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Abstract: Additive manufacturing with an emphasis on 3D printing has recently become popular
due to its exceptional advantages over conventional manufacturing processes. However, 3D printing
process parameters are challenging to optimize, as they influence the properties and usage time of
printed parts. Therefore, it is a complex task to develop a correlation between process parameters and
printed parts’ properties via traditional optimization methods. A machine-learning technique was
recently validated to carry out intricate pattern identification and develop a deterministic relationship,
eliminating the need to develop and solve physical models. In machine learning, artificial neural
network (ANN) is the most widely utilized model, owing to its capability to solve large datasets and
strong computational supremacy. This study compiles the advancement of ANN in several aspects
of 3D printing. Challenges while applying ANN in 3D printing and their potential solutions are
indicated. Finally, upcoming trends for the application of ANN in 3D printing are projected.
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1. Introduction

Three-dimensional (3D) printing, under additive manufacturing, is a new, promising
field that has gained prevalent attention in all fields [1–4]. It involves layer-by-layer deposi-
tion via a computer-aided design (CAD) model. 3D printing has several advantages: (a) it
can produce parts with complex shapes, which are difficult to produce using conventional
manufacturing processes; (b) it can manufacture parts with novel characteristics [5]; and (c)
it decreases the material surplus, reducing the manufacturing cost. These are the reasons
why 3D printing has become popular in a very short timeframe. However, 3D-printed parts
also contain defects that are very different from those generated by conventional methods.
There are various types of defects, including porosity, anisotropy in the microstructure,
and part distortion, resulting from high residual stresses due to rapid heating and slow
conduction [6]. Hence, it is essential to understand the correlation among the material met-
allurgical characteristics, printing parameters, microstructure, and properties of 3D-printed
parts. There are various essential parameters, e.g., laser power, laser scanning speed, hatch
distance between two adjacent layers, powder flow rate, etc., which influence the properties
of the final produced parts. Inappropriately, the link between process parameters and the
quality of the printed part is very complex and therefore difficult to understand.

3D printing is a complex multi-physics process. One of the ways to better under-
stand this process is to simulate it before performing any experiment. Various studies
have been carried out to identify the relation between process parameters and the printed
workpiece. Acharya et al. [7] combined computational fluid dynamics and phase-field
models to simulate grain formation for the powder bed fusion process based on the pri-
mary operating parameters, including laser power and scanning speed. Fergani et al. [8]
presented a mathematical model to analyze the residual stress distribution within the 3D
printing of metallic parts, while Chen et al. [9] developed a finite-element (FE) analysis
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model to examine melt-pool dimensions and the deposited layer profile. Wang and Li [10]
developed an accurate simulation method for a fused deposition modeling (FDM)-printed
monolayer shape memory polymer (SMP) based on the secondary development of the
ABAQUS software, which could accurately and simply simulate the deformation processes
of various preprogrammed structures. Based on the constitutive model, the degree and
mode of model deformation due to external temperature were simulated by configuring
the anisotropic pre-strain stored in the printed model. As a result, the deformation of
the SMP models controlled by structural parameters was consistent with the simulation
results. Self-folding origami structures controlled by structural factors were designed by
the proposed simulation method. The origami structures folded according to the predicted
deformation angle and direction under thermal stimulation. This method was able to
accurately simulate the deformations of complex 3D models with different structural pa-
rameters. Wu et al. [11] developed, in the case of stereolithography, analytical, numerical,
and experimental methods to characterize the curing conversion of a mask-exposed ce-
ramic slurry. Visualization of the curing conversion profiles was achieved through optical
microscopic observation of partially de-bound green parts. The results showed that the
curing conversion in the green body was step-like and nonuniform between and within
layers because of the attenuation of UV light. The most considerable difference in the
curing conversion appeared at the layer bonding interface. Uniform curing conversion
should be achieved to reduce the layered properties of printed ceramics.

Zhang and Chou [12] developed a 3D FE model to simulate the FDM melt-pool
process. The same model was used and improved by Zhang in [13] for the simulation
of residual stresses to evaluate part distortion. Prototype parts were built and used to
validate the simulated results. Bellini et al. [14] and Venkataraman et al. [15] analytically
modeled the material flow on an extrusion nozzle. Jee and Sachs [16] proposed a visual
simulation technique to facilitate surface texture designs to be produced by the material
jetting process (MJP). This technique simulates the MJP by taking into consideration
all the necessary geometric attributes of physical phenomena and therefore enables the
achievement of a manufacturable design with minimum iterations. Sachs and Vezzetti [17]
numerically modeled the deposition process of a new MJP head design to ensure a reliable
and continuous jet deposition, resulting in an order of magnitude increase in the printing
speed. Curodeau [18] modeled the drop-merging process (the phenomenon where, in a
uniformly spaced train of drops, the leading drop is retarded by air drag and tends to merge
with the drop behind it) to evaluate the number of merged drops for various distances
and printing conditions. One can conclude from the studies mentioned above that the
simulations usually vary from microscale to macroscale and focus on one or two features
only, eliminating an in-depth understanding of the 3D printing process. It is unfeasible to
forecast the 3D printing process effectively and in a very short period.

Various data-driven models, known as machine learning, have been adopted widely
in the domain of 3D printing. The main advantage of such models is that there is no need
to develop a long list of multi-physics equations. Instead, they automatically learn the
correlation between the inputs and outputs based on the data provided for training. In
machine learning, artificial neural network (ANN) is the most commonly used algorithm
and is under continuous development due to the availability of enormous databases
and computational resources [19]. For instance, ANNs are continuously evolving in the
fields of machine vision [20], vocal recognition [21], language processing [22], and self-
governing driving [23]. Moreover, there is a new trend for implementing ANN in the
3D printing field. This article provides an overview of the current progress of ANN
implementation in the field of 3D printing. It has been classified in the following ways:
Section 2 provides a comprehensive introduction of 3D printing technologies, Section 3
discusses the introduction of ANN, Section 4 compiles the applications of ANN in the field
of 3D printing, Section 5 discusses the potential challenges and their solutions for ANN
implementation, and Section 5 describes the future trends for the implementation of ANN
in the 3D printing field.
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2. Three-Dimensional (3D) Printing Processes

Additive manufacturing (AM) is the general term for technologies that, based on a
geometrical representation, fabricate physical objects by the successive addition of material.
Three-dimensional (3D) printing lies under the category of AM. These technologies are
presently used for various applications in the engineering industry as well as other areas
of society, such as medicine, education, architecture, cartography, toys, and entertainment.
According to the standard ISO/ASTM 52900:2015 [24], the 3D printing process is classified
into seven categories. Table 1 compiles the different 3D printing processes.

Table 1. Various 3D printing processes [24].

