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Abstract: As carbon dioxide (CO2) adsorbents, porous materials with high specific surface areas
and abundant CO2-philic groups always exhibit high CO2 capacities. Based on this consensus, a
category of oxygen-rich macroporous carbon foams was fabricated from macroporous resorcinol-
formaldehyde resins (PRFs), which were obtained via an oil-in-water concentrated emulsion. By
the active effect of potassium hydroxide (KOH) at high temperatures, the resultant carbon foams
(ACRFs) possessed abundant micropores with rich oxygen content simultaneously. At the same time,
most of the ACRFs could retain the marcoporous structure of their precursor. It is found that porosity
of ACRFs was mainly determined by carbonization temperature, and the highest specific surface
areas and total pore volume of ACRFs could reach 2046 m2/g and 0.900 cm3/g, respectively. At
273 k, ACRFs showed highest CO2 capacity as 271 mg/g at 1 bar and 91.5 mg at 15 kPa. Furthermore,
it is shown that the ultra-micropore volume was mainly responsible for the CO2 capacities of ACRFs
at 1 bar, and CO2 capacities at 15 kPa were mainly affected by the oxygen content. It is also found
that the presence of macropores would accelerate ACRFs adsorbing CO2. This study provides ideas
for designing a porous CO2 adsorbent.

Keywords: carbon foam; concentrated emulsion; specific surface areas; CO2 capture

1. Introduction

Being a greenhouse gas, the increasing content of carbon dioxide (CO2) in the atmo-
sphere has been considered to be a key reason for the change of global climate, and thus
CO2 capture technology has been developed [1]. Many works reported the investigation
of porous materials as a CO2 adsorbent, including zeolite [2], metal-organic frameworks
(MOFs) [3], porous organic polymers [4–6], and porous carbons [7], etc. Because of the
excellent CO2 capacities and the exceptional chemical and physical stability, porous carbons
have attracted much attention. It was already confirmed that the high CO2 capacities of
porous carbon were related to the abundant micropore volumes and the heteroatom. For
example, the carbons with a micropore volume of 0.93 and 1.05 cm3/g exhibited CO2
capacities of 3.3 and 2.1 mmol/g at 298 K, 1 bar [8,9]; N-doped porous carbons perform
well in both CO2 capacities (4.3 and 5.2 mmol/g at 298 K, 1 bar) and selectivity (71 at 298 K,
1 bar, and 67 at 273 K, 1 bar) [10,11].

Besides CO2 uptake, the energy consumption of adsorbent also need to be considered
in the practical industrial application, so macropores or mesopores were introduced into the
adsorbent to minimize diffusion pressure in the adsorbent [12–14]. Therefore, it could be
known that the hierarchical porous carbon would achieve an excellent comprehensive CO2
adsorption performance. Sacrifice templates, such as silicon monolith [15] and polystyrene
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nanoparticles [16], were applied for generating macropores in porous carbons. However,
the removal of those template is a complicated and time-consuming process. Recently, the
work on the fabrication of porous materials through concentrated emulsion template for
the application of catalyst, separation, and adsorption has been reported [17–19]. Typically,
the macroporous structures in polymers are generated through the removal of the internal
phase, and generally an open-cell interconnected porous polymer monolith was obtained
because of the droplet coalescence or Ostwald ripening during polymerization in the
continuous phase.

In this work, a concentrated emulsion was applied for preparing a microporous-
macroporous carbon foams (called as “ACRFs” in this paper), as illustrated in Scheme 1.
Firstly, macroporous resorcinol-formaldehyde resins (PRFs) were fabricated via a concen-
trated emulsion, and then ACRFs were obtained by carbonizing PRFs with potassium
hydroxide (KOH) as an activator. Attributed to the controlled carbonization process, the
resultant ACRFs possessed high specific surface areas (over 2000 m2/g) with hierarchical
porous structure, and also abundant oxygen-contained species on the surface. As a result,
ACRFs exhibited as high CO2 capacity as 271 mg at 273 k and 1 bar. Furthermore, the effect
of porosity, oxygen content and the presence of macropores on CO2 adsorbing performance
of ACRFs were investigated. The results would be helpful for designing a carbon-based
CO2 adsorbent.
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Scheme 1. Preparation route of microporous-macroporous carbon foams (ACRFs).

