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Abstract: One possibility in order to manufacture products with very few restrictions in design
freedom is additive manufacturing. For advanced acoustic design measures like Acoustic Black
Holes (ABH), the layer-wise material deposition allows the continuous alignment of the mechanical
impedance by different filling patterns and degrees of filling. In order to explore the full design
potential, mechanical models are indispensable. In dependency on process parameters, the resulting
homogenized material parameters vary. In previous investigations, especially for ABH structures,
a dependency of the material parameters on the structure’s thickness can be observed. In this
contribution, beams of different thicknesses are investigated experimentally and numerically in order
to identify the material parameters in dependency on the frequency and the thickness. The focused
material is polyactic acid (PLA). A parameter fitting is conducted by use of a 3D finite element model
and it’s reduced version in a Krylov subspace. The results yield homogenized material parameters
for the PLA stack as a function of frequency and thickness. An increasing Young’s modulus with
increasing frequency and increasing thickness is observed. This observed effect has considerable
influence and has not been considered so far. With the received parameters, more reliable results can
be obtained.

Keywords: acoustic black holes; acoustic-oriented design; additive manufacturing; finite element
method; vibroacoustics; material parameter identification; model order reduction

1. Introduction

The development of new measures to reduce noise in our environment is an im-
portant contribution to comfort and from a health point of view. New advanced design
measures are needed to achieve these objectives. This is accompanies the challenge of using
unconventional manufacturing processes and providing mechanical models for reliable
simulations. This paper aims to contribute to this by new insights on material parameters.

The possibilities of integrating acoustic measures and other properties are often limited
due to the given manufacturing constraints of conventional processes. With the help of
additive manufacturing (AM), completely new possibilities open up. In this contribution,
the additive manufacturing process material extrusion (MEX) is focused upon. If AM is used
to produce structures with integrated acoustic measures or functions, design restrictions are
significantly reduced. Due to the layer-wise build-up of the parts, AM allows almost every
design, even a fully integrated measure. Furthermore, multiple materials can be applied
directly during the manufacturing process, e.g., as additional damping material. However,
mechanical models or assumptions based on experience with standard materials such as
steel and aluminium are no longer sufficient. The step-wise build-up leads to anisotropies
and inhomogeneities, which have to be considered depending on the individual task.

In literature, contributions exists in which the use of AM for generating structures
that influence airborne and structure-borne sound is described. For example, 3D-printed
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tailored absorbers. Setaki et al. [1] design absorber duct lengths in such a way that the
sound travelling through them receives a phase shift of 180◦ due to the different lengths
and interferes destructively. Ring and Langer [2] link the geometric parameters of lat-
tice structures with the resulting BIOT parameters. This allows the microstructure to be
designed to achieve a specific absorber behavior. For the measures influencing structure-
borne sound, new possibilities arise, e.g., for the method of Acoustic Black Holes (ABH).
Here the production process is one of the biggest challenges [3]. The required thickness
reduction of the structure is usually achieved with the help of milling cutters afterwards,
which generates a high effort and high costs [3]. In addition, there are many restrictions
regarding the placement of the ABHs and their design. Since this method reduces weight
and at the same time improves the acoustic properties, it may be possible to overcome
the major conflict of objectives between lightweight design and acoustics. The ABH are
therefore the focus of this study as an exemplary application.

The ABH effect, first described in 1988 by Mironov [4], can be utilized in thin structures
bearing structure-borne sound to focus the radiation critical bending waves in an area
where they can be damped very efficiently. For this purpose, the thickness of the plate-like
structures must be reduced according to a polynomial shape function. As a result of the
smooth adaptation of the mechanical impedance, the amplitudes of the bending waves
increase while the propagation speed decreases—an optimal area for an application of
passive damping measures is formed. In 2000, Krylov published a combination of shaped
area with a local damping measure and named it an Acoustic Black Hole [5].