Sr. No. 3D Printing Processes Process Illustration

1 Binder jetting A liquid bonding agent is selectively poured to join
powder materials

2 Direct energy deposition
Focused thermal energy (laser, electron, or plasma
arc) is used to fuse materials by melting as they are

being deposited

3 Material extrusion Material is selectively dispensed through a nozzle or
orifice

4 Material jetting Droplets of building material are selectively
deposited

5 Powder bed fusion Thermal energy selectively fuses regions of a
powder bed

6 Sheet lamination Sheets of material are bonded to form a part

7 Vat photopolymerization Liquid photopolymer in a vat is selectively cured by
light-activated polymerization

Each 3D printing process comprises the following steps [25,26].

i. Firstly, CAD software is used to develop a CAD model.
ii. This CAD model is converted into stereolithography format (.STL), which is the

wedge-shaped drawing of a 3D CAD model.
iii. Then, the file is sliced into several thin cross-sectional layers, using slicing software

known as a slicer.
iv. Further, the part is printed by a 3D printer using computer numerical control (CNC)

codes developed from the sliced file. CNC codes define the smooth and jerk-free
movements of the deposition head, giving efficient and better-quality results [27,28].

v. Finally, postprocessing steps, including surface treatments, sintering, or finishing,
are usually performed [29].

2.1. Binder Jetting

Figure 1 illustrates a typical binder jet system [30]. For each layer of the part, a layer of
powder is spread, typically using a counterrotating roller. Afterward, an inkjet print-head
pour/flows the liquid binding agent to the powder bed to generate the 2D pattern for the
layer. Some binder/powder systems may use heaters to help control moisture and curing,
but heat is not an essential process requirement. After each layer, the build platform is
lowered to make room for the next layer, and the process is repeated. The as-printed parts
are fragile and typically require postprocessing to improve the mechanical properties [30].
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Figure 1. Schematic of the binder jetting system [30]; with permission from Elsevier.

2.2. Direct Energy Deposition

Figure 2 shows a schematic of the direct energy deposition (DED) process [31]. The
heat input can either be a laser, electron beam, or plasma arc. The material feedstock is
either a metal powder or wire. Powders result in lower deposition efficiency compared
with metal wires, as only part of the total powder is melted and bonded to the substrate.
Powder DED machines often include an inert gas blown together with the powder from
the nozzles, thereby sheathing the melted region, reducing the oxidization rate. Powder
DED systems can use single or multiple nozzles to eject the metal powders. The use of
multiple nozzles allows for the possibility of mixing different materials to get functionally
graded materials [31].

Figure 2. Schematics of two direct energy deposition (DED) systems: (a) laser with powder feedstock
and (b) an electron beam with wire feedstock [31]; with permission from Elsevier.

2.3. Material Extrusion

In material extrusion, the material is extruded, and a layer-by-layer part is built from
a CAD file. A schematic of this process is shown in Figure 3 [32]. This technique allows
flexibility in design, which is undoubtedly beneficial, e.g., for implant fabrication, because
implant size and shape can be tailored, leading to the production of customized patient
products [32].
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Figure 3. Schematic of material extrusion process [32]; published under the open access Creative
Commons license with MDPI.

2.4. Material Jetting

A schematic of material jetting is shown in Figure 4 [33]. Several investigations have
been carried out on two modifications of inkjet printers, namely continuous inkjet printing
(CIJ) and drop-on-demand (DOD). The unique difference between CIJ and DOD is the
timing of droplet generation. In DOD, droplets are generated when required, whereas, in
CIJ, the droplets are generated by breaking up the continuous stream of droplets through
an ejection nozzle. In all AM technologies, material jetting is the only technology that
offers the highest z-direction resolution with layer thicknesses as low as 16 mm. Materials
such as acrylonitrile butadiene styrene (ABS), polyamide, polylactic acid (PLA), and their
composites are commonly used for printing 3D objects by CIJ and DOD [33].

Figure 4. Schematics of the material jetting process [33]; published under the open access Creative
Commons license with the Royal Society of Chemistry.

2.5. Powder Bed Fusion

Powder bed fusion (PBF) uses a high-energy power source to melt or sinter a metallic
powder bed selectively. A schematic of the PBF setup is shown in Figure 5 [34]. In this
process, the laser beam passes through a system of lenses and is reflected by a mirror onto
the platform surface. The mirrors are used to control the laser beam spot movement in
the planar (x and y) directions on the designed paths. The platform moves downward
after a layer of powder is selectively melted, after which a recoating blade or brush pushes
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another layer of fresh powder from the powder dispenser to the top of the previously
built surface, and the laser scanning process is repeated. The building chamber of the PBF
machine is filled with an inert gas, argon in most cases, to avoid oxidization of the metal as
it melts and resolidifies [34].

Figure 5. Schematic of powder bed fusion equipment [34]; with permission from Elsevier.

2.6. Sheet Lamination

Sheet lamination, also known as laminated object modeling (LOM), manufactures
objects and prototypes by cutting, sequentially laminating, and bonding. LOM works
on a principle where thin adhesive-coated metallic sheets or layers of plastic are bonded
together using ultrasonic welding and shaped by a laser cutter. A schematic of the sheet
lamination process is shown in Figure 6 [33]. Since the process involves solid-state bonding
and additional adhesives, the material is not required to reach its melting point for the
bonding to occur. A variety of materials can be manufactured using sheet lamination,
which includes paper, ceramics, metals (aluminum, stainless steel, copper, and titanium),
plastics, fabrics, synthetic materials, and composites [33].

Figure 6. Schematic of the sheet lamination process [33]; published under the open access Creative Commons license with
the Royal Society of Chemistry.
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2.7. Vat Polymerization

A schematic of the vat polymerization (VP) process is shown in Figure 7 [35]. VP
involves the UV-assisted photopolymerization of liquid monomers. An UV laser is scanned
over a layer of the liquid monomer to cure it in selected areas dictated by the tool paths.
After the completion of one layer, another layer of resin is coated atop the cured layer. This
process is called recoating. The process of recoating and curing is repeated until the part is
completed [35].

Figure 7. Schematic of the vat polymerization process [35]; with permission from Elsevier.

2.8. Color 3D Printing Technology

Color 3D printing is a remarkable technology for customized manufacturing and
integrated production in different industries, despite a few key issues such as printing
speed and size for industrialization. Based on the printed substrates, color 3D printing
techniques can be classified into six major categories: (a) plastic-based, (b) paper-based,
(c) powder-based, (d) organism-based, (e) food-based, and (f) metal-based. These six
techniques vary from colorization materials to processes. However, their similarity has
its basis in the general subtractive color theory, as recommended and standardized by
the International Color Consortium (ICC) and Commission Internationale de L’Eclairage
(CIE) [36]. It should be noted that these standardization procedures have been designed for
2D printing but not for 3D printing. Color reproduction and stability can assess the surface
quality of 3D-printed color objects. However, the color quality evaluation procedures of
color 3D printing techniques are few, and hence, a detailed general guide for managing the
color process of color 3D printing is a necessity for providers and customers. The following
tools are used to evaluate the quality of color 3D printing.