2. Materials and Methods
2.1. Reagent

Formaldehyde (37 wt% aqueous solution, Xilong Scientific Co., Ltd., China), Resorci-
nol and Tween 20 (Tianjin Fuchen Chemical Reagent Factory, China), Anhydrous sodium
carbonate and KOH (Tianjin Guangfu Fine Chemical Research Institute, China), Toluene,
methanol, and ethanol (Beijing Chemical Works, China). All reagents were used as received.

2.2. Preparation of PRF

Resorcinol (2.20 g), formaldehyde aqueous solution (3.24 g), anhydrous sodium car-
bonate (0.04 g) and deionized water (1.36, 3.06, or 5.89 g) were added into a 100 mL flask
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and pre-polymerized at 40 ◦C for 30 min, respectively. Then, the resorcinol-formaldehyde
solution with the 50 wt%, 40 wt%, or 30 wt% concentration was obtained after cooling
down to room temperature. The resultant solution (5 mL), which acted as the continu-
ous phase of the concentrated emulsion, was mixed with Tween 20 (0.86 g) in 100 mL
round-bottom flask with a D-shape stirring paddle on the top. Then, toluene was added
slowly under continuous stirring as the dispersed phase. Finally, a light-pink emulsion was
formed. After the emulsion was stirred homogeneously, it was transferred into a mould
and solidified in an oven at 60 ◦C. During this process, PRFs were obtained and the toluene
droplets would leave unique open-cell macropores simultaneously. The usage of toluene
was 20, 28.5, or 45 ml for the emulsion containing 80 vol%, 85 vol%, or 90 vol% of the
dispersed phase, respectively. The formula of the PRFs was listed in Table S1.

2.3. Preparation of ACRF

In a typical carbonizing procedure, PRF monolith (the sizes of monoliths were pre-
pared as 60 mm3 approximately) was placed in a tube furnace (CHY-1200, Henan Chengyi
Instrument Technology Co. Ltd., Zhengzhou, China), and heated to 450 ◦C with a ramp
rate of 10 ◦C/min. Subsequently, the pre-carbonized PRF was soaked in water/methanol
solution with dissolved KOH (the mass ratio of KOH to PRFs was 2:1) for 3 h. After the
solution was removed by rotary evaporation, the precursor impregnated by KOH was
obtained. Thirdly, the precursor was heated to 600, 700, or 800 ◦C with a ramp rate of
10 ◦C/min below 450 ◦C and 5 ◦C/min above 450 ◦C. After carbonizing for 1 h, ACRF was
formed. The ACRF was cooled down to room temperature, washed by deionized water for
several times to remove the KOH, and then dried in a vacuum oven. The formula of the
ACRFs was listed in Table S1.

2.4. Characterization

Fourier transform infrared spectroscopy (FT-IR) spectra were measured by a Nicolet-
Nexus 670 Spectrometer (ThermoFisher Scientific, Waltham, MA, USA). X-ray photoelec-
tron spectroscopy spectra (XPS) were obtained by ESCALAB 250 (ThermoFisher Scientific,
USA) with a monochromated Al Kalph X-ray source. Macropores in PRFs and ACRFs were
observed by scanning electron microscopy (SEM, S-4700, JEOL Ltd., Japan). N2 adsorption–
desorption isotherms were measured by a JW-BK122W gas sorption analyzer (JWGB Sci.
& TECH, Beijing, China) at 77 K. Specific surface areas of the samples were calculated
according to Brunauer–Emmett–Teller (BET) theory, and the pore size distributions were de-
termined according to DFT model with slit pore geometry. CO2 adsorption isotherms were
also measured by the JW-BK122W gas sorption analyzer. Raman spectra were obtained by
a Renishaw inVia micro-Raman spectrometer (Renishaw, London, British), with 532 nm
(2.33 eV) wavelength laser focused through an inverted microscope. X-ray diffraction
(XRD) patterns were acquired on an Ultima IV diffractmeter (Rigaku, Tokyo, Japan) in the
scanning range (2θ) of 10 to 90◦.

CO2 adsorption kinetics was examined by TA Q500 thermo gravimetric analyzer (TA
Instrument, Newcastle, DE, USA). Sample (6.5 mg) was placed in the ceramic pan, then
it was heated to 300 ◦C with the rate of 15 ◦C/min under N2 flow (40 mL/min) and kept
for 1 h to remove pre-adsorbed gases and moisture. Afterwards, the temperature was
decreased to 40 ◦C, and the gas was switched to CO2 with the flow rate of 40 ml/min. The
CO2 adsorbing speed was obtained by recording the weight change of the sample with
time.

