powder thermal conductivity and mechanical strength, thus
allowing production of parts with a reduced number of supports or even without any
supporting structure [32]. Processing parameters are reported in Table 3. After production
and cooling, scaffolds were cleaned by Ti6Al4V ELI powder blasting at 4 bar pressure.

Table 3. Arcam A2X printing parameters.

Printing Parameters Outer Contour Inner Contour

Maximum beam current (mA) 3 3
Focus offset (mA) 0 0

Speed (mm/s) 450 470
Offset (mm) 0.13

Number of perimeters 1 1

2.4. Scaffold Porosity and Residual Powder Volume

After powder blasting, some unremoved residual powder was still present in the inner
central part of the scaffold. Residual powder was visible by visual inspection. Observa-
tions carried out by optical (Nikon OPTIPHOT-100, Tokyo, Japan) and scanning electron
microscopy confirmed the presence of residual powder that partially and sometimes to-
tally occluded pores in the scaffold core. The unremoved residual powder was partially
sintered during scaffold production and could not be removed even after repeated blasting
processes.

Scaffold porosity resulting from the production process was experimentally obtained
by X-ray computed tomography (XCT) (Bruker Skyscan 1174 system, Kontich, Belgium)
measurements performed on a slice cut from a scaffold external part, free of residual
powder. The external slice total volume was 160 mm3.
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The total volume of residual powder was estimated from experimental measurement
of scaffold mass by using precision balance and five weighing operations. The mass of
residual powder (mpw) was obtained from Equation (1):

ms = mTi + mpw (1)

where ms is scaffold mass, mTi mass of struts calculated from porosity data and alloy
nominal density (ρTi = 4.43 g/cm3) and mpw total mass of unremoved residual powder.
Residual powder volume (Vpw) was calculated from residual powder density ρpw = 0.68
ρTi = 3.012 g/cm3, as suggested by Tolochko et al. [33].

In order to check distribution of residual powder and presence of porosity occlusions
in the scaffold core, scaffolds were cut by diamond blade at half height (about 0.5 cm below
the upper scaffold surface). After acetone cleaning in ultrasonic system followed by air
jetting, the scaffold was observed by scanning electron microscope.

2.5. Surface Functionalization

Surface functionalization was performed by coating the scaffold with a single layer of:
(a) polycaprolactone (PCL) or (b) a mixture of polycaprolactone and 20% hydroxyapatite
(PCL/HA). The coating operation was carried out by manually dipping the scaffold in
the bath solution for 20 s, followed by air drying. The solvent used in the bath solution
was tetrahydrofuran (THF, CH2Cl2), selected after C. Bordes et al. [34]. Chemical grade
powders of polycaprolactone (PCL, Eurocoating S.p.a.) and hydroxyapatite (HA, Boc
Sciences, Inc., Shirley, NY, USA) were used as solutes. The bath solution was obtained by
gradually melting PCL and PCL/HA powders in THF solvent under magnetic stirring at
room temperature.

2.6. Morphological, Structural and Mechanical Characterization

Morphological characterization of blended powder (P1) and reference virgin powder
(P2) as well as of the DO and RD scaffolds was carried out by Zeiss Supra 40 field emission
scanning electron microscope (FESEM) (Carl Zeiss AG, Oberkochen, Germany) equipped
with Bruker Z200 energy dispersive microanalysis (EDS) (Billerica, MA, USA) and Tescan
Vega 3 scanning electron microscope (SEM) (Brno, Czech Republic) equipped with EDAX
Elements EDS system. Starting from FESEM images, powder mean grain size was evaluated
by ImageJ software (version 1.52a, NIH, Bethesda, MD, USA [35]).

Scaffolds in DO and RD geometries were morphologically characterized by 3D light
microscopy (3D LM) and FESEM observations.

Scaffold porosity was experimentally obtained by XCT analysis carried out in Bruker
Skyscan 1174 system at V = 40 kV, I = 800 µA with Cu-Kα radiation source, pixel size
13.8 µm, rotation step 0.2◦, total rotation angle 360◦, exposure time per projection 8 s,
aluminum filter (1 mm) for optimization of X-ray energy transmission. Projections were pro-
cessed by SkyScan reconstruction program NRecon, collecting stacks of cross-sectional slices
generated with the following settings: misalignment compensation = −3, smoothing = 3,
ring artefacts reduction = 5, beam hardening correction = 8%. The 3D reconstructions of
DO and RD slices were carried out by VG Studio MAX 1.2 software (Volume Graphics,
Heidelberg, Germany).

Structural information from powders and scaffolds were obtained by X-ray diffraction
(XRD), while EDS microanalysis was used to estimate chemical composition.

A Bruker D8 Advance diffractometer operating at V = 40 kV and I = 40 mA, with
Cu-Kα radiation, in the angular range 2θ = 34◦–43◦ was used for XRD measurements.
Pattern analysis was carried out by DIFFRAC.EVA software package including ICDD—
PDF 2 license for search/match analysis. Shape analysis of XRD peaks was carried out by
OriginPro (version 8.5) software package.