2.8.1. Color Measurement of Color 3D Printing

Color measurement is an essential tool for the evaluation of the surface color quality
of reproductions based on CIEXYZ tristimulus values and related CIELAB values. Further,
standard 2D color measurement conditions were both (CIEXYZ tristimulus and CIELAB
values) defined by the CIE. According to those conditions, the measured angle and used
illumination source are the two key parameters to achieve accurate color measurement in
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printing graphics. For 3D color models, another dimensional color information better than
2D reproduction has been indicated, especially for the spatial color effect [37].

2.8.2. Color Specification of Color 3D Printing

Color specification is not a new term for traditional graphics printing, but it is worthy
for the peer color communication of color 3D printing. Certainly, 3D color specification
is a useful tool for engineers and researchers in the rapid prototyping industry to under-
stand 3D color properties or workflows and further develop comprehensive color control
hardware or toolkits. For example, the color data format of the 2D digital description did
not contain 3D visual attributes such as texture, gloss, opacity, transparency, etc. The AxF
file published by the X-Rite team offered a good direction to exploit a more simplified tool
describing material (3D) appearance [38].

2.8.3. Color Reproduction of Color 3D Printing

Color reproduction is becoming increasingly important in color 3D printing applica-
tions. Currently, color reproduction is regarded as the most direct index for color quality
evaluation. Similarly, color difference metrics such as the CIEDE94 and CIEDE00 metrics
proposed in the 2D printing field were used for evaluating the color reproduction precision
of the printed 3D model surface color. Based on one color difference metric, 2D color
correction for textures can be implemented by combining the X-Rite Color checker with a
polynomial regression approach [39].

3. Introduction to the Artificial Neural Network (ANN) Algorithm

Machine learning (ML) can be classified into two major classes: (a) supervised ML
and (b) unsupervised ML. One of the easiest ways to identify between the two is to check
whether or not the given dataset has labels on it. Therefore, ANN is identified as a type of
supervised ML because the model communicates the outcome to the given inputs. ANN is
appropriate for 3D printing processes, as there are well-defined inputs and outputs for this
manufacturing method. ANN has robust assessing skills to represent intricate, extremely
nonlinear associations between inputs and outputs. The ANN structure contains three
types of layers: (a) an input layer, (b) a hidden layer, and (c) an output layer [40], and
each layer contains neurons. Parameters in ANN are usually called “weights” and show
the linking magnitudes between neurons in two adjacent layers. The numerical values
of these weights are usually calculated by the iterative training of ANN to lessen the loss
function between estimations and absolute output values. The most common method
for the upgradation of weights is called back-propagation, which practices a chain rule
to calculate gradients iteratively for each layer [41]. After training, ANN can conclude
outputs based on the concealed input values. Three classes of ANN, given in Table 2, have
proven their robustness and received popularity.

Table 2. Three classes of ANN models.

Multilayer Perceptron
The most typical ANN, common in linear and nonlinear

summations, e.g., sigmoid functions. It is frequently used
for the data in the tabular [42].

Convolutional ANN (CANN) Deliberates the relationship between image pixels and is
therefore used in image processing [43].

Recurrent ANN

Has a significant role in temporal dynamics, as it can build a
connection between the number of nodes in a given layer.
Therefore, it is used in long short-term memory that can

regenerate the simulation results accurately [44].

The structure in ANN typically consists of four significant subsections: (a) the number
of hidden layers, (b) the number of neurons in each layer, (c) the activation function, and
(d) the loss estimation function. A schematic diagram of the ANN is shown in Figure 8 [45].
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Figure 8. Structure of ANN [45]; with permission from Elsevier.

Table 3 discusses the structure of an ANN in detail.

Table 3. Structure of an ANN model.

No. of hidden layers
A combination of the input-hidden-output layer with a respective number of neurons is
used to define the ANN model [46]. For instance, 5-8-1 means that the input layer has 5

neurons, 8 neurons in the hidden layer, while the output layer has only 1 neuron.

No. of neurons in a given layer

The required number of neurons in the input and output layer depends on the particular
problem. However, the number of neurons must be chosen carefully. If the number of

neurons is not selected optimally, it will lead to under- or overfitting in the given dataset
[47]. Various studies have been carried out that suggest choosing a number of neurons

between 5 and 10 [48–57].

Activation function

A nonlinear transformation on a given input signal. In other words, it decides whether to
activate and deactivate a particular neuron. Based on its performance, the activation

function is considered a vital part of an ANN model. It is important to mention that a
network deprived of an activation function behaves like a linear regression model, which

cannot deal with the complicated tasks [58]. A few activation functions are:

ReLU (x) = max(0, x) (1)
Tanh(x) = 2

1−e−2x − 1 (2)
Sigmoid (x) = 1

1−e−x (3)

Loss function

The loss function is usually determined using real-world problems and carries the
interpretation of real-time data. The root means square (RMS) and the absolute mean error
(AME) are two commonly used methods to estimate the difference between the predicted

vector and the target value [59]. Their mathematical expressions are given as:

RMS =

√
∑n

i=1(xi−xt)
2

n
(4)

AME = ∑n
i=1|xi−xt |

n (5)

where i is a sample index, xi is a predicted value, and xt is the target value.

Based on the above information, the various ANN structures applied in the 3D printing
processes are presented in Table 4.
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Table 4. ANN structure in various 3D printing processes.

3D Printing Process Input-Hidden-Output
Layers Activation Function Error Between Absolute Output

and Anticipated Output (%) References

Selective laser sintering

4-9-1

Sigmoid

6.99 [60]
4-6-1 1.06 [61]
3-7-1 15.01 [62]
7-7-1 4.36 [63]
5-27-1 0.91 [64]
7-8-1 0.90 [64]
3-9-1 Tanh 0.50 [56]

Stereolithography 6-20-5 Sigmoid 5.98 [65]

Laser-melting
deposition 3-9-3 Sigmoid 3.0 [66]

Fused deposition
modeling

5-8-1
Tanh

1.99 [46]
5-8-1 1.02 [67]

4-15-12-1 Sigmoid 5.2 [68]
5-6-4 4.08 [69]
5-7-3 0.11 [70]

Binder jetting 4-20-1 Sigmoid 0.40 [71]

4. Applications of ANN in 3D Printing

The 3D printing process combines several aspects, including the design of the model,
selection of material, printing process, and manufactured part evaluation and characteriza-
tion. This section combines the application of ANN for the 3D printing process in the case
of procedure monitoring, designing, and the correlation between process parameters and
final characteristics of the obtained component.