A review of the literature since then reveals that most of the studies deal with
homogeneous metal structures. Many investigations were carried out experimentally
on generic plate structures [6–8]. There are also few studies on industrial examples,
e.g., turbine blades [9] and an engine cover [10]. In addition to measurements, several nu-
merical investigations were carried out [11–14]. However, composites and sandwich struc-
tures were also investigated with their higher design freedom. Bowyer et al. inserted an
ABH exclusively into the glass fiber cover layers, in 2012 [15]. In 2017, Dorn et al. extended this
approach and integrated an ABH into the sandwich core [16]. Blech et. al. showed how this
can be used in an aircraft structure [17]. Further studies on carbon and glass fiber compos-
ites can be found in [18,19]. In their papers, Zhao and Prasad [20] as well as Pelat et al. [21]
provide a very good overview of the current state of ABHs and their applications.

The application of AM technologies with the highest design freedom compared to
the above mentioned manufacturing techniques for design and manufacturing ABHs has
successfully been demonstrated by Rothe et al. [22,23]. Even complex tube structures
which act as ABHs for fluids can be produced [24]. In Figure 1 an example of an additive
manufactured ABH beam with and without additional damping material is shown. The
effect of the additional damping material can even be enhanced if it is designed as a
constraint layer damping [25]. Such constraining layers can also be designed very efficiently
by AM, e.g., by fully integrated ABHs.

Figure 1. Tip of Acoustic Black Holes (ABH) beam with (right) and without (left) additional damping material.

Chong et al. [26] give an overview of the possibilities of how ABHs can be integrated
into additive manufactured structures. They additionally show experiments and simu-
lations on additively manufactured beams, but always assuming a constant modulus of
elasticity over the frequency range. In [23], a need for frequency and thickness-dependent
material parameters arise. Especially when modeling ABHs, regions of different thick-
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nessess of the base material are obtained (as shown in Figure 1 on the left). Studies in [27]
assume that a varying Young’s modulus and loss factor results depending on the thick-
ness of the sample on which the homogenization is performed. A suitable and efficient
procedure is required to identify these homogenized linear elastic parameters, which are
difficult to determine due to anisotropy and strong dependencies on geometry and process
parameters [27]. For this purpose, a methodological procedure is proposed in this article
and demonstrated on additively manufactured beam structures. To the authors’ knowledge,
the determination and consideration of the dependencies of the material parameters on
the thickness have not been considered so far and offer a new approach for more reliable
vibroacoustic simulations of additively manufactured structures.

In order to investigate the influence of the printed thickness, beams of different
thicknesses are manufactured. Subsequently, these are characterized vibroacoustically
by laser-scanning vibrometry and compared with numerical results. For efficiency rea-
sons, the numerical models are transformed into reduced models and used for parameter
study. The aim is to determine the homogenized parameters as a function of frequency
and thickness.

2. Additive Manufacturing

AM provides a vast potential for the realization of graded properties, for instance,
regarding bending stiffness and, thus, for the incorporation of passive damping mea-
sures such as ABHs due to the provision of enhanced design freedom compared to other
manufacturing technologies, e.g., milling or casting. This freedom in design allows the
manufacturing of complex shapes or a combination of multiple materials in order to achieve
the required mechanical properties. One of the most commonly used AM technologies
offering processing multiple materials in one part, without an additional joining process is
needed, is MEX also referred to as fused deposition modeling [28,29]. Besides prototyping,
MEX is also established in manufacturing of functional parts and end-use products [30].
This AM technology uses thermoplastic polymers as feedstock material. The material
is plasticized and directed in an extrusion unit in order to build up the part’s geometry
in lines or layers. A great variety of thermoplastic polymers and also thermoplastic elas-
tomers and fiber-reinforced materials are available [28]. Because of its ease of processing
and good mechanical properties, especially the resulting stiffness, polylactic acid (PLA) is
one of the most frequently used materials for material extrusion and, thus, focused on in
this contribution.