EDS analysis was carried out by a Bruker Z200 microanalysis system installed in a
Zeiss Supra 40 FESEM. Chemical composition by EDS were obtained by averaging data
taken from three different sample areas observed at same magnification (1000×). Results
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are reported as average value (AV) and standard deviation (SD) calculated from the three
measurements.

Topographic maps were obtained by Nikon LV 150 Confovis Microscope (Tokyo,
Japan). Scaffold roughness parameters were measured from topographic maps, according
to ISO 25178-603 [36].

Mechanical performance of uncoated scaffold was investigated by uniaxial compres-
sive tests carried out in Instron 5567 system (5 kN load cell, 0.5 mm/min speed) (Norwood,
MA, USA) in accordance with the standard ISO 13314:2011 [37]. For each scaffold geometry,
four cubic samples 10 × 10 × 10 mm3 were tested. The results of compressive tests are
plotted as a stress–strain curve from which were calculated: (a) maximum stress value at
first peak, assumed as compression strength, after Li et al. [5], (b) Young modulus and (c)
compressive strength at 40% strain. Mechanical parameters estimated from stress–strain
curves allowed the comparison of results obtained in this work to literature data.

2.7. Biological Characterization
2.7.1. Cell Culture Conditions

Human mesenchymal stem cells derived from bone marrow were isolated and pheno-
typically analyzed to assess their mesenchymal properties according to the International
Society for Cellular Therapy by a method previously described [38,39]. The study was con-
ducted in accordance with the Institution Review Board of Fondazione IRCCS Policlinico
San Matteo and the University of Pavia (2011). Written informed consent was obtained
from all participants enrolled in the study. Cells used in all experiments were mainly at
passage 4–5.

Cells were grown at 37 ◦C in 5% CO2 humidified atmosphere, maintained in low-
glucose DMEM (Dulbecco’s modified Eagle’s) supplemented with 10% FBS, 1% glutamine,
1% penicillin-streptomycin and amphotericin B (Lonza Group Ltd., Basel, Switzerland).

Before cell seeding, the scaffold was sterilized in an autoclave (Vapor Matic 770) at
120 ◦C for 20 min, washed with phosphate-buffered saline (PBS 1X), while coated scaffolds
were sterilized by immersing in 70% ethanol bath for 20 min. Subsequent scaffolds were
placed inside a standard 24-well-plate (Corning Inc., Corning, NY, USA), washed several
times with sterile distillated water followed by PBS 1X and finally dried under ultraviolet
light exposure for 40 min in order to prevent contamination. A cell suspension of 5 × 104

was placed on the top of each scaffold. After 0.5 h of incubation, 1.3 mL of culture medium
was added to the scaffold covering. The hMSC seeded and cultured on tissue culture plates
(TCPS) wells were inserted as control.

2.7.2. Cell Viability Assay

Cell viability on different scaffolds was estimated by using resazurin-based assay
(TOX8-1KT Sigma Aldrich, St. Louis, MO, USA) after 1 and 4 days of incubation, as
previously reported [40]. According to manufacturer instructions, resazurin solution
(Sigma-Aldrich) was added in 1:10 ratio with respect to culture volume to each well plate,
and incubated for 3 h at 37 ◦C in 5% CO2. At the end of incubation time, absorbance was
measured at 570 and 600 nm wavelengths using a microplate reader (Bio-Rad Laboratories,
Hercules, CA, USA). Each biological experiment was performed in triplicate and in at
least three separate tests. Results were expressed as mean value ± standard deviation.
Statistical analysis of hMSC viability data at 24 h and 4 days was performed using the
GraphPad Prism (version 5.00 for Windows, GraphPad Software, San Diego, CA, USA)
software package. Two-way ANOVA analysis was carried out to check the influence of
geometry and surface treatments on cell viability at 24 h and 4 days, separately. Since
two-way ANOVA analysis did not provide any significant results, t-tests were performed
for DO and RD scaffold geometries on the following parameters: uncoated, PCL coated
and PCL/HA coated scaffolds and vice versa, for both the cell viability times. Statistical
significance was analyzed at: p < 0.05 *.
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2.7.3. Focal Adhesion Kinase—Enzyme-Linked Immunosorbent Assay

The activation of the Focal Adhesion Kinase (FAK) was measured by human phospho-
FAK enzyme-linked immunosorbent assay (ELISA) kit (Human Phospho-FAK (Y397) and
Total FAK ELISA, RayBiotech, Inc., Peachtree Corners, GA, USA). After 24 h from seeding,
cell-seeded samples were washed extensively with sterile PBS to remove culture medium
and lysed with ice-cold lysis buffer (50 mM Tris pH 7.5, 50 mM NaCl, 5 mM ethylenedi-
aminetetraacetic acid, 0.1% Triton, and 1 mM sodium orthovanadate) for 30 min on ice.
Afterwards, lysates were centrifuged at 13,000 rpm for 15 min at 4 ◦C and supernatants
were analyzed by ELISA kit in accordance with manufacturer’s instructions. Data were
expressed as mean value with standard deviation. Statistical analysis was performed using
two-way ANOVA, to understand if geometry and surface treatments have statistically
significative effects on the phospho-FAK on the total FAK signal. The software package
used was GraphPad Prism (version 5.00 for Windows, GraphPad Software, San Diego, CA,
USA) and differences were considered significant for p < 0.05 *. A graph was obtained
normalizing the phospho-FAK on the total FAK signal.