4.1. Process Monitoring

Process monitoring via various sensors, during the printing process, usually provides
direct information w.r.t quality supervision and control. Three types of data sources can be
identified as: (a) one-dimensional, such as spectra; (b) two-dimensional, such as graphs and
images; and (c) three-dimensional, such as morphologies [72]. One-dimensional data can
be processed faster but provide less information compared to two- and three-dimensional
data. Shevchik et al. [73,74] investigated the possibility to use acoustic emission to mon-
itor quality by combining the acoustic emission sensor with the ANN. Figure 9 shows a
schematic of the workflow used to monitor the quality during the printing process.

Figure 9. Schematic of the workflow used to monitor the quality during the printing process; based
on the data from [73,74].
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A fiber Bragg grating sensor was used to record the signals during the selective laser
melting process. Low-, medium-, and best-quality parts were intentionally produced by
process parameters tuning. The singles obtained were classified for training and testing.
The convolutional ANN was used for this purpose. The inputs of this model were narrow
frequency bands, while the outputs were the classification of the printed part of high,
medium, or low quality. It was found that the convolutional ANN can give a result with
accuracies of 83, 85, and 89% for high-, medium-, and poor-quality workpieces, respectively,
as shown in Figure 10.

Figure 10. Prediction accuracy for high-, medium-, and poor-quality 3D-printed parts; based on the
data from [73,74].

Zhang et al. [75] used a high-speed camera for the collection of process images. This
system can also be called a visual system. This setup was able to collect three pieces of
information: (a) melt-pool, (b) plasma plume, and (c) spatter formation. The features were
sensibly taken out from the images after feeding them into a conventional ML algorithm.
The algorithm proposed by the authors is presented in Figure 11. Further, the authors
observed that even though the convolutional ANN model does not need a feature extraction
step, it still can predict results with 92.7% accuracy. It makes convolutional ANN a potential
candidate for real-time monitoring in the 3D printing process.

Figure 11. Schematic used by Zhang et al. [75] to train a convolutional ANN based on the image
processing technique.

The detection of flaws through human-created, condition-based algorithms requires
an in-depth understanding of the printing process as well as computer vision knowledge.
Such condition-based algorithms are more restrictive; new algorithms have to be generated
when new materials become available or when new part geometries are introduced, as
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this method needs to consider the interactions between various parameters. The reliance
on the human operator makes condition-based algorithms less practical. ANN allows
anomaly detection through a large dataset of good printing samples and bad printing
samples, and the detection capability can be improved by adding new training data. As
most in situ monitoring use cameras to acquire information about the printing condition,
defect detection relies heavily on the capability of computer vision (CV). The most used
ANN technique in computer vision is CANN, although other techniques have been used
as well. For instance, Scime and Beuth [76,77] used scale-invariant feature transform
(SIFT) to extract melt-pool features. They adopted various feature extraction techniques
such as a bag of words (BOW) or histogram of oriented gradients (HOG) clustering to
extract useful features from images and feature vectors. The feature vector was then fed
to the SVM image classification algorithm to learn the defects, such as under-melting,
key-holing, and balling [78]. They also attempted to use ANN techniques with CV to
detect anomalies such as re-coater hopping and streaking, debris, superelevation, part
failure, and incomplete powder spreading. Although the ANN algorithm can predict no
anomalies with 100% accuracy, the algorithm was not able to predict re-coater streaking
with high accuracy (50.6%). They compared the BOW technique with multiscale CANN
(MCANN) and found that MCANN can achieve higher classification accuracies, though
it is more computationally expensive (75% slower). Self-organizing error-driven ANN
(SEANN), a combination of SOM and ANN, is found to be more accurate in classifying
porosity defects than a k-nearest neighbor (KNN) algorithm and multilayer perceptron
(MLP) [79]. Ye et al. [80] used a deep belief algorithm that consisted of stacking-restricted
Boltzmann machines (RBMs), which had undirected connections between its top two layers
and directed connections between all following adjacent layers, classifying the plume and
spatter with minimum pre-processing and no feature extraction. The deep belief algorithm
could achieve an 83.4% accuracy. In another work, to extract melt-pool, plume, and splatter
data, CANN (92.7%) was found to have higher classification accuracy compared to SVM
(89.6%) and the combination of SVM and principal component analysis (PCA) (90.1%) [75].

4.2. Designing

Design is an important research topic that requires a comprehensive understanding of
the capabilities and limitations of 3D printing techniques. It is the first and critical step in
the process workflow. A good CAD model design would not only ensure the printability
but would also reduce the amount of support material when needed. However, the design
process is normally iterative and time-consuming. A data-driven design for 3D printing
would help designers in the design process. Maidin et al. [81] showed that the design
feature database provided ideas and design features for less-experienced designers. The
use of the ANN technique in 3D printing enables feature recommendations to existing
CAD models, helping the designers to speed up the decision-making process during the
design stage. For instance, Yao et al. [82] conceived a hybrid ANN algorithm, which used
hierarchical clustering to classify 3D printing design features and a support vector machine
(SVM) to enhance the hierarchical clustering results in the pursuit of the recommended
design features. It helped inexperienced designers new to 3D printing to determine suitable
design features for remote-controlled car components without actual physical trials and
errors. Apart from that, ANN algorithms have been used for the feature recognition of
CAD models and the manufacturability analysis of 3D printing. Heat kernel signature and
the multiscale clustering method were used by Shi et al. to detect possible design faults
in a particular CAD model [83]. A double-layered extreme ANN (DLEANN) was used
by Zhang et al. to determine ideal print orientation to avoid putting support structures
on user-preferred features [84]. In this DLEANN, the first layer was the classification to
evaluate the relative score between the various part orientations, and the second layer was
the regression to construct a global score for all printing directions. It was found to be
able to identify the best printing directions with minimum visual artifacts due to support
removal. Williams et al. [85] optimized the build orientation, and CANN was found to be
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better in terms of accuracy and consistency at predicting build time and part mass than the
baseline linear regression model. Advancements in numerical simulations have allowed
CAD models to be evaluated digitally before they are fabricated and tested physically,
reducing the cost and time spent in experiments. However, numerical simulations can
be computationally costly and time-consuming with complex processes, making online
monitoring of the printing processes not feasible. Data-driven models have potential
in predicting the final properties of the printed parts. Khadilkar et al. [86] used a deep-
learning-based (DL) ANN framework to estimate stress distribution on the cured layer
from selective laser sintering in almost real-time. In this attempt, a 3D model database
that contained a wide range of geometric features was firstly generated. FE simulations
on the 16,700 3D-printed models were then used to generate data labels to train the DL-
ANN. They found that a two-stream CANN outperforms a single-stream CANN and ANN.
Despite this, Koeppe et al. [87] used ANN to learn a parameterized mechanical model of
cellular lattice structures, which includes their linear elastoplastic mechanical behavior
to predict maximum von Mises and equivalent principal stresses in the struts and joints
(Figure 12). The data-driven stress prediction took about 0.47 s, which was significantly
shorter in comparison with the FE simulation, which took 5–10 h. The trained ANN models
can potentially be incorporated into existing FE simulation frameworks to simulate the
structural performance of larger parts of various scales.