With AM, the creation of complex shapes is not limited to external geometries in
order to achieve locally variable bending stiffness. The internal structure of a part can
also be influenced, for instance, by using lattice structures with variable wall thickness,
different raster angle orientations or integrated damping structures by using a combination
of a stiff and a flexible material [28,31,32]. As the mechanical properties of additively man-
ufactured parts arise during the manufacturing process, they are significantly determined
by the geometry and the selected process parameters in comparison to conventional manu-
facturing processes [29]. In addition to process parameters, the anisotropy in mechanical
properties of additively manufactured parts is also influenced by machine-specific factors
such as the heated build platform or the leveling (distance between the nozzle and the build
platform) [27,33]. On the one hand, this process- and machine-related anisotropy enhances
the design freedom for a local adjustment of the mechanical properties. On the other hand,
the modeling of additively manufactured structures is more challenging regarding the
identification and quantification of the influencing factors that have to be considered.

In order to increase the complexity of the considered ABH systems step by step,
simple beam structures made of one material without ABH and additional damping
material are manufactured first (represented by the specimen at the front in Figure 2).
Afterwards, they are vibroacoustically characterized and their homogenized material
parameters are determined.
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Figure 2. Overview of beam specimens with different system complexity: simple beam structure made of PLA (front),
beam structure with an ABH made of PLA (center), and beam structure with an ABH made of PLA with an additional
damping treatment made of an thermoplastic polyurethane (back).

In Rothe et al. [23,27] it is shown that even at this step simple homogenization models
are no longer sufficient. In addition to the frequency dependence of the material parameters,
a dependency on the thickness respectively the number of layers can be observed.

In Figure 2 are also shown further exemplary complexity steps for the application
of ABH. In the center the consideration of an ABH shape to weaken the cross-section is
presented. The next complexity step (back) would be the consideration of a second material
to locally increase the damping (here in white: NinjaFlex® (thermoplastic polyurethane,
TPU) from NinjaTek).

A valid dynamic simulation of such additively manufactured structures is only pos-
sible with material descriptions that consider both frequency and thickness dependence.
This is the focus of the investigations in this paper, where a procedure for the identifica-
tion of material parameters is presented. It is the necessary step towards the next level
of complexity.

The chosen material for manufacturing the test specimens used for parameter identifi-
cation are PLA from DAS FILAMENT (Emskirchen, Germany). The used process parameter
set is shown in Table 1. The flow rate was set to 105 % in order to increase stiffness due to a
minimized internal void fraction. The other parameters have been selected according to the
recommendations of the material manufacturer. For the manufacturing, a X400 by German
RepRap GmbH (Feldkirchen, Germany) with a dual extruder system and a nozzle diameter
of 0.4 mm is used. All specimens were manufactured at the same ambient temperature
(23 ± 1 ◦C) and relative humidity (45–50 %) and the feedstock materials are dried before
processing in order to ensure similar manufacturing conditions.

Table 1. Utilized process parameters for manufacturing of the test specimens.

Material PLA

Temperature Build Platform 60 ◦C
Temperature Nozzle 215 ◦C
Layer Thickness 0.0002 m
Raster Angle ±45◦

Perimeter Shells 2
Flow Rate 105%
Infill Percentage 100%
Extrusion Width 0.0004 m
Extrusion Speed 0.05 m/s
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3. Experimental Investigation

The experimental investigations on beam structures provide the necessary data basis
for the subsequent numerical studies. In the following, it is explained which samples are to
be studied and which experimental setup is to be chosen. Finally, the results are discussed.

3.1. Setup and Specimens

Three different types of beam samples of the same length are produced under the
conditions described in Section 2 with three different thicknesses but a constant thickness
over the length. These are used for fitting the material parameters and for studying the
influence of thickness. The samples are exemplary shown in Figure 3.

Figure 3. Overview of investigated specimen of three different thicknesses (6 mm, 3 mm, 1 mm).

Each beam type is manufactured twice to get an idea of the repetitive uncertainties in
vibroacoustic behavior that may arise from manufacturing imperfections. This results in
six samples with the properties summarized in Table 2.

Table 2. Known geometrical and material data of specimens.