2.7.4. FESEM Observation

After 24 h and 4 days of incubation, cell seeded onto scaffolds were treated as previ-
ously described [41]. The specimens were fixed with 2.5% (v/v) glutaraldehyde solution in
0.1 M Na-cacodylate buffer (pH = 7.2) for 1 h at 4 ◦C, washed with Na-cacodylate buffer
and then dehydrated at room temperature in ethanol gradient series up to 100%. Samples
were frozen for at least one day and then lyophilized 6 h to complete dehydration. Finally,
scaffolds were sputter-coated with gold and observed by FESEM.

3. Results
3.1. Structural and Morphological Characterization of Powders

FESEM observation allowed the morphology of the raw blended powder P1 to be
compared to the reference virgin new powder P2 (Figure 2). Spherically shaped particles
were visible in both P1 (Figure 2A) and P2 (Figure 2B). However, particle aggregation was
clearly visible in P1 (Figure 2A), due to joint neck formation at the particle contact points,
caused by the heating and cooling cycle for powder reuse.
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The virgin new powder P2 (Figure 2B) is formed of spherical particles with small
satellites and a size in the range of 40–110 µm in agreement with the values provided by the
manufacturer. The blended powder P1 (Figure 2A) was also formed of spherical particles
with a few residual satellites and a size in the range of 50–130 µm. Aggregation of spherical
particles with neck formation was evident in P1 (Figure 2A).

The experimental chemical composition obtained by EDS analysis of P1 and P2 pow-
ders is reported in Table 4. Within experimental uncertainties, both powders had similar
average chemical composition.
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Table 4. Chemical composition (wt.%) of P1 and P2 powders obtained by EDS analysis. AV—average
value, SD—standard deviation.

Element P1 (wt.%) P2 (wt.%)

AV SD AV SD
Al 5.8 0.2 6.1 0.4
Ti 90.60 0.14 90.5 0.2
V 3.60 0.11 3.4 0.2

XRD patterns of powders are reported in Figure 3. Peak position of α-Ti (ICDD file n.
44-1294) and β-Ti (ICDD file n. 44-1288) phases are indicated by full dots and full squares,
respectively.
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Powders are mainly formed of α-Ti with a small contribution of β-Ti, which is more
evident in P1, due to the recycled part of the blended powder.

3.2. Scaffold Characterization
3.2.1. Geometry

The structure of the scaffold’s top surface as well as the scaffold’s inner structure
were observed by FESEM and SEM, results are reported in Figures 4 and 5. Morphology
of the scaffold’s top surface is shown in Figure 4A for DO and Figure 4B for RD, while
Figure 5A,B report the scaffold’s inner structure.

Materials 2021, 14, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 4. FESEM images of the scaffold’s top surface: (A) DO geometry, (B) RD geometry. 

The scaffold’s inner structure showed pores partially filled with unmelted and neck 
connected powder particles (Figure 5A,B). 

 
Figure 5. SEM images of the scaffold’s inner structure: (A) DO geometry, (B) RD geometry. Insets 
show the same area of sample at higher magnification. 

Images in Figure 5 were taken in the central part (core) of the cut scaffold at the same 
magnification for comparison. High density residual powder in DO geometry (Figure 5A) 
with total occlusion of most pores was clearly evident. In contrast, RD geometry (Figure 
5B) had pores only partially occluded. It is worth noting that SEM observations of the 
peripheric regions, far from the scaffold core, show open pores free from residual powder. 

3.2.2. Porosity and Residual Powder Volume 
XCT measurements carried out on scaffold slices free from residual powder provided 

identical scaffold porosity values for all geometries, within experimental uncertainties. 
From porosity values, the total mass of struts (mTi) and total volume of residual powder 
were obtained, according to Equation (1). The results are summarized in Table 5 for the 
scaffold geometries investigated. 

Table 5. Experimental values resulting from XCT analysis and calculated values of residual pow-
der weight (mpw) and volume (Vpw). ms—total scaffold mass; Vs—total scaffold volume; mTi—total 
mass of struts; VTi—total volume of struts; mpw—total mass of residual powder; Vpw—total volume 
of residual powder. 

Geometry Porosity (%) ms (g) Vs (cm3) mTi (g) VTi(cm3) mpw (g) Vpw (cm3) 
DO 63 1.94 1 1.64 0.37 0.30 0.0996 
RD 63 1.81 1 1.64 0.37 0.17 0.0564 

Figure 4. FESEM images of the scaffold’s top surface: (A) DO geometry, (B) RD geometry.