Figure 12. Overview of applying ANN for highly efficient numerical modeling [87]. (a) Experimental test to confirm the FE
simulation results. (b) FE simulation results used as input for ANN. (c) ANN architecture containing one fully connected
layer followed by two long-short-term memory (LSTM) cells, followed by another fully connected layer. (d) Schematics of
fully connected layers. (e) Schematics of LSTM. (f) Comparison with FE simulation showing ANN capability in predicting
stresses; with permission from Elsevier.

Chowdhury and Sam [88] explained that ANN algorithms could learn the thermal
deformation of 3D printing processes and provide appropriate geometric compensation
to the models for printing. Meng et al. [89] used 3D printing for the development of new
designs, such as biomimetic structures. In particular, composite structures could now be
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tuned rapidly. ANN algorithms were demonstrated to be suitable for such areas, especially
in tuning material properties and the capability to generate new designs that outperform
existing composites available in the dataset by [90,91]. CANN was used to predict the
stiffness and toughness of the composite. ANN simulation, which includes the training
(n = 80,000) and predictive (n = 20,000) phases, is found to be 250 times quicker compared
to FE simulations. It is shown that a small amount of training data is sufficient to obtain
an ANN model with high accuracy. Furthermore, obtaining an optimal design for the
composite remains possible with incomplete information.

Table 5 provides a summary of research works on ANNs in design for 3D printing.

Table 5. ANN in various 3D printing processes.

Features ANN Technique Remarks References

Composite design Linear model and CANN

• Predict mechanical properties accurately even with a
small amount of training data

• Ability to rebuild detailed performances of designs
without using precise information in the training process

[90,91]

Process planning Genetic algorithm (GA) and
classical gradient-based schemes

• Included design search space restrictions, which make the
objective function not continuously differentiable in
design space

• Highly nonconvex

[92]

Design feature recommendation Hierarchical clustering and SVM

• Assist novice designers in discovering AM-enabled
design freedoms

• Only performance-centric design knowledge (i.e.,
“loadings”, “objectives” and “properties”) has been
considered in 3D printing design feature
recommendation

[82]

Tuning microstructure and
microhardness Self-organizing map

• Included physics-based models, experimental
measurements, and a data-mining method

• Dendrite arm spacing and microhardness are
approximated using the mechanistic models

[93]

Optimize build orientation
concerning build time and part

mass

10-layer CANN and linear
Regression model

• CANNs are most precise at estimating all three studied
factors than the baseline linear regression model for the
training and evaluation conditions explored

[85]

Flatness perception Classification tree (C4.5) • The results indicated some differences in the perception
of fatness quality [94]

Geometric compensation Feedforward ANN

• Uses the FE model to simulate the deformations in the
3D-printed part

• Geometrical compensation is performed on the. STL file
of the part using the trained network

[88]

Part orientation DLEANN

• Used to assess part orientation based on viewpoint
preference, visual saliency, smoothness entropy, and area
of support

• Scores of a part printed in different orientations are
assessed

[84]

Designing surrogate systems ANN

• 7500 random thickness beams and corresponding FE
solutions are generated to train the ANN

• Able to replicate the dynamic characteristic of a target
whose physical characteristics are inaccessible or
unknown

[95]

Composite design CANN

• Used ANN for coarse-graining analysis and designing
materials without the use of full microstructural data

• Coarse graining is achieved by condensing a group of
building blocks into a single unit cell, which greatly
lowers the number of parameters required in the ANN
algorithm

[90,91]

Stress prediction 2-Stream CANN

• 16,700 models of data labels are created using FE
simulation

• Parameters such as peak stress and dependence on
previous layer information are investigated

• The deep learning model outperforms the simple neural
network model used for stress prediction

[86]
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4.3. Correlation between Process Parameters’ and Parts’ Final Characteristics

In 3D printing, process parameter optimization is indispensable. Therefore, it is
desirable to develop a direct correlation between process parameters and 3D-printed parts’
characteristics. However, this correlation is highly nonlinear as there are various input
parameters involved in the 3D printing process, and it is tough and time-consuming to
correlate all the factors mathematically. In this scenario, ANN can be used owing to
its intrinsic nonlinear nature. Table 6 compiles the implementation of the ANN in 3D
printing processes. It can be observed that various operating parameters were selected for
different outputs, defining a deterministic relation between input and output for process
optimization.

Table 6. Applications of an ANN in the field of 3D printing.

3D Printing Process ANN Input Parameters ANN Output Parameters References

Selective laser sintering

Laser power, scanning speed, hatch spacing, powder layer
thickness Density [60]

Laser power, scanning speed, hatch spacing, powder layer
thickness Geometrical dimensions [61]

Vertical height, deposited volume, bounding box Manufacturing time [62]
Laser power, scanning speed, hatch distance, powder layer

thickness, scanning mode, temperature distribution, the
processing time

Shrinkage percentage [63]

Powder layer thickness, laser power, scanning speed Part porosity [64]
Laser power, scanning speed, hatch distance, powder layer

thickness, temperature distribution Tensile strength [64]

Laser power, scanning speed, hatch distance, powder layer
thickness, scanning mode, temperature distribution, the

processing time
Density [96]

Stereolithography Powder layer thickness, curation time, hatch distance, filling
cure depth, filling spacing depth

Geometrical dimensions
(precision) [65]

Laser-melting deposition Laser power, scanning speed, powder feed rate Geometrical dimensions
(precision) [66]

Fused deposition modeling

Layer thickness, positioning, raster angle and width, air gap Compressive strength [46]
Layer thickness, positioning, raster angle and width, air gap Wear [67]

Positioning, slice width Deposition error in volume [68]
Layer thickness, positioning, raster angle and width, air gap Dimensional precision [69,70]

Binder jetting Layer thickness, printing saturation, heater power ration,
drying time Surface roughness, shrinkage [71]

Process parameters affect the 3D-printed parts’ properties [97–99]. A database of
process–structure–property (PSP) relationships for a particular 3D printing process and
materials would enable the proper selection of the parameters based on the available
information in the database. The PSP relationship is often complicated due to a large
number of process parameters, making it difficult to establish the governing mathematical
formula of the process. Due to its complex nature, ANN algorithms have been used to
determine the PSP relationships for many AM techniques. Gan et al. [93] attempted to
use a self-organizing map (SOM) to identify the PSP relationship of the directed energy
deposition process for Inconel 718. Multiple objective optimizations of the process parame-
ters can be achieved from the large and high-dimensional dataset, which is obtained from
simulation and validated with experimental results, with the help of visualized SOM, as
shown in Figure 13.
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Figure 13. An illustration of the workflow normally used in current numerical studies (top row) and experimental studies
(bottom row), accompanied by a description of how the ANN technique can be incorporated to discover useful process–
structure–property relationships of certain materials [93]; published under the open access Creative Commons license
with Elsevier.