The breakthrough experiment was carried out in BSD-MAB (BEISHIDE instrument,
Beijing, China) at 298 K. The sample (0.76 g) in a test tube with the internal diameter
of 10 mm was pretreated at 300 ◦C for 2 h before test. Subsequently, CO2 (2 sccm), N2
(11.33 sccm, CO2/N2 was 15/85) and helium (50 sccm, as carrier gas) were mixed and used
for column breakthrough curve measurement.



Materials 2021, 14, 173 4 of 13

3. Results and Discussion
3.1. Carbonizing Process of ACRFs

It was well known that using KOH as an activator during the carbonization process
could generate abundant micropores in the resultant carbon [20–22]. Impregnating KOH
aqueous solution was an effective way for loading KOH into the macroporous precursor
without damaging macropores. However, it was difficult to load KOH solution in PRFs
is because of hydrolysis. To solve this problem, PRFs were firstly carbonized at low
temperature, then the resultant macroporous carbon could be impregnated with KOH
aqueous solution and further activated at the demanded temperature. TGA/DTA curves
were used for determining the pre-carbonizing temperature and activation temperature
(Figure 1). The weight loss in 100–220 ◦C (about 5 wt%) should be attributed to the loss
of moisture and residue small molecules. The primarily weight loss of 34.1 wt% was
in 250–450 ◦C, which was due to the decomposition of the phenolic group and ether
group. Finally, the weight loss was continued in 450–800 ◦C with the carbonization process
following. Accordingly, the carbonization process was set as follows—the pre-carbonized
temperature was set at 450 ◦C to turn organic PRFs into chemical-stable carbon, and the
obtained carbon was further activated with KOH at 600, 700 and 800 ◦C, respectively. (XRD
patterns and Raman spectra of ACRFs prepared at different carbonization temperatures
were presents in Figure S1).
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Figure 1. TGA and DTG curves of PRF-50C-85% under nitrogen flow.

3.2. Oxygen in Porous ACRFs

It is of great interest to investigate the influence of carbonization temperature on the
chemical structure of ACRFs, especially the oxygen-containing species in ACRFs. XPS
spectra of ACRF-50C-85%-600, ACRF-50C-85%-700, and ACRF-50C-85%-800 were applied
for investigating the surface chemistry state of these carbons (Figure 2). The characteristic
peaks at 284.8 and 531.8–532.8 eV presented C 1s and O 1s, respectively, which illustrated
that there was oxygen doped in the ACRFs. The deconvolution of O 1s peaks indicated the
existence of carbonyl or quinone groups (531.5 eV), ether linkage or alcohol (532.5 eV), and
a carboxyl group (533.5 eV) [23]. According to the XPS spectra, the oxygen in ACRF-50C-
85%-600, ACRF-50C-85%-700, and ACRF-50C-85%-800 was about 18.7 wt%, 18.0 wt%, and
14.6 wt%, respectively, which indicated that ACRFs were oxygen-enriched. (The oxygen
element content at different chemical state in different ACRFs was presented in Table S2)
These data also showed that increasing the carbonization temperature from 600–700 ◦C
would not change the oxygen content or chemical state considerably. However, the oxygen
content in ACRFs would reduce rapidly with the increase of carbonization temperature
when it is over 700 ◦C. It is well known that KOH could react with carbon as follows [24]:

6KOH + 2C→ 2K2CO3 + 3H2 + 2K (1)
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When the temperature is over 700 ◦C:

K2CO3 → K2O + CO2 (2)

K2CO3 + 2C→ 2K + 3CO (3)

K2O+C→ 2K + CO (4)

CO2 + C→ 2CO (5)

These reactions showed that the oxidization of the carbon atom would be enhanced
when the temperature was over 700 ◦C, which meant more oxygen atom in the carbon
would be consumed during the carbonization process. That was the reason for lower
oxygen content in ACRF-50C-85%-800 than ACRF-50C-85%-600 or ACRF-50C-85%-700.