Materials 2021, 14, 224 9 of 20

Materials 2021, 14, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 4. FESEM images of the scaffold’s top surface: (A) DO geometry, (B) RD geometry. 

The scaffold’s inner structure showed pores partially filled with unmelted and neck 
connected powder particles (Figure 5A,B). 

 
Figure 5. SEM images of the scaffold’s inner structure: (A) DO geometry, (B) RD geometry. Insets 
show the same area of sample at higher magnification. 

Images in Figure 5 were taken in the central part (core) of the cut scaffold at the same 
magnification for comparison. High density residual powder in DO geometry (Figure 5A) 
with total occlusion of most pores was clearly evident. In contrast, RD geometry (Figure 
5B) had pores only partially occluded. It is worth noting that SEM observations of the 
peripheric regions, far from the scaffold core, show open pores free from residual powder. 

3.2.2. Porosity and Residual Powder Volume 
XCT measurements carried out on scaffold slices free from residual powder provided 

identical scaffold porosity values for all geometries, within experimental uncertainties. 
From porosity values, the total mass of struts (mTi) and total volume of residual powder 
were obtained, according to Equation (1). The results are summarized in Table 5 for the 
scaffold geometries investigated. 

Table 5. Experimental values resulting from XCT analysis and calculated values of residual pow-
der weight (mpw) and volume (Vpw). ms—total scaffold mass; Vs—total scaffold volume; mTi—total 
mass of struts; VTi—total volume of struts; mpw—total mass of residual powder; Vpw—total volume 
of residual powder. 

Geometry Porosity (%) ms (g) Vs (cm3) mTi (g) VTi(cm3) mpw (g) Vpw (cm3) 
DO 63 1.94 1 1.64 0.37 0.30 0.0996 
RD 63 1.81 1 1.64 0.37 0.17 0.0564 

Figure 5. SEM images of the scaffold’s inner structure: (A) DO geometry, (B) RD geometry. Insets
show the same area of sample at higher magnification.

Independently of geometry (DO or RD), the top surface of the scaffold is formed of
partially melted particles (Figure 4A,B) with well interconnected open pores.

The scaffold’s inner structure showed pores partially filled with unmelted and neck
connected powder particles (Figure 5A,B).

Images in Figure 5 were taken in the central part (core) of the cut scaffold at the
same magnification for comparison. High density residual powder in DO geometry
(Figure 5A) with total occlusion of most pores was clearly evident. In contrast, RD geometry
(Figure 5B) had pores only partially occluded. It is worth noting that SEM observations
of the peripheric regions, far from the scaffold core, show open pores free from residual
powder.

3.2.2. Porosity and Residual Powder Volume

XCT measurements carried out on scaffold slices free from residual powder provided
identical scaffold porosity values for all geometries, within experimental uncertainties.
From porosity values, the total mass of struts (mTi) and total volume of residual powder
were obtained, according to Equation (1). The results are summarized in Table 5 for the
scaffold geometries investigated.

Table 5. Experimental values resulting from XCT analysis and calculated values of residual powder
weight (mpw) and volume (Vpw). ms—total scaffold mass; Vs—total scaffold volume; mTi—total
mass of struts; VTi—total volume of struts; mpw—total mass of residual powder; Vpw—total volume
of residual powder.

Geometry Porosity
(%) ms (g) Vs (cm3) mTi (g) VTi

(cm3) mpw (g)
Vpw

(cm3)

DO 63 1.94 1 1.64 0.37 0.30 0.0996
RD 63 1.81 1 1.64 0.37 0.17 0.0564

From the data in Table 5, it was evident that the amount of residual powder inside the
scaffold strongly depended on geometry, with DO containing about double the quantity of
residual powder compared to RD. The relative density (ρ = 1 − p), where p is the scaffold
porosity, as defined by Zhou et al. [42], could be also estimated from data in Table 5. For
both geometries, the relative density ρ result was 37%.

3.2.3. Structural and Chemical Characterization

Experimental chemical composition of the scaffolds obtained by EDS analysis was
almost the same for both DO and RD geometries, the results are reported in Table 6. It
is worth noting that the average chemical composition of the scaffold showed a slight
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decrease of vanadium with respect to the experimental composition of P1 and P2 powders
(Table 4).

Table 6. Chemical composition of scaffold obtained by EDS analysis. AV—average value, SD—
standard deviation.

Element Scaffold (wt. %)

AV SD
Al 6.0 0.5
Ti 91.7 0.7
V 2.4 0.2

Figure 6 shows XRD patterns of DO and RD scaffolds. The patterns reported the
peaks of α-Ti (ICDD file n. 44-1294) and β-Ti (ICDD file n. 44-1288) phases as full dots
and full squares, respectively. Scaffolds showed low intensity and broad diffraction peaks
suggested low crystallization. Residual stresses and/or variations in crystalline state of
scaffolds could be responsible for the slight angular peak shift visible in Figure 6.
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3.2.4. Mechanical Tests

Compression tests carried out on scaffolds provided the mechanical behavior shown in
Figure 7 for DO and RD geometries. The gradual collapse of scaffold elementary unit cells
arranged on the scaffold layers was clearly evident in the DO curve, up to 40% reduction
of initial scaffold height, which corresponded to a displacement of 4 mm.
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In the RD curve the gradual collapse of scaffold elementary unit cells was less evident,
although compaction occurred at about the same value of compression on initial height.
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On compression, scaffolds showed a “barrel” phenomenon during layer compaction,
with mechanically different behaviors along the x, y and z directions.