Specimen Length (m) Width (m) Thickness (m) Mass (kg) Effective Density (kg/m3)

Beam_6a 0.200 0.020 0.0063 0.03081 1222.6
Beam_6b 0.200 0.020 0.0062 0.03067 1236.7
Beam_3a 0.200 0.020 0.0032 0.01613 1260.2
Beam_3b 0.200 0.020 0.0033 0.01643 1244.7
Beam_1a 0.200 0.020 0.0012 0.00588 1225.0
Beam_1b 0.200 0.020 0.0012 0.00579 1206.3

In order to minimize external influences on the vibration behavior of the beams,
they are characterized contactless by means of a laser scanning vibrometer. For this purpose,
the samples are mounted eccentrically in the longitudinal direction (off-set of 0.02 m from
longitudinal center) on an electrodynamic shaker in order to excite as many bending
modes as possible in the considered frequency range. The surface velocities are measured.
Simultaneously, the excitation force is recorded with a force sensor mounted directly at the
force transmission point between shaker and beam. The setup is illustrated in Figure 4.

Due to the dark and highly light-absorbing PLA, the surfaces of the beams are sprayed
with a reflection spray so that measurement with the laser vibrometer is possible. This
can be seen as a grey top coat on the samples in Figures 3 and 4. The examined frequency
range is defined between 0 and 6000 Hz, so that several bending eigenfrequencies can also
be identified for the thicker beam samples. A measuring point grid of 4× 39 (=156) points
is selected for all measurements.
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Figure 4. Experimental setup with 6 mm beam mounted on electrodynamic shaker.

Test measurements show that PLA already has high inherent damping, compared to
steel and aluminum. The broadband excitation and measurement of the entire frequency
range lead to noise in the higher frequency range and overloads at lower frequencies.
For this reason, the frequency range is subdivided into smaller frequency sections of
1000 Hz. Each of these frequency ranges is excited and measured separately. The resulting
frequency response of the beam over the entire frequency range is subsequently combined.
The individual frequency sections and the signal types used are summarized in Table 3.

Table 3. Overview of frequency boundaries and signal type for separately excited and investigated
frequency ranges.

Frequency Range (Hz) Signal Type

0–1000 Pseudo Random
1000–2000 Sweep
2000–3000 Sweep
3000–4000 Sweep
4000–6000 Sweep

3.2. Material Parameter Identification for Static Case

In order to determine the flexural modulus of the additively manufactured samples
test specimens for the bending test are manufactured according to DIN EN ISO 178 by
using the process parameters shown in Table 1. The dimensions of the specimens are set to
80 × 10 × 4 mm3 and the span is selected to be 64 mm. In Figure 5 the test setup with the
beam specimen between the supports and the compression fin is schematically illustrated.

The specimens are tested with a speed of 2 mm/min. The results of the bending
test are shown in Table 4. In addition to the values determined for the flexural modulus,
the standard deviation is specified. It is to be expected that the flexural modulus will
change with increasing frequency. The determined static value of the flexural modulus
provides an orientation value between the 3 mm and 6 mm beam at 0 Hz for the fitting of
the frequency-dependent modules using numerical simulations.
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80

64

32

4

Figure 5. Schematic setup of the three-point bending test with dimensions (in mm).

Table 4. Flexural modulus (static) of PLA according to DIN EN ISO 178.

Material PLA

Flexural modulus 3196.75 × 106 N/m2

Standard deviation 68.98 × 106 N/m2

3.3. Results

In this section the experimental results are presented and compared. To compare a
quantity independent of the force excitation and equivalent to an energy quantity, the mean
squared admittance h2 is calculated according to Equation (1).

h2( f ) = 10 log10

Np

∑
i=1

(
|vi( f )|
|Fi( f )|

)2

Np

dB (1)

In Equation (1), vi are the velocities of each surface point i and Fi the exciting force.
These parameters are frequency-dependent, which also results in a h2 value dependent on
frequency f . Np is the number of surface points.