3.3. Porosity of ACRFs

The macroporous morphologies of PRFs and ACRFs were presented in Figure 3. For
all the PRFs, the typical SEM images of the porous material obtained via concentrated
emulsion template could be seen [25,26]—there were many closely-packed cavities (which
were called “voids”) interconnected with the adjacent ones by small pores (which were
called “windows”). It was found that the size of voids could be tuned by adjusting the
composition of concentrated emulsion—in PRF-50C-80%, PRF-50C-85%, and PRF-50C-
90% the size of voids increased with the increasing dispersed phase volume fraction in
concentrated emulsion, and in PRF-50C-85%, PRF-40C-85%, and PRF-30C-85% the sizes of
voids decreased with the decreasing concentration of continuous phase in concentrated
emulsion. For ACRFs, ACRF-50C-80%-800, ACRF-50C-85%-800, and ACRF-40C-85%-
800 all inherited the marocporous structures of their corresponding PRFs. However,
the size of macropores in ACRF-50C-90%-800 and ACRF-30C-85%-800 shrank obviously,
which illustrated that the macropores in PRF-50C-90% and PRF-30C-85% collapsed during
the carbonization process [27]. The marcoporous morphologies of ACRF-50C-85%-600,
ACRF-50C-85%-700, and ACRF-50C-85%-800 were similar (Figure S2), indicating that
the influence of carbonization temperature on macropores in ACRFs was limited. In
general, the macroporous structure of ACRFs could be tuned by concentrated emulsion to
some extent.
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Figure 3. Scanning electron microscope (SEM) images of PRFs and corresponding ACRFs.

N2 adsorption-desorption isothermals of all the ACRFs were exhibited in Figure 4.
(Isothermals at low at low relative pressure were presented in Figure S3) All isothermals
showed steep gas uptake at relatively low pressure (P/P0 < 0.01), indicated there were
abundant micropores in ACRFs [28], and the slight increase of adsorption at relatively high
pressure (P/P0 > 0.9) indicated the existence of macropores [29]. It could be summarized
that increasing carbonization temperature could increase the specific surface areas (SBET)
and pore volumes of ACRFs greatly—with the increase of carbonization temperature
from 600 ◦C to 800 ◦C, the SBET, total pore volumes (Vtot) and micropore volumes (Vmic)
of ACRFs greatly increased from 879 to 1952 m2/g, 0.433 to 0.830 cm3/g, and 0.349 to
0.742 cm3/g, respectively. The increase of porosity should be attributed to the etching effect
on carbon atoms by oxidation, in situ generated potassium intercalating within carbon
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layers, and the generated CO2 reacting with carbon via the carbon gasification process to
further promote the development of porosity [24]. It is also confirmed that the influence
of dispersed phase volume ratio or concentration of continuous phase in concentrated
emulsion on the textural properties was limited. The pores in all of the ACRFs were
dominantly micropores—the volume of micropores possessed 80.6–96.3% of the total pore
volumes. To be more specific, most of the micropores in ACRFs were ultra-micropores
(sizes below 0.7 nm)—pore size distributed mainly at 0.41 nm in ACRF-50C-85%-600 and
ACRF-30C-85%-800; in ACRF-50C-85%-700, the dominant size of pores was 0.52 nm; in
other ACRFs, most of the pores were around 0.44 nm. (Figure 5).
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3.4. CO2 Capacity of ACRFs at 1 Bar

It could be expected that ACRFs could exhibit high CO2 uptake because of the abun-
dant micropores [30–32]. The CO2 adsorption isothermals of all the ACRFs were presented
in Figure 6 and summarized in Table 1. Except for ACRF-50C-85%-600 and ACRF-50C-
85%-700, ACRFs showed CO2 capacities around 267–271 mg/g, which were comparable to
many reported carbon materials (Table S3). In order to further investigate the factor that
would determine CO2 capacity of ACRFs at 1 bar, relationships of CO2 capacities with
porosity were presented in Figure 7. It was shown that the linear correlation coefficients (R2)
of Vtot versus CO2 capacity, or Vmicr versus CO2 capacity were below 0.9; by contrast, Vutra
showed high linear correlation with CO2 capacity, which implied that ultra-micropores
in ACRFs were essential for CO2 capacities at 1 bar. The high adsorption potential of
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ultra-micropores would be the factor that would be the determining factor of CO2 capacity
at 1 bar [15].
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Table 1. Specific surface areas, pore volume and CO2 capacities of ACRFs.