Maximum stress value at first peak was assumed as compression strength, after Li
et al. [5].

Stress–strain curves in Figure 7 also allowed the calculation of Young modulus and
compressive strength at 40%. Results are summarized in Table 7 with values obtained by
Li et al. [5] and Ahmadi et al. [43] for comparison. Table 7 also shows reference values
for cortical bone. It is worth underlining that the values of porosity and relative density
reported in Table 7 for this work referred only to struts without any contribution from
residual powder. Therefore, all values in Table 7 can be reliably compared.

Table 7. Experimental results obtained from the compression tests compared to the results obtained by Li et al. [5] and
Ahmadi et al. [43] with the same scaffold geometries, and reference values for cortical bone.

Reference Porosity (%) Relative Density (%) Young Modulus (GPa) Compression
Strength (MPa)

Compression
Strength at 40%

(MPa)

DO RD DO RD DO RD DO RD DO RD
This work 63 63 37 37 1.949 ± 0.001 1.622 ± 0.001 99 78 86 88
Li et al. [5] 70 70 30 30 2.59 ± 0.13 4.89 ± 0.05 88 ± 5 174 ± 4

Ahmadi et al. [43] 80 72 20 28 45 80 30 70

Cortical bone 3.9–11.7 80

3.2.5. Surface Functionalization

SEM observations in cross-section of PCL and PCL/HA coatings are shown in Figure 8.
DO and RD scaffolds coated with PCL are reported in Figure 8A,B, respectively, while
DO and RD scaffolds coated with PCL/HA are shown in Figure 8C,D for comparison. In
SEM images the coatings appeared brighter than the metal struts of scaffold, continuous
and well-adhered to the scaffold’s top surface as well as to surface of inner struts, when
the coating penetrated inside the scaffold. Coating reduces scaffold surface roughness
resulting in a smoothing effect leading to thickness variation of coating from a few tens
of microns up to about 1 mm. The coating on the top surface always exhibits a porous
structure due to solvent evaporation (inset in Figure 8C), as already reported by Abdal-hay
et al. [44].
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3.2.6. Surface Roughness

Top surface roughness maps of uncoated and coated scaffolds are reported in Figure 9
for comparison. From the roughness maps the roughness parameters of both scaffold
geometries in uncoated and coated conditions were derived. The scaffold roughness
parameters that estimated statistical distribution of height values along z axis, are listed
in Table 8, with: Ra—average surface roughness, mean value of absolute distances in the
roughness profile; Ssk—surface skewness, symmetry of roughness profile with respect to
the mean line; Sku—surface kurtosis, sharpness of roughness profile; Sp—surface peak,
maximum height of roughness profile from the mean line; Sv—surface valley, maximum
depth of roughness profile from the mean line. Average surface roughness (Ra) shows the
same trend for DO and RD, higher values for uncoated scaffolds and a slight decrease for
PCL and PCL/HA coated scaffolds. All scaffolds, except for the DO uncoated condition
that has valley predominance (Ssk < 0), show predominance of peaks in the roughness
profile (Ssk > 0), with higher values of maximum peak height (Sp) and maximum valley
depth (Sv) for the RD uncoated condition. Sharpness of roughness profile (Sku) is higher
for PCL than for PCL/HA coating regardless of scaffold cell geometry.
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Table 8. Roughness parameters estimated from roughness maps.

Parameters
DO RD

Uncoated PCL PCL/HA Uncoated PCL PCL/HA

Ra (µm) 6.5 3.9 2.8 10 3.5 3.27
Ssk −0.8 0.7 0.13 0.4 1.14 0.5
Sku 4.3 5.4 4.1 4.0 7.13 3.6

Sp (µm) 2.9 3.8 2.1 9.1 3.26 2.7
Sv (µm) 5.8 2.18 1.7 9.8 1.5 1.6
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3.3. Scaffold Interaction with hMSCs

In order to evaluate scaffold interaction with hMSCs, all groups were examined for
cell viability, morphology and activation of the FAK protein typically involved in the cell
adhesion process.

Tests of cell viability in Figure 10 were carried out on DO and RD scaffolds in uncoated
and coated condition, after 24 h (Figure 10A) and 4 days of incubation (Figure 10B). Data
were normalized on the control (TCPS) and are reported as percentage values.
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Figure 10. Cell viability at (A) 24 h and (B) 4 days on DO and RD uncoated, coated with PCL and with PCL/HA—p < 0.05 *.