In Figures 6–8, the experimentally determined frequency responses functions h2( f )
of the different beam types are shown. In the diagrams, a comparison of the frequency
response of two beams with similar thickness is shown, respectively. In the lower frequency
range up to approximately 500 Hz, deviations between the curves can hardly be detected.
In the higher frequencies, some deviations in the position of the peaks and the height
are visible. Reasons are assumed in the manufacturing process and in the experimental
data collection. Again, this illustrates the sensitivity of the frequency response of addi-
tively manufactured structures to process parameters and points out the necessity of a
suitable procedure for material parameter identification. However, the differences of the
curves seem not as significant as completely different homogenized material parameters
are expected.
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Figure 6. Experimental results of 6 mm beam measurements (Beam_6a, Beam_6b).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
−60

−40

−20

0

Frequency (Hz)

h2
(d

B
re

f1
m

2 /s
2 /N

2 )

Beam_3a – Experimental
Beam_3b – Experimental

Figure 7. Experimental results of 3 mm beam measurements (Beam_3a, Beam_3b).
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Figure 8. Experimental results of 1 mm beam measurements (Beam_1a, Beam_1b).
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4. Parameter Study by Numerical Investigation

A mechanical model is built and numerically solved in Section 4.1 in order to predict
the dynamic behavior of the beams. For each beam, a parameter study is conducted in
Section 4.2 to yield the best fitting parameters in the frame of linear elasticity and structural
damping for the different thicknesses.

4.1. Mechanical Model and Numerical Solution

The major focus of this work is laid on a potential layer-effect within additively
manufactured structures with varied thickness t as required by typical ABHs. Layer-effect
means that elastic material parameters (here: Young’s modulus and loss factor) may
change in dependency on the number of printed layers within the manufacturing process.
The studies are explicitly limited to the base material of such structures which is PLA in this
case. If the PLA material is thicker, different heat inputs are expected which may influence
the modeling parameters to be chosen. With that background in mind, the beams are
modeled by a 3D continuum with three translational degrees of freedom (dof). This way,
the model is extendible to a layer-wise investigation (of the base PLA material only) in
future work and a damping measure within the ABH area can be added easily. Linearity is
assumed as the measurements show small deflections. Based on experiences, half the
mass of the force sensor (mSensor = 2× 0.012 kg) is considered as concentrated mass at the
excitation point.

A structured mesh by 27-node hexahedrons with quadratic ansatzfunctions (La-
grangian type) is applied to the 3D continuum and solved in the frequency domain with a
frequency step size of ∆ f = 20 Hz using the institute’s in-house implementation elPaSo [34].
A convergence study is conducted for each beam thickness (1, 3 and 6 mm) in the higher
frequency range (4000–6000 Hz). As a criterion, the maximum error of the mean squared
admittance ∆h2 (Equation (1)) at all frequency steps fi must be smaller than 0.1 dB. Under
this assumption, it is expected that the material parameters are identified exactly enough
in the frame of the engineering task.

By preliminary studies in [27] and the static bending test in Section 3, an estimation of
the minimum flexural modulus (Young’s modulus is called a flexural modulus as bending
waves are dominant in the structures applied here.) for PLA is known. These values are
round down to E0 = 3× 109 N/m2 in order to receive a conservative mesh size by the
convergence study. Applying E0 to the three thickness setups t = {1, 3, 6}mm, the mesh
size is reduced systematically, until ∆h2 is smaller than 0.1 dB. In Figure 9, the maximum
error is plotted in dependency on the mesh size. The chosen mesh size for each beam is
further marked in the figure. Finally, this results in FE models with 12 k, 24 k and 48 k dof
for the 6, 3 and 1 mm beam, respectively. The mesh is shown above Figure 9.

For the FE meshes applied for the convergence study in Figure 9, two elements
(five nodes) over the thickness have been applied. In Figure 10, a comparison with three
elements (seven nodes) over the thickness is plotted.

The curves do not show significant differences, hence, the mesh sizes as shown in
Figure 9 are applied for the parameter fitting and two elements over the beam’s thickness
are considered in the model. The convergence study is a crucial basis for the parame-
ter fitting in Section 4.2 as the authors want to exclude any significant side effects like
numerical errors.