Carbon Foam
Specific Surface

Areas 1

m2/g

Total Pore
Volume 2

cm3/g

Micropore
Volume 3

cm3/g

Ultra–Micropore
Volume 3

cm3/g

Micropore
Volume/Total
Pore Volume

CO2
Capacity 4

mg/g

ACRF-50C-85%-600 879 0.433 0.349 0.333 0.806 214
ACRF-50C-85%-700 1237 0.558 0.489 0.466 0.876 248
ACRF-50C-85%-800 1952 0.830 0.742 0.606 0.894 267
ACRF-50C-80%-800 2024 0.827 0.796 0.657 0.963 269
ACRF-50C-90%-800 2046 0.900 0.817 0.635 0.908 271
ACRF-40C-85%-800 1944 0.783 0.737 0.616 0.941 271
ACRF-30C-85%-800 1871 0.771 0.713 0.633 0.925 270

1 Calculated BET surface area over the pressure range of 0.01–0.2 P/P0 values. 2 Calculated by DFT method, cumulative pore volume
under 2 nm. 3 Calculated by DFT method, cumulative pore volume under 0.7 nm. 4 Measured at 273 k, 1 bar.
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3.5. Effect of Oxygen Content on the CO2 Capacities of ACRFs

Here ACRF-50C-85%-600, ACRF-50C-85%-700, and ACRF-50C-85%-800 were used for
investigating the influence of oxygen content on the CO2 capacity of ACRFs. It is interesting
to find that ACRF-50C-85%-600 and ACRF-50C-85%-700 showed a CO2 capacity of 91.7 and
90.5 mg/g at 15 kPa, respectively, which was higher than ACRF-50C-85%-800 (71.6 mg/g).
According to Section 3.2, it could be found that CO2 capacity of ACRFs at 15 kPa increased
with increasing oxygen content. The oxygen on the surface was considered to enhance the
affinity and interaction between adsorbent and CO2 [33], so it is believed that the increase
of oxygen in ACRFs would enhance the interaction between carbon surface and the CO2
molecule, which is essential for ACRFs capturing CO2 at low pressure. It should be noted
that flue gas always contains about 15% CO2 at total pressures of around 1 bar, so the CO2
capacity of adsorbent at 15 kPa is more relevant to realistic performance [1]. (Relationships
between CO2 capacities at 15 kPa and the content of oxygen in different chemical state
were presented in Figure S4).

3.6. Effect of Macropores on CO2 Adsorption Kinetics of ACRFs

Previous works considered that macropores would provide a high adsorption rate by
reducing the diffusion distance and increasing mass transfer rate [34]. Here, we wanted
to find some evidence for this view. In Figure 8, CO2 adsorption kinetics of ACRF-30C-
85%-800 and ACRF-40C-85%-800 were presented. ACRF-40C-85%-800 exhibited faster
adsorption kinetics than ACRF-30C-85%-800. This difference could not be attributed to
the micropores or mesopores in ACRFs, because there was only little difference between
ACRF-30C-85%-800 and ACRF-40C-85%-800 on SBET or pore volume. So, it is believed that
the slower adsorption rate of ACRF-30C-85%-800 should be due to its severely damaged
macropores. In this way, the accelerating effect of macropores on CO2 adsorption kinetics
was confirmed.
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3.7. CO2 Adsorbing Properties of ACRF-40C-85%-800

As the typical carbon foam sample, further CO2 adsorbing behaviors of ACRF-40C-
85%-800 were investigated. Firstly, the CO2 adsorption kinetics experimental data were
fixed by a pseudo-first-order rate model (Equation (7)) and pseudo-second-order rate
model (Equation (8)) in Figure 9.

ln
(
qe − qt

)
= −k1t + lnqe (6)

t
qt

=
t

qe
+

1
k2q2

e
(7)

where qe and qt are the CO2 adsorption capacity (mmol/g) at equilibrium and at time t
(min), respectively; k1 is the adsorption rate constant of pseudo-first order (min−1), and k2
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is the rate constant of pseudo-second order adsorption (g/mg·min). The corresponding
parameters were summarized in Table 2. From the value of R2, it ensured that the pseudo-
first-order rate model was more suitable for describing the adsorption behavior of ACRF-
40C-85%-800 than the pseudo-second-order model, which indicated that the adsorption
process was controlled by diffusion steps, and the interactions between carbon foam and
CO2 is reversible at equilibrium [35].
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Table 2. Kinetics model parameters for CO2 adsorption.

Sample Pseudo-First-Order Model Pseudo-Second-Order model

ACRF-40C-85%-800
qe (mg/g) 87.8 qe (mg/g) 102

k1 (min−1) 0.544 k2 (min−1) 0.00655

R2 0.994 R2 0.975

The micropore diffusion model was also used to analyze the kinetics data [36,37]. Like
the results of the pseudo-second-order rate model, there was obvious deviation between
the fitting data from micropore diffusion model and experimental data (Figure S5 and
Table S4, illustrating that the microporous diffusion model was less suitable for describing
the adsorption behavior.