The results of SEM observations performed in the same experimental setup on DO and
RD scaffolds in uncoated and coated conditions after 24 h and 4 days of cell incubation are
reported in Figure 11. After 24 h incubation, the cell distribution in the uncoated scaffolds
are shown in Figure 11A,B for the DO and RD geometry, respectively. Images of the DO
and RD scaffolds coated with PCL are shown in Figure 11C,D, respectively. Images of the
DO and RD scaffolds coated with PCL/HA are shown in Figure 11E,F, respectively. In all
scaffold conditions (coated and uncoated) and geometries (DO and RD), effective hMSCs
presence was evidenced, while cell morphology suggested that after 24 h incubation, cells
were in the spreading phase on the scaffold surface.

After 4 days incubation cell number had increased, with cells starting to colonize
scaffold inner layers. Although, in DO and RD uncoated condition (Figure 11G,H) cells
were clearly visible on the scaffold surface, they were not visible on the top surface of the
coated scaffolds. In order to observe cell colonization of the scaffold inner part, coated
scaffolds with PCL and PCL/HA were cut at 2 mm depth from the top surface and then
observed by SEM. In the scaffold’s deeper layers, SEM observations clearly evidenced
cells in spreading phase independently of scaffold geometry (DO or RD) and coating type
(PCL or PCL/HA). The results of SEM observations of the coated scaffold inner region are
reported in Figure 11I,J for DO and RD coated with PCL, and in Figure 11K,L for DO and
RD coated with PCL/HA.

ELISA assay analysis of FAK phosphorylation in hMSCs revealed that P-FAK was
highly upregulated in cells grown on DO compared with cells grown on RD, indicating
activation of FAK signaling by geometry cues (Figure 12).
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The ideal scaffold for tissue regeneration must: (a) support the normal cellular activ-

ity without producing any harmful effect (biocompatibility), (b) allow cells to adhere, pro-
liferate and form extracellular matrix on its pore and surface, (c) allow formation of blood 

Figure 11. hMSCs after 24 h of incubation on DO and RD (A,B) uncoated, (C,D) coated with PCL and (E,F) with PCL/HA
and hMSCs after 4 days of incubation on DO and RD (G,H)uncoated, (I,J) coated with PCL and with (K,L) PCL/HA. The
hMSCs are indicated by the arrows.
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4. Discussion

The ideal scaffold for tissue regeneration must: (a) support the normal cellular ac-
tivity without producing any harmful effect (biocompatibility), (b) allow cells to adhere,
proliferate and form extracellular matrix on its pore and surface, (c) allow formation of
blood vessels to support the transport of oxygen, nutrients and waste products. Therefore,
obtaining an ideal scaffold means taking control of any aspect of the production chain
starting from the selection of raw materials and production technology to the design of pore
shape, size and interconnectivity. Furthermore, cell viability tests allow the checking of
material biocompatibility and cell colonization of the produced scaffolds. Therefore, in the
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perspective of tissue regeneration, biological characterization is as essential as mechanical
and structural characterization.

In this study, cell viability tests were used as a fast check of biological response
concerning scaffold pore topology and surface functionalization coating. For this reason,
viability tests were stopped after only 4 days of culture, even before stem cell differentiation.

The raw material used to fabricate the scaffolds was Arcam Ti6Al4V powder blended
in an unknown proportion with the same powder after several recycles. Blending recycled
powder used in previous EBM processes with virgin new powder is common practice in
the additive manufacturing industry to reduce costs and waste [17]. Although the chemical
composition (Table 4) and lattice structure (Figure 3) of the raw powder (P1) were almost
unaltered with respect to the virgin new powder (P2), in agreement with Alamos et al. [45],
SEM images clearly showed particle aggregation through neck formation in P1 (Figure 2A).

Powder sintering occurring during the preheating and melting steps of the EBM
process led to the formation of necks between particles (Figure 2A), that were responsible
for powder aggregation. Although aggregation increased powder strength [32], aggregated
particles remained entrapped in the pores of scaffold core (Figure 5) with consequences on
scaffold topology-connected performance and mechanical properties.

The amount of residual powder inside the scaffold depended on geometry as evident
in Figure 5 and Table 5. In particular, DO geometry, which had more intricate pore pathway
for the release of unmelted powder entrapped inside the scaffold [6], contained about 76%
more residual powder than RD (Table 5).

The most important geometrical features in DO and RD geometries such as pore size,
strut size and porosity were investigated by Li et al. [46] using software analysis. All these
parameters not only affect biological performance but also play a central role in mechanical
properties [5].

Li et al. [5,46] investigated scaffold produced from virgin new powder with the
same unit cell geometries (DO and RD) of our scaffolds that were produced with the
blended P1 powder described above. Therefore, results obtained by Li et al. from software
simulation [46] and mechanical tests [5] were taken here as reference and compared with
our results in Table 7.