In order to speed up the parameter study itself, a reduced-order model (ROM) is
derived on the basis of the full order model (FOM). For the model order reduction (MOR)
process, a first-order Krylov subspace method based on moment matching is used, since the
system is proportionally damped [35]. As mentioned in [35], the obtained ROM is valid for
variation of the Rayleigh damping coefficients and therefore also valid for a variation of the
flexural modulus, which is just a linear factor for the stiffness matrix. Multi-point moment
matching is applied to construct a global basis, which yields a small error over the entire
frequency domain [36]. One expansion point is set every 1000 Hz (including 0 Hz and
6000 Hz) while the matched moments are increased until the maximum error ∆h2 is smaller
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than 0.1 dB. A Gramm–Schmidt orthogonalization is conducted at each step to construct
an orthonormal basis and perform a vector-wise deflation strategy. For the convergence
tests of the ROM, a frequency step size of ∆ f = 20 Hz is chosen. The loss factor is set
to a conservative value of η = 0.001. In Table 5, the resulting necessary moments are
documented—the number of matched moments is kept equal for all seven development
points. The parameter fitting is conducted using the ROM while the final results are again
computed by the FOM.

Table 5. Number of matched moments in the reduced-order model (ROM) in order to ensure a
maximum ∆h2 < 0.1 dB for the parameter identification.

Model Moments Matched

6 mm beam 2
3 mm beam 3
1 mm beam 5

10−3 10−210−2

10−1

100

101

102

Mesh size (m)

M
ax

im
um

∆
h2

(d
B)

1 mm beam
3 mm beam
6 mm beam

Figure 9. Maximum error in dependency on mesh sizes for each beam specimen with two elements over the beam’s
thickness (chosen mesh size marked with circle).
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−40
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h2
(d

B
re
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m

2 /s
2 /N

2 )

1 mm beam
3 mm beam
6 mm beam

Figure 10. Comparison of h2 for two elements (dashed line) and three elements (marks) in thickness direction for each beam.
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4.2. Parameter Identification

As mentioned above, the parameter space is discretized and studied entirely. For E
and η, the ranges are set according to Table 6.

Table 6. Parameter space including assumed constants.

Parameter Unit Range Delta

Flexural modulus E N/m2 1.5 × 109–6.0 × 109 0.06 × 109

Loss factor η 0.005–0.15 0.005
Density ρ kg/m3 constant (see Table 2)
Poisson’s ratio ν constant (0.35)

For the identification of optimal parameters, two criteria are applied comparing the
experimental curve h2

α and the numerical curves of h2
β. The first criterion δ1 is the sum

of errors in dB at each frequency sampling points i of the total points N f according to
Equation (2). The optimal response is assumed to be the one leading to min(δ1).

δ1 =

N f

∑
i=1

∣∣∣h2
β,i − h2

α,i

∣∣∣ (2)

As second criterion, Frequency Response Assurance Criterion (FRAC) is applied
comparing two frequency responses by scalar multiplication and normalization. A FRAC
value of 1 identifies curves with identical course. The absolute level is ignored by FRAC.
In Equation (3), the criterion is defined according to [37] and adopted for the application
here. The energy quantity h2 is directly taken for FRAC with Hα/β = 10 h2/10.

FRAC =

(
Hα( f )T · Hβ( f )

)2

(Hα( f )T · Hα( f ))
(

Hβ( f )T · Hβ( f )
) . (3)

4.2.1. Frequency-Independent Parameters

As the first step, constant parameters E and η are applied to the entire frequency
range. As criterion, δ1 is applied. In Figure 11, the results are shown for all six specimens
separately. For each beam, a best-fitting combination of constant E and constant η can be
identified which are marked, respectively.

In Table 7, the resulting parameter combinations are listed. A large variation of the
resulting constant parameter combinations can be clearly seen which may be a result by
the thickness difference or process parameters in general. However, slight tendencies in
dependence on the thickness can be observed. With decreasing thickness, the homogenized
flexural modulus E and the homogenized loss factor η seem to be decreased as well.

Table 7. Frequency-independent identified parameter combinations with minimum δ1.

Specimen Thickness (m) Flexural Modulus (N/m2) Loss Factor

Beam_6a 0.0063 4.20 × 109 0.090
Beam_6b 0.0062 4.44 × 109 0.095
Beam_3a 0.0032 4.38 × 109 0.080
Beam_3b 0.0033 3.96 × 109 0.060
Beam_1a 0.0012 3.42 × 109 0.055
Beam_1b 0.0012 3.24 × 109 0.065
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Figure 11. δ1 contour plot for each specimen with identified optima under variation of E and η (frequency-independent,
constant values).