Secondly, the performance of CO2 selectively adsorption of ACRF-40C-85%-800 was
also measured. The CO2 selectivity adsorption over N2 was evaluated by the adsorption
isotherms of CO2 and N2 at 273 K (Figure 10A). The calculated selectivity was 17.6 on the
basis of the ideal adsorption solution theory (IAST) [38]. In order to better investigate the
performance of ACRF-40C-85%-800 in practical applications, a breakthrough experiment
was also performed (Figure 10B). It could be seen that the N2 broke through the test tube
after only 3.7 s, and the concentrate of N2 at the outlet of the column was even higher than
the concentrate of N2 in the initial gas (C/C0 > 1) in 250 s; on the contrary, it took 74 s
for CO2 to break though the test tube, much longer than N2. These results indicated the
competitive adsorption process—much N2 occupied the activity site of carbon at the initial
stage because of its high concentration in mixed gas, but then the adsorbed N2, molecules
were replaced by CO2 molecules, and the desorbed N2 increased the concentrate of N2
in flow [39]. In a word, ACRF-40C-85%-800 tended to adsorb CO2 over N2, and it could
selectively capture CO2 over N2 from a mixed gas feed stream.
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ACRF-40C-85-800 at 298 K (B); CO2 capacity at 298 K of ACRF-40C-85%-800 for six cycles (C).

Thirdly, the reproducibility of ACRF-40C-85%-800 was shown in Figure 10C. After six
cycles, ACRF-40C-85%-800 showed the same capacity as the first cycle (171 mg/g), which
illustrated that ACRF-40C-85%-800 had good reproducibility.

At last, the CO2 adsorption heat was calculated by Clausius−Clapeyron equation via
the CO2 adsorption isothermals at 273, 298, and 323 K (Figure 11A) [40]:(

∂lnP
∂(1/T)

)
θ

= −Qst
R

(8)

where P is pressure of certain CO2 adsorbing capacity, T is the relative CO2 adsorbing
temperature, θ is the amount of adsorbed CO2, and R is the universal gas constant. The CO2
adsorption heats were around 16.7–24.5 kJ/mol (Figure 7B). These moderate adsorption
heats meant ACRF-40C-85%-800 could adsorb CO2 effectively, and the energy cost for
regeneration would be acceptable.
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4. Conclusions

A strategy of preparing monolith-like carbon (ACRFs) with macropores and microp-
ores simultaneously by carbonizing the precursor obtained using concentrated emulsion
template was reported. The micropores in the carbon were generated by the activation
effect of KOH, and the macropores in the carbon were derived from the macroporous
precursor. The SBET, Vtot, and Vmic of this carbon were mainly controlled by carbonization
temperature, and the macropores in this carbon could be tuned by the dispersed phase
volume ratio in the emulsion. Among these carbons, ACRF-50C-85%-900 showed the
highest specific surface area of 2046 m2/g, with total pore volume of0.900 cm3/g. As a
CO2 adsorbent, it is found that the ultra-micorpore volume would determine the CO2
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capacities of ACRFs at 1 bar, and the oxygen content would greatly affect the CO2 capacities
of ACRFs at 15 kPa. It is also noticeable that the macropores in ACRFs would accelerate
the CO2 adsorption rate. The highest CO2 capacities of this carbon were 271 mg/g at 273 K,
1 bar (ACRF-50C-85%-800 and ACRF-40C-85%-800), and 91.7 mg/g at 15 kPa (ACRF-50C-
85%-600). ACRFs also exhibited moderate CO2 adsorption heat and selectively adsorption
ability, so it is believed that ACRFs had the potential to be developed into a CO2 adsorbent
with outstanding comprehensive performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996
-1944/14/1/173/s1, Figure S1: SEM images of carbon foams prepared at different carbonizing
temperatures, Figure S2: relationships between CO2 capacities (at 15 kPa) of carbon foams and the
content of oxygen in different chemical state, Figure S3: XRD patterns (A) and Raman spectra (B)
of ACRF prepared at different carbonization temperatures, Figure S4: N2 adsorption-desorption
isotherms of ACRFs at 77 K at low relative pressure; Figure S5: CO2 adsorption kinetics of ACRF-
40C-85%-800 fitted by micropore diffusion model. Table S1: Formula of PRFs and ACRFs, Table S2:
Oxygen element content at different chemical state in the carbon foams obtained from curve fitting of
the O 1s spectra, Table S3: Parameters of micropore diffusion model for CO2 adsorption, Table S4:
Summary of BET specific surface area and CO2 capture performance comparison of various solid
physical adsorbent.
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