In particular, Li et al. [5] estimated a porosity value around 70% for both DO and
RD unit cell geometry (Table 7). In our case, the porosity experimental value was 63%
for both geometries (Table 7). Discrepancies between software calculated (Table 2) and
experimental values were fully due to the EBM manufacturing technique. In particular,
the EBM processing parameters reported in Table 3 allowed scaffold to be obtained with a
strut size much larger (ranging from 800 to 1000 µm for both DO and RD geometries) than
the nominal CAD values listed in Table 2. This reduced scaffold porosity to 63% against
the expected 80% of CAD calculation (Table 2). Nevertheless, the struts were fully dense
without pores or lack of fusion defects (Figure 5).

The EBM process occurs in vacuum, thus avoiding any oxygen contamination that
could modify the chemical composition and physical properties of the powder, even after
reuse [32]. However, the melting process in EBM can induce compositional variations in
the final parts with respect to the metal powder. In our case, this event was confirmed by
EDS analysis of scaffolds whose average chemical composition (Table 6) showed slight
decrease of vanadium with respect to the alloy’s nominal composition (Table 1) and the
experimental composition of the blended powder (Table 4).

XRD analysis of P1 and P2 powders (Figure 3) clearly showed the joint presence of
α-Ti and β-Ti phases in both specimens. The peak intensity in the patterns evidenced
better crystallization and higher β-Ti content in P1, due to the recycled part of blended
raw powder. XRD patterns of scaffolds (Figure 6) confirmed the joint presence of α-Ti and
β-Ti phases suggesting that the vanadium decrease measured by EDS was incapable of
deeply changing the alloy’s microstructure. Nevertheless, comparing the XRD patterns of
powders (Figure 3) and scaffolds (Figure 6) a markedly reduced crystallinity and possible
residual stresses in scaffolds could be argued.



Materials 2021, 14, 224 16 of 20

During the melting step of the EBM process, the electron beam provides enough
energy to induce localized powder melting. However, in regions adjacent to the melted
zone, the powder temperature does not reach the melting value so that large numbers
of spherical titanium particles remain partially bonded to the walls of the melted pool,
giving rise to the surface morphology reported in Figure 4. Studies on surface roughness
of EBM implants identified Ra = 24.9 µm as the upper limit value for positive effects
on cell proliferation and differentiation [47]. Roughness values of the scaffold surface
reported in Table 8 are well below this limit, even in uncoated condition, confirming that
scaffolds manufactured with the EBM parameters reported in Table 3 meet the needs of
scaffold−host tissue interface for bone regeneration. Moreover, surface functionalization
coating further decreases average surface roughness (Table 8). Recent studies demonstrated
beneficial effects in several biomedical applications of as-fabricated rippled surfaces in
EBM processed alloys [48,49].

Concerning additional topology-connected performances of scaffolds, it is worth
noting that the DO geometry generally provides a more suitable structure for cell vitality
than RD, both at 24 h and 4 days. Metabolic protein quantification confirms the better
biological response of DO against RD. Quantification of P-FAK on total FAK (Figure 12),
being the phosphorylation of FAK, the activator signal of the cell adhesion pathway, is
indicative of a gentler environment for cell adhesion. Regardless of the percentage of viable
cells present in scaffolds, a higher value of P-FAK/FAK of DO geometry corresponds to a
greater number of viable cells attached to the scaffold. Therefore, since cell adhesion is a
regulator of cellular proliferation, migration and differentiation [50], this result suggests a
better biological response of the DO unit cell geometry against RD, in perfect agreement
with the numerical analysis by Li et al. [6].

Further improvement in cell adhesion and proliferation was obtained by coating the
scaffold surface with a single layer of PCL or PCL/HA. For both scaffold geometries (DO
and RD) surface coating enhanced cell viability at 24 h and 4 days, especially in the presence
of HA (Figure 10). The PCL coating, with or without HA, promoted enhancement of P-FAK
activation independently of the scaffold geometry (DO or RD).

Coatings (Figure 8) adhered to the substrate in varying thickness according to the
surface topography developed by partially melted powder particles. Independently of
coating type (PCL or PCL/HA), a porous structure formed on the coating surface due to
solvent evaporation (inset in Figure 8B). This porous structure promoted nutrient diffu-
sion and osteointegration, thus supporting cell differentiation and proliferation [44]. The
coating changed the morphology and chemical composition of the scaffold surface, thus
improving further surface biofunctions [18]. Moreover, coating reduced the surface rough-
ness, PCL/HA had the lowest Ra value (Table 8) and improved the biological behavior of
stem cells (Figure 10B). SEM observations at 4 days incubation showed an absence of stem
cells on the scaffold’s coated surface, suggesting penetration of hMSCs inside the scaffold
(Figure 11). Therefore, the investigated coatings enhanced cell penetration into the scaffold,
with PCL/HA showing better performance due to lower surface roughness.

