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Table S1. Formula of PRFs and ACRFs.

Water Added in Concentration of V(')lume of Carbonized
Sample . . Toluene Dispersed
Continuous Phase Continuous Phase Phase Temperature
PRF-50C-80%, 136 g 50 wt% 20 ml 80 vol% -
PRF-50C-85%, 136 g 50 wt% 28.5 ml 85 vol% -
PRF-50C-90%, 136 g 50 wt% 45 ml 90 vol% -
PRF-40C-85%, 3.06g 40 wt% 28.5 ml 85 vol% -
PRF-30C-85%, 589¢g 30 wt% 28.5ml 85 vol% -
ACRF-50C-80%-800 136 g 50 wt% 20 ml 80 vol% 800°C
ACRF-50C-85%-800 136 g 50 wt% 28.5ml 85 vol% 800°C
ACRF-50C-90%-800 136 g 50 wt% 45 ml 90 vol% 800°C
ACRF-50C-85%-700 136¢g 50 wt% 28.5 ml 85 vol% 700°C
ACRF-50C-85%-600 136 g 50 wt% 28.5ml 85 vol% 600°C
ACRF-40C-85%-800 3.06g 40 wt% 28.5ml 85 vol% 800°C
ACREF-30C-85%-800 589¢g 30 wt% 28.5ml 85 vol% 800°C
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Figure S1. XRD patterns (A) and Raman spectra (B) of ACRFs prepared at different carbonization temperatures.

In Figure S1, the XRD patterns of ACRF-50C-85%-600, ACRF-50C-85%-700, and ACRF-50C-85%-800 showed simi-
lar diffraction patterns with board bands at 20 = 23°and weak bands at 20 = 43°, which was corresponded to (002) and
(100) diffraction planes of graphitic carbon, respectively. It is revealed that the graphitization degree in these ACRFs
were low [1,2]. Furthermore, the Raman spectra were measured and shown in Figure 6B. The G band (1591-1594 cm™1)
was associated with the stretch modes of sp-bonded C, which represented the graphitic domains in the materials, and
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the D band (1357-1362 cm™) was attributed to the breathing mode of k-point phonons Aigsymmetry, which represented
disordered and defective domains of graphite [3]. The intensity ratios of D band to G band were 0.86 (ACRF-50C-85%-
600), 0.89 (ACRF-50C-85%-700), and 0.91 (ACRF-50C-85%-800), respectively. It could be known that the ratio of disor-
dered and defective domains in carbon foam increased as the carbonized temperature increasing.
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Figure S2. SEM images of carbon foams prepared at different carbonizing temperatures.
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Figure S3. N2 adsorption-desorption isotherms of ACRFs at 77 K at low relative pressure.

Table S2. Oxygen element content at different chemical state in the carbon foams obtained from curve fitting of the O 1s

spectra.

Carbon Foam Total O Content wt% C=0 Content wt% C-O Content wt% -COO Content wt%
ACRF-50C-85%-600 18.7 6.40 5.98 6.32
ACRF-50C-85%-700 18.0 6.41 5.09 6.50

ACRF-50C-85%-800 14.6 1.33 7.40 5.87
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Figure S4. Relationships between CO: capacities (at 15 kPa) of ACRFs and the content of oxygen in different chemical
state.

From Figure 54, it could be found that there was some relationship between CO: capacities at 15 kPa and total
oxygen content, but it is hard to tell the effect of different oxygen content groups on CO: capacities.

Table S3. Summary of BET specific surface area and CO:z capture performance comparison of various solid physical ad-

sorbent.
CO: (mg g™) Sco2/Sn2
2 o1
Sample Source Sger (m2 g1) 1 Bar, 273K (IAST) Ref.
ACRE-40c-85-800 POTous resorcinol-formalde- o, 271 1762 This work
hyde resin
PC-2-3 Biomass tar 1829 221 19.7 2 [4]
NPC4gpp ~ miasnebased porousor 1518 207 345+ [5]
ganic polymers
FC4 polyimide 941 178 14.2° [6]
PS-450-2 petroleum coke 1666 261 17® [7]
NAC-450-1.5 walnut shell 1687 230 24.67 b [8]
a Measured at 273 K; » Measured at 298 K.
Micropore diffusion model:
6 |Dc 3Dct
G _ c_~ ¢ Equation S(1)
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where D« is the micropore diffusion parameter (cm?/s) and 1. is the particle diameter of the adsorbent (s)
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Figure S5. CO2 adsorption kinetics of ACRF-40C-85%-800 fitted by micropore diffusion model.

Table S4. Parameters of micropore diffusion model for CO2 adsorption.

Sample Micropore Diffusion Parameter
Dc (cm?/s) 0.238
ACRF-40C-85%-800 1c (cm) 2.60
R2 0.971
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