ANN is most commonly used for process optimization. Sarlo and Tarazaga [95] used
ANN to design 3D-printed surrogate systems that match the dynamic characteristic of a
target whose physical characteristics are not available. A total of 7500 random thickness
profiles of beams were generated to train the ANN model to predict the suitable thickness
profile of the beam for a certain frequency or mode shape. It is found that the ANN algo-
rithm can predict surrogates with low modal error (<18%). A three-layer ANN structure is
sufficient for process optimization, with the first layer being the input layer, the second
being the hidden layer, and the third being the output layer. The number of neurons in the
first layer depends on the number of input process parameters of the study. The number
of neurons in the third layer is determined by the number of properties to be optimized,
which is typically one or two. The number of neurons in the hidden layer is normally
more than that of the input layer. The number of neurons in the hidden layer must be
appropriate to avoid overfitting or underfitting issues in ML. Overfitting occurs when the
noise in the training data is captured and learned as concepts by the model. In contrast,
underfitting refers to the lack of fit of the model to the training data, which means that
a good relationship between the data and the model is not obtained. Normalization of
the input parameters is essential before they are used for ML models as it helps the ANN
to learn faster and ensure the inputs are in an incomparable range. If the inputs are of
different scales, the weights linked to some inputs will be updated much faster than others,
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which is undesirable. Hence, they are usually linearly normalized to be in the range of
either [0, 1] or [−1, 1], using [97–99]:

ri − rmin
rmax − rmin

(6)

2ri − rmin
rmax − rmin

(7)

where ri is the particular input data, rmin is the smallest input data, and rmax is the largest in-
put data, respectively. Various studies have compared ANN algorithms with conventional
optimization methods such as the Taguchi method [53,100–102], polynomial regression
model [67,103,104], and ANOVA [46,102,105]. Xiong et al. [103] predicted bead geometry
during single-track melting using laser melting. A 4-12-2 ANN was found to achieve a
lower mean of errors, registering 1.922% and 2.104% compared to a second-order regres-
sion model with a mean of errors of 2.633% and 2.308% for bead width and bead height
predictions. In another study [104], ANN was found to have a better predictive ability
for the dynamic modulus of elasticity of 3D-printed parts by achieving a higher R2 value
and lower absolute average deviation compared to the fractional factorial model (despite
having limited numbers of experiments). A 5-8-1 ANN model to predict the wear charac-
teristics [100,101] was able to achieve a higher correlation coefficient (R2 value) of 0.9902 in
comparison to the regression model’s 0.9516. The ability of ANN models to capture the
nonlinearity between the input and output parameters has allowed complex 3D printing
process mathematical models to be determined with higher accuracy. Table 7 summarizes
the use of ANN algorithms in 3D process optimization, the input process parameters, and
the target properties.

Table 7. The use of an ANN for process optimization of 3D processes.

Process Purpose ANN Method Input Parameters References

Binder Jetting

Predicting surface roughness,
shrinkage rate in y- and

z-directions
3-layer BP-ANN Layer thickness, printing saturation, heater

power ratio, drying time [53]

Compressive strength, open
porosity Aggregated ANN Orientation, layer thickness, delay time [106]

To characterize defects
evolution Gaussian mixture model To reduce pore decomposition, shrinkage and

smoothing during post-processing [107]

Selective laser
sintering

Dimension
Radial basic function ANN, fuzzy

C-means, and pseudoinverse
method, k-means

Laser power, scan speed, scan spacing, layer
thickness [48]

Material analysis ANN Structural characterization [108]

Shrinkage ratio ANN Laser power, scan speed, hatch spacing, layer
thickness, scan mode, temperature, interval time [55]

Tensile strength ANN Laser power, scan speed, hatch spacing, layer
thickness, powder temperature [109]

Density ANN Laser power, scan speed, hatch spacing, layer
thickness, scan mode, temperature, interval time [110]

Selective laser
melting Keyhole porosity K-means clustering Energy density [111]

Stereolithography Dimensional accuracy ANN
Layer thickness, border overcure, hatch

overcure, fill cure depth, fill spacing, and hatch
spacing

[112]

Printability Ensemble method, Siamese network Printability [113]

Laser-melting
deposition

Geometrical accuracy ANN Laser power, scanning speed, powder feeding
rate [114]

Melt-pool width ANN Laser power, powder feed rate, laser speed, focal
length, contact tip to workpiece distance [115]

Electron beam
melting Volume, roughness ANN Spreader translation speed, rotation speed [116]
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4.4. ANN for Metals’ and Polymers’ 3D Printing

Tak et al. [117] 3D printed a W-band slotted waveguide array antenna (SWAA). The
SWAA consisted of three different sections (two horizontal and one vertical) such as a radiat-
ing waveguide array with 10× 10 slots, an array with an aperture size of 31 mm× 31.4 mm,
a coupling waveguide to feed the radiating waveguide array, and a vertical waveguide to
feed the coupling waveguide. A machine-learning technique based on an ANN algorithm
was used to optimize the design. The optimized SWAA was printed using stereolithogra-
phy and then metalized with silver on the inner and outer surfaces by metal jet spraying.
Non-radiating slots were added on the surface of the designed SWAA to metalize the
inner and outer surfaces of the monolithic structure. The surface roughness was taken
into account by employing the Huray model in the simulation. The manufactured SWAA
showed a 22.5 dBi far-field gain, a−13.5 dB sidelobe level, and a 10◦ half-power beamwidth
(HPBW) at 78.7 GHz during working. Wang et al. [118] presented a closed-loop control
framework by seamlessly integrating the vision-based technique and ANN tool to inspect
droplet behaviors and accordingly stabilize the liquid metal printing process (LMJP). This
system automatically tuned the drive voltage applied to compensate for the uncertain influ-
ence based on vision inspection results. To this purpose, multiple features and properties
from images to capture the droplet behavior were extracted. Further, an ANN, together
with a PID control process, was used to determine the drive voltage. This system was tested
on a piezoelectric-based ink-jetting emulator, which has a very similar jetting mechanism to
the LMJP. Results showed that significantly more stable jetting behavior could be obtained
in real time. This system can also be applied to other droplet-related applications, owing to
its universally applicable characteristics. Laser power influences the formation of pores and
cracks and determines the quality and density of a part. Kwon et al. [119] applied a deep
ANN model to the selective laser melting process to study the classification model based
on the melt-pool images for six laser power labels. Using an ANN in which the number of
nodes is decreased while increasing the layer number achieved satisfactory inference when
melt-pool images had blurred edges. The proposed ANN showed a classification failure
rate under 1.1% for 13,200 test images. It was more effective to monitor melt-pool images
because it simultaneously handled various shapes, compared with a simple calculation
such as the sum of pixel intensity in melt-pool images. The classification model can be
utilized to infer the location where unexpected alteration of microstructures or particular
defective products can occur nondestructively.