4.2.2. Frequency-Dependent Parameters

The frequency-independent material parameters for each specimen (Table 7) are set as
basis for the frequency-dependent material parameter identification for E. This means for
the following parameter study, a constant η is continuously applied for each beam. Similar
to the previous studies, E is varied, but now, FRAC is applied as the criterion. Every 500 Hz,
a sectionwise FRAC is determined using a range of ±500 Hz. For each sample point (every
500 Hz), the maximum FRAC value is assumed to indicate the best-fitting flexural modulus.
Discontinuities in E( f ) are suppressed in the identification process by allowing only a
maximum difference of 0.6 ×109 N/m2 from one sample to the next. The motivation is to
avoid non-physical jumps. Finally, the contour plots in Figure 12 are created which show
the FRAC distribution over frequency and flexural modulus. The identified values are
marked by the +. On the first view, the procedure works quite well with the exception
of Beam_1a and Beam_3a. For these specimens, the identified values are not laying on
a recognizable curve as FRAC is indicating several best-fitting flexural moduli for one
frequency sample.

However, in Figures 13–15, the identified data points are plotted for each beam thick-
ness, respectively. By use of the data points, a linear curve fit is applied in order to receive
a practicable mean curve. For Beam_6a and Beam_6b, the two resulting curves are quite
similar which indicates a robust manufacturing and identification process. For Beam_3a/b
and Beam_1a/b, the two curve are different. According to Figure 12, some outliers and the
explanation above may be reasons for this deviation.
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Figure 12. FRAC contour plot for each specimen with identified optima under variation of E (frequency-dependent, constant
value for η).
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Figure 13. Identified flexural moduli by Figure 12 for Beam_6a/b with fitted linear curve.

The identification process could be improved by a more robust application of the
criterion, for instance by a consideration of several dof as intended by [37]. This way,
deflection shapes may be matched better and flexural moduli matching different peaks in
the h2 curve are excluded inherently. Keeping the problems by the identification process
in mind, nevertheless an increasing flexural modulus can be observed with increasing
frequency for all three thicknesses and all six specimens. Furthermore, the authors exclude
a significantly high error due to the measurement setup, as Figures 7 and 8 show a quite
well agreement of the two specimen’s h2 curves, respectively.
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Figure 14. Identified flexural moduli by Figure 12 for Beam_3a/b with fitted linear curve.
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Figure 15. Identified flexural moduli by Figure 12 for Beam_1a/b with fitted linear curve.

Finally, all sampling points by Figure 12 are used for a fitting per thickness. In Figure 16,
the overall fitted linear curves (a) and the distribution of E in dependency on frequency and
thickness (b) are shown. For the contour plot (b), a piecewise cubic interpolation including
extrapolation is applied for the thickness-dimension. Differently, a linear fitting as shown in
Figure 16a is applied for the frequency dimension. As motivated in Section 1, a dependency
of the flexural modulus on the additively manufactured thickness can be clearly observed.
Generally speaking, the flexural modulus decreases with the decreased thickness of the
structure. For 0 Hz, the range is between 1.9 × 109 N/m2 and 3.7 × 109 N/m2 which is
about twice the value due to a 6 times thicker beam. The sensitivity reduces comparing
the 3 mm beam and the 6 mm beam which indicates a non-linear behavior of the flexural
modulus in dependency on the thickness. For ABH structures, besides the usual stiffness
reduction by a lowered thickness, an additional effect can be expected by the manufacturing
process itself. Considering this effect in mechanical models, a more precise and reliable
prediction may be the result.

In the second step, the loss factors η are identified by the use of the frequency-
dependent flexural moduli. For each significant peak in the experimental curve, the
frequency range around (±10%) is investigated with a ∆ f = 1 Hz. By optical checks and
manual adjustment, the loss factors are adapted in a way that the peak levels fit. An
automatized routine using δ1 as the criterion is hardly realizable as a slight shift in frequency
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lead to high differences though the amplitude of close peaks might be similar. This means
the results shown in Figure 17 may give only tendencies.
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Figure 16. Overall fitted (a) linear curves for the three different manufactured thicknesses and (b) flexural modulus in
dependency on frequency and thickness.