In terms of mechanical behavior under uniaxial compressive testing (Figure 7) scaf-
fold unit cell geometry seemed to be the most influencing parameter, although powder
aggregation effects in the scaffold core must be considered. Stress–strain curves shown in
Figure 7 for DO and RD unit cell geometry exhibited a general shape in agreement with
the results in literature for the same cell topology [5,43]. The DO curve grew rapidly up to
maximum stress value, corresponding to the compression strength, then large oscillations
due to collapse of unit cells under compressive load followed. The collapse mechanism
was clearly described by Ahmadi et al. [43] and Del Guercio et al. [51] In contrast, the RD
curve after its first rise showed small oscillations around the same average stress value
(Figure 7), in agreement with the results in literature [5,43]. However, contrary to the
results in literature, DO and RD curves in Figure 7 reached the same stress value in the
final part of the curve at high strain values. The two curves were completely superimposed
above 35% strain, when the unit cells were all collapsed, and the scaffold structure arrived
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at compaction (Figure 7). Ahmadi et al. [43] reported the trend of compression strength and
yield stress as a function of relative density for DO and RD geometries, showing that for
relative density below 25% the two curves were superimposed, while for higher values RD
always exhibited higher mechanical properties against DO. Ahmadi et al. [43] attributes
the lower mechanical properties of DO to the unit cell geometry which is relatively simple
and different struts provide only limited support to each other during compression. The
relative density of our scaffolds, obtained by experimental calculation of porosity from
XCT analysis, was 37% with compression strength of RD (78 MPa) lower than DO (99 MPa),
as reported in Table 7. Generally, the mechanical behavior of our scaffolds strongly differed
from the results of Li et al. [5] and Ahmadi et al. [43] for similar structures (Table 7). In
particular, the large size of struts (ranging from 800 to 1000 µm) in our scaffolds determined
the elastic behavior (Young modulus) and compression strength of DO and RD geometries
(Table 7). Following Ahmadi et al. [43], the more complex unit cell geometry (RD) exhibited
lower elastic properties (Table 7), while absolute values of Young modulus were always
lower than the values from Li et al. [5] for similar cell geometries with lower strut size and
lower relative density (Table 7). Therefore, higher strut size gives rise to stiffer structures
with different behaviors for different unit cell geometries. In our case, both strut size and
the absence of structural defects inside the struts (Figure 5) were responsible for higher
compression strength of DO with respect to RD (Table 7).

On compression, in the simpler DO geometry failure of a single strut caused collapse
of an entire elementary unit cell, then producing the large oscillations visible in the DO
curve in Figure 7. As the collapse of elementary unit cells occurred from outside to inside
during compression, the first part of the stress–strain curve (Figure 7) was not influenced
by the residual powder stored in the scaffold core (Figure 5). However, when all external
elementary unit cells had collapsed, elementary unit cells in the scaffold core that were
partially filled with sintered residual powder, started to deform. On collapse of core
elementary unit cells, the scaffold’s mechanical properties became dependent on sintered
residual powder, which increased compressive stress and stress on struts in the longitudinal
direction perpendicular to the compressive force. In this way, differences in mechanical
properties linked to different elementary unit cell geometry vanished, overruled by the
presence of residual powder, so stress–strain curves of DO and RD unit cells coincided.
It is worth noting that the compression strength at 40% of our scaffolds is very close to
the experimental value of cortical bone (Table 7), suggesting that the presence of residual
sintered powder did not deteriorate the mechanical performance of the scaffolds.

5. Conclusions

In biomedical industries, the high cost of device preclinical studies generates a gap
between investigation and device commercialization. The aim of this study is to fill the gap
by checking the feasibility of cost saving processes based on EBM technology. Starting from
a mixture of reused and virgin new powders, as commonly done in industrial practice,
scaffolds with diamond (DO) and rhombic dodecahedron (RD) elementary unit cells were
produced and surface functionalized from the perspective of tissue regeneration applica-
tions. Surface functionalization was carried out by coating the scaffold with either PCL
or PCL/HA layers. The feasibility of our industrial approach was verified by comparing
scaffold biomechanical performance with standard preclinical studies in literature.

The main results obtained can be summarized as follows:

• EBM technology is suitable for the production of porous structures with controlled
topology and well-defined unit cell geometry showing appropriate biological perfor-
mance and surface characteristics for in vivo perspectives. Low surface roughness
typical of the EBM process promotes hMSC proliferation, while the partially sintered
residual powder in the scaffold’s core is responsible for the porosity mismatch between
experimental and CAD design values;

• The mechanical performance of the scaffold is mainly influenced by elementary unit
cell geometry. The presence of residual powder becomes evident for compression
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values outside the range of in vivo use of the device and tends to cancel out the differ-
ences between geometries. In general, the compression behavior of the scaffolds is
quite similar to natural bone tissue and follows trends reported in literature, although
strut size and the absence of structural defects inside the struts are responsible for the
higher compression strength of DO against RD;

• Short-term cell viability and metabolic protein quantification identifies DO as a better
biological environment than RD, in agreement with literature-reported numerical
simulations. After 4 days incubation, hMSCs start to penetrate inside the scaffold,
favored by adherent, continuous and protective layers of PCL and PCL/HA.

From the above results it is evident that powder recycling represents a convenient
industrial practice applicable to the manufacture of biomedical devices to heavily reduce
preclinical costs without altering biomechanical performance.
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