Pant et al. [120] optimized the process parameters of fused deposition modeling
(FDM) by exploring the wear performance of PLA. A variation of process parameters,
such as layer thickness, orientation, and extruder temperature, was investigated. Based
on these parameters, a wear specimen (according to ASTM G99) was printed using FDM.
The wear behavior of the polymer pin under low sliding speed was examined. The
Taguchi design of experiments by using an L9 orthogonal array was applied to optimize
the process parameters at which the minimum wear rate was obtained; the same has also
been investigated by using analysis of variance (ANOVA) and ANN technique for rigorous
validation/optimization. The results show that this specific build orientation has a major
influence on the wear performance of the polymer pin. The ANN was found to be limited
due to the lack of datasets. To find the best processing parameters for minimizing warpage
in the case of 3D printing of polymers by selective laser sintering, Dastjerdi et al. [121]
presented an optimization algorithm. The FE method was used to simulate the sintering of
a layer of polymer powder, and the warpage of the layer was calculated. The numerical
model was verified by comparison with experimental results. A back-propagation ANN
was used to formulate the mapping of the design variables and objective function. The
results of 40 simulations with various input parameters such as scanning pattern and
speed, laser power, the surrounding temperature, and layer thickness were used to train
and test the ANN. An optimal pattern of scan and process parameters could be obtained
using the optimization approach resulting in minimum warpage in the sintered layer.
Fountas et al. [122] carried out an experimental study to examine the effect of five fused
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deposition modeling (FDM) parameters using PLA material such as layer height, shell
thickness, infill density, orientation angle, and printing speed on the tensile strength of
standard ASTM 638-10 type 1 tensile specimens. The experimental study involved a
fractional factorial design with 16 runs. This design was then converted into a custom
response surface design to examine the nonlinearity presented by the curvature when
examining independent variables in continuous form. The study [122] not only gives an
insight concerning the complex dependency of tensile load by the process parameters
corresponding to FDM but also generates a statistically validated regression model. The
regression model adequately explains the variation and the nonlinear influence of FDM
parameters on tensile strength. Thus, it can be implemented to find optimal parameter
settings with the use of any ANN algorithm.

The evaluation of AM components is often conducted using experiments assessing
product quality, build time, dimensional accuracy and tolerances, production cost, and
the tribological properties of parts. As it occurs in any other manufacturing process,
the performance of AM is strongly affected by its corresponding process parameters.
Fountas et al. [123] studied the performance of different swarm-based evolutionary algo-
rithms regarding single- and multi-objective optimization problems related to the additive
manufacturing of acrylonitrile butadiene styrene (ABS) with emphasis on FDM processes.
Five problems were questioned regarding their number of independent variables and
predetermined optimization objectives. Two of these problems were of a single objective,
while three were of a multi-objective optimization nature. The results obtained by several
independent executions of algorithms were compared by analogous indicators depending
on the problem, i.e., convergence speed for the single-objective problem and quality of
Pareto nondominated solutions in the case of multi-objective optimization problems. The
algorithms tested for single-objective optimization were: the dragonfly algorithm (DA),
the ant-lion algorithm (ALO), the grey-wolf algorithm (GWO), the moth-flame algorithm
(MFO), and the whale optimization algorithm (WOA). For the multi-objective optimization
problems, the multi-objective grey-wolf (MOGWO), the multi-objective ant-lion (MOALO),
the multiverse algorithm (MOMVO), the multi-objective dragonfly (MODA), the Pareto
envelope-based selection algorithm (PESA-II), and the strength Pareto evolutionary al-
gorithm (SPEA-II) were tested. Even though all algorithms proved their capability of
providing optimal solutions to cope with volatile scenarios, the “No-Free Lunch” theorem
was validated, supporting that algorithms did not perform the same when applied to
different optimization problems.

5. Potential Challenges for the Implementation of ANN and Their Solutions

The following potential challenges have been identified based on the literature survey.

5.1. Datasets Optimization

The performance of an ANN model depends on the quantity and type of data pro-
vided while training. On the other hand, it is expensive and time-consuming to collect
and organize the data for the training of an ANN model. Certain available methods can
artificially enlarge a dataset, one of which is to use an artificial generative model [124]. It
was explained that an autoencoder could randomly generate new datasets by keeping in
view the training data [125]. The extension of this autoencoder is known as a variational au-
toencoder. Other generative models, including generative adversarial nets and adversarial
autoencoders, can provide ways to carry out data augmentation [126,127].

5.2. Selection of Significant Input Parameters

The training of an ANN model majorly depends on the input parameters, while the
operating parameters play a significant role in any process. A selection of an excessive
number of input parameters can simply overfit an ANN model. Hence, it is essential to
confirm that the ANN model is trained to function at an optimum number of input param-
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eters. As illustrated in Table 8, there are two techniques available for the preprocessing of
given data to determine the significant input parameters.

Table 8. Techniques for preprocessing of a given dataset [59,128].

Feature Selection Illustration

This technique assists in determining the most influencing
parameters from a given list using statistical tools.

To determine the parameter significantly affecting the printing
process, a Pearson’s coefficient can be determined to figure out

the dependency between the given parameters on output. If
Pearson’s value (max = 1) is higher for one parameter compared

to the other parameter, it will affect the desired output
significantly.

Feature Combination Illustration

This technique helps to carry out dimensionality lessening for
input attributes and thereby concentrate on the newly generated
features. Once the translation regulation is identified, manual

manipulations are usually preferred. Mathematical tools such as
principal components analysis can be utilized for the same

purpose based on the attribute.

Energy density (ED) influences the solidification, metallurgical,
microstructure, and mechanical properties of a 3D-printed part.

Laser power, scanning speed, hatch distance, and layer
thickness combine and generate a new ED feature.