From 2000 Hz, similar loss factors between 0.02 and 0.06 are yielded by all six beams,
independent of their thickness. The tendency of all curves shows a slight decrease towards
higher frequencies. Below 2000 Hz, a spreading of the values are visible in dependency on
thickness. This spreading cannot be identified to be systematic. For example, for both of
the 3 mm beams, the homogenized η is increasing up to 0.1 towards lower frequencies.

In opposite, η shows a maximum for both 6 mm beams at around 1500 Hz. This be-
havior has not been expected and may be assigned to unknown effects based on the
micro-structure. Due to the manufacturing process, the layers might act similar to a con-
straint layer damping. However, at this stage this cannot be further emphasized as only
two 6 mm beams are available. In addition, the experimental setup might significantly
influence some of the peaks.
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Figure 17. Identified loss factors η for all six specimens in dependency on frequency f .

4.3. Final Results

The identified frequency-dependent material parameters by Section 4.2 are applied to
each beam specimen and solved with ∆ f = 20 Hz. For each specimen, the corresponding
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fitting curve by Figures 13–15 are considered. In Figure 18, h2 is plotted in comparison with
the experiment for each specimen, respectively. The results show a quite good agreement for
Beam_6a/b, but with decreasing thickness (Beam_3 and Beam_1) the agreement gets worse.
Thinner beams are expected to show higher sensitivities to the manufacturing process and
the material parameter identification. Nevertheless, the tendency of a decreased flexural
modulus with decreased thickness seems to be appropriate for the problem.
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Figure 18. Experimental and numerical response of each specimen with frequency-dependent material parameters E and η.
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5. Conclusions

The aim of the paper is to provide a procedure to identify material parameters of
additively manufactured structures for robust and reliable dynamic simulations. AM pro-
vides great design freedom but at the same time makes valid mechanical modeling more
challenging. As an illustrative example, the procedure is shown in the context of 3D-printed
ABHs by using material extrusion. As ABH structures require a continuously adapted
thickness profile, the dependency of homogenized material parameters on the thickness of
additively manufactured beam structures is studied.

A dependency of Young’s modulus and the loss factor on frequency and thickness can
be observed based on the parameter fitting of the 3D model. The homogenized Young’s
modulus is decreased with a decreased thickness of the printed structure. Quantitatively,
a doubling of the value can be identified due to a change from 1 mm to 3 mm thickness.
A change from 3 mm to 6 mm induces a slight change which is no longer systematically.
It is assumed that the flexural modulus converges with the thickness as the heat input
becomes more homogeneous. The main findings can be summarized as follows:

• dependence of homogenized material parameter (Young’s modulus, loss factor) on
frequency and thickness

• Young’s modulus decreases significantly with decreasing thickness

In order to improve the material parameter identification, further studies should
focus on an improved criterion comparing the responses and the deflection shapes and
an investigation of the inherent uncertainties by measurements and the manufacturing
process. For this purpose, a larger number of samples should be analyzed. This way,
mechanical models considering uncertain parameters may be applied for a robust design
process of additively manufactured structures.

The method presented here is also universally applicable to other additive manu-
factured materials. Due to the combination with the model order reduction, even more
complex fittings can be handled. In this way, it is possible to use the manifold possibilities
of AM to optimize the performance of acoustic measures.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three-dimensional
ABH Acoustic Black Hole
AM Additive manufacturing
δ1 First error criterion
dof degrees of freedom

E
Young’s modulus
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elPaSo Elementary parallel solver (in-house code)
η Loss factor
f Frequency
F Exciting Force
FOM Full order model
FRAC Frequency Response Assurance Criterion
h2 Mean squared admittance
H Frequency response function
MEX Material extrusion
MOR Model order reduction
MSA Mean squared admittance
N f Number of frequency points
Np Number of surface points
ν Poisson’s ratio
PLA Polyactic acid
$ Density
ROM Reduced order model
t Thickness of beam specimens
TPU Thermoplastic polyurethane
v Surface velocity
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