5.3. Under- and Over-fitting in the ANN Model

The main objective of an ANN model is a good estimation of the output based on
previously given input data. This performance, however, can be disturbed due to the over-
or under-fitting of an ANN model based on inputs. An overfitted ANN algorithm means
that a model attempts to fit itself on every data point within the given dataset, and the
model becomes susceptible to noises within the dataset. On the contrary, an underfitted
model means that the model has failed to build up the mandatory relationships among
the data points in the training dataset. These difficulties can be avoided by selecting the
optimum number of neurons within each layer [129,130].

5.4. Linking the Analytical Modeling and Numerical Simulations with ANN

To avoid a significant number of experimentations and produce a pool of datasets for
the optimization of the ANN model, it is recommended to develop analytical or numerical
simulations. The results of analytical simulations can be used to train the ANN models.
Methodology that combined the experiments, FE simulations, and ANN is given in [77].
Initially, experimental analyses were conducted to validate FE simulations. Later, 85
simulation analyses were carried out using various parametric combinations, such as load,
displacement, strut radius, and cell scale (input). At the same time, the maximum von
Mises and principal stresses were categorized as outputs. After training was conducted for
the ANN model, and a close correlation for the loading history was found between ANN
estimations and FE simulations [88].

5.5. Real-Time Monitoring of the 3D Printing Process

The final properties of a developed part are defined by layer-by-layer deposition.
Therefore, it is important to monitor and control the quality of the deposited layer in real
time. To this purpose, a dynamic machine identification system can be developed by
integrating the outputs from both the ANN-based smart agent and the cyber interface
simulator to compute the final machine assignment, as shown in Figure 14.

The following steps are to be undertaken to translate this prototype system (Figure 14)
into full-scale implementation:

(1) Collection of a larger number of part designs, based on different variety of geometries,
topologies, and material types;
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(2) Increasing and/or altering the input variables/factors for evaluating the part designs
based on the application requirement. However, these factors may be updated based
on user requirements;

(3) Developing software with a graphical user interface (GUI) that can integrate the
different subsystems. It can assist both novice users in inputting their datasets as
well as 3D printing specialists to modify the ANN algorithm parameters to tune their
results; and

(4) Collaboration with industry partners so that a joint system specific to each industry
sector (such as automotive, aerospace, consumer appliances, etc.) be developed.

Figure 14. Dynamic 3D printing machine identification system.

6. Future Outlook

For data-driven ANN, the preprocessing of data is a crucial prerequisite, as it erases
the incorrect data and uses the filtered data to train an ANN. However, this step requires
tedious/laborious/meticulous work. For instance, if an ANN model requires only cracks
as input from the scanning electron images of deposited layers, there will be a need to filter
out the data, accordingly. However, the difficulty is to extract cracks’ locations precisely,
distributed along the grain peripheries. It is a challenging task for those who do not have
reliable information and practice in image processing to extract the exact information.
Therefore, there is a strong need to develop standards and practices for data preprocessing.
There are various databases, such as MatWeb [131], available to store the material properties
electronically. Due to the high complexities and varieties in the field of 3D printing, it is
essential to develop a new database to deal with the huge number of results achieved from
different research groups.

As discussed earlier in Section 4.1, scientists have developed various systems to deliver
real-time statistics in the 3D printing process. To this purpose, various sensors have been
used to perceive and quantify data. However, there remains a need for development in this
area. For instance, the sensing devices used in the 3D printing process must survive under
harsh working environments. In the laser-melting deposition process, the temperature
intensity is too high, and the plasma plume formation can destroy the imaging camera lens.
Further, the sensors should be fast enough to measure the melt-pool dimensions. To this
purpose, reliable systems should be developed. Usually, dedicated software is needed to
control such sensors. The software should be capable of monitoring, capturing, processing,
and storing the data. Therefore, during the printing process, there is a need to develop
software with machine-learning algorithms to compute thermal profiles, extract melt-pool
dimensions, identify microstructure, and detect voids and porosity.

The 3D printing process utilizes layer-by-layer deposition; hence, the quality of each
layer countlessly impacts the final part’s characteristics. Therefore, it is highly desirable to
control the quality of parts at the layer level. Sensors using electrical, thermal, and optical
signals can provide in situ monitoring of the 3D process. A possible solution is to use a
convolutional ANN model in combination with a high-speed imaging camera to obtain
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quality feedback at each layer, resulting in a closed-loop system speed camera. In this case,
the ANN algorithm must quickly respond to the input picture.

Multiphysics-based models require considerable computation time and cost. As
explained above, it is possible to link numerical simulations with ANN models. After
validating the numerical simulation with experimental data, the numerical models can
be used to train ANN models, which in return, can be utilized for forecasting based on
operating parameters.

The authors believe that after addressing the areas mentioned above, the implementa-
tion of ANN can be increased in the field of 3D printing.

7. Conclusions

In the present era, 3D printing and ANN have gained popularity. Three-dimensional
printing has several advantages over traditional manufacturing technologies. Recently,
it has proved its capability to manufacture complex morphologies. On the other hand,
ANN models avoid creating and cracking complex multi-physics models. Therefore, the
combination of 3D printing and ANN has demonstrated great potential for achieving the
concept of “Industry 4.0”. Herein, the structure of ANN, its implementation in the field of
3D printing, potential challenges while implementing ANN, and future trends have been
presented, described, and discussed. From this study, one can conclude that:

• ANN involves supervised learning primarily composed of three layers: (a) an input
layer, (b) a hidden layer, and (c) an output layer. Three classes, including multilayer
perceptron, convolutional ANN, and recurrent ANN, have been found. The ANN
structure contains four hyperparameters: (a) the number of the hidden layers, (b)
neurons, (c) the activation function, and (d) the loss function. Two types of error
functions have been identified in the case of the 3D printing process: (a) Tanh and (b)
Sigmoid.

• ANN can be used for product designing, process monitoring, and to correlate the input
parameters with the properties of the final produced part. In the 3D printing process,
it is very tough to optimize operating parameters, as they are highly nonlinear in
nature. This task, however, can efficiently be completed using an ANN model, owing
to its nonlinear nature. In this context, convolutional ANN has proved capabilities to
forecast with better precision compared to other classes of ANN. According to Table 4,
5–10 neurons in the hidden layer are suggested to determine the optimal solution in
the 3D printing process.

• The performance of an ANN model depends on the quantity and type of data provided
while training. Further, it is expensive and time-consuming to collect and organize
the data for the training of an ANN model. Therefore, it is necessary to determine
the significant set of parameters to save time and train an ANN model, effectively. It
will also avoid the over- or underfitting of the ANN model. On the other, artificial
datasets can be generated via analytical or numerical modeling to avoid the deficiency
of datasets needed for ANN training and testing.
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