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Abstract: The paper describes results of fatigue strength estimates by selected multiaxial fatigue
strength criteria in the region of high-cycle fatigue, and compares them with own experimental
results obtained on hollow specimens made from ČSN 41 1523 structural steel. The specimens were
loaded by various combinations of load channels comprising push–pull, torsion, bending and inner
and outer pressures. The prediction methods were validated on fatigue strengths at seven different
numbers of cycles spanning from 100,000 to 10,000,000 cycles. No substantial deviation of results
based on the selected lifetime was observed. The PCRN method and the QCP method provide best
results compared with other assessed methods. The results of the MMP criterion that allows users
to evaluate the multiaxial fatigue loading quickly are also of interest because the method provides
results only slightly worse than the two best performing solutions.

Keywords: multiaxial fatigue; high-cycle fatigue; multiaxial fatigue experiments; S-N curve approxi-
mation

1. Introduction

To validate the multiaxial fatigue strength criteria, the prediction results should be
compared with experimental results. Any experimental campaign that would cover the
mean normal stress effect, the mean shear stress effect, phase shift effect, etc., in various
lifetimes for a single material (or more materials) presents a lengthy and costly process.
The validation is thus often realized on experimental data retrieved from other sources:
conference papers, papers in journals, books, PhD theses or technical reports. If such
sources are used, they must be carefully verified, as to whether the data to be adopted are
credible and usable for such validation.

The prediction quality of multiaxial fatigue strength criteria is often assessed on
experiments with various load combinations of push–pull and torsion [1–4]. By some
experiments, axial loading of specimens can be induced by bending, which causes non-
constant stress distribution over the cross-section [5–9]. Relatively rarely, the inner pressure
is applied on hollow specimens [10–12]. The stress gradient differs in this load mode—it
is higher at the inner surface and lower at the outer surface. It is, therefore, important
to know, which of those two surfaces is critical due to the other co-acting load channels,
and both surfaces should be evaluated in some cases. The pressure is usually acting as
a constant load. Such setup is simpler, because it allows the experimenter to run the
desired load history quicker. If more load channels are superposed, the multiaxial stress
state is likely to be induced. Such more complicated combinations are very interesting for
validation purposes. Experimental sets comprising multiple various load cases on different
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specimen designs and sizes, that also provide a detailed information on material properties
to tune the multiaxial fatigue strength criteria, are published only rarely. The experiments
described in this paper cover various combinations of push–pull, bending, torsion, inner
and outer pressures. The broad spectrum of various multiaxial load combinations with
varying stress ratios on individual channels are an important condition for any adequate
validation of calculation methods used by different multiaxial fatigue strength criteria.

One of the few papers, which looks for a general solution covering more different load
modes in one campaign is the paper by Morel and Palin-Luc [13], in which they propose
the use of the non-local model averaging the stress quantities over the critical volume. The
paper by Papuga et al. [14] does not treat the same problem more generally and simply uses
the axial load modes in the analysis according to assumed stress distribution. If multiaxial
loading includes bending, the plane bending fatigue strengths are used in analyses. If it
involves any other load case than bending, the fatigue strengths relevant to push–pull are
used. This paper presents an extensive experimental campaign that was realized on hollow
specimens made from ČSN 41 1523 structural steel. There are results of 24 uniaxial and
multiaxial load cases of very diverse setups. The paper validates several multiaxial fatigue
strength criteria on fatigue strengths obtained at 750,000 cycles from the Kohout-Věchet
approximations [15] for each load case. The new MMP method usable for multiaxial fatigue
strength analysis is published in [14] for the first time. As MMP is an extension of the
Manson–McKnight criterion (MMK) [16,17], its biggest advantage is the simplicity of the
computational analysis. It can be easily run using a common spreadsheet program such
as MS Excel. The newly introduced MMP criterion significantly improves the prediction
quality found for the MMK solution to a point that the MMP criterion could reach the
quality of the output comparable with much more complex multiaxial fatigue strength
criteria. Papuga et al. used the same data set in [18] to describe the validation results by
selected multiaxial fatigue strength criteria at three additional lifetimes (the analyses were
run between 100,000 and 750,000 cycles).

The current paper increases the scope of tested load cases from 24 to 34. This en-
largement brings along some important load cases missing previously for some sizes of
specimens—above all, the reversed torsion on smaller specimens or the repeated bending
load case. These previously non-existent load cases had to be in some way substituted
in the previous papers. Their inclusion into the computational scheme should result in a
more consistent validation process.

The recent paper by Karolczuk et al. [19] opened a question, whether the same material
parameters weighting the effect of stress parameters in the multiaxial criteria could be
used over bigger ranges of lifetimes. They proved that the actual material parameters valid
for the given final lifetime should result in a superior output than some fixed constant
parameters could provide. To confirm or to deny that finding, the validation campaign on
all 34 load cases is performed in this paper on fatigue strengths derived at seven different
lifetimes spanning from 100,000 cycles to 10,000,000 cycles. To also cover the high lifetime
levels, a special approximation FF formula is adopted in this paper. With all these changes
involved, the paper focuses on validating 11 different multiaxial fatigue strength criteria of
various types of solutions in order to assess their credibility for an accurate fatigue strength
evaluation.

To reach this goal, the experimental campaign is first described in Section 2, including
also the regression models used to derive the fatigue strengths from the S-N curves. The
various multiaxial models processed in the validation are described in Section 3, together
with the way the quality of the regression is assessed. Section 4 discusses the obtained
results and Section 5 concludes the outcome of the presented paper.

2. Experiments and Processing of Their Results
2.1. Material and Specimens

The specimens were manufactured from ČSN 41 1523 structural steel (equivalent
to S355JR or St52-3) delivered in bars retrieved from the single T31052 melt. The static
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material properties are provided in Table 1, and the chemical composition can be found in
Table 2.

Table 1. Static material parameters and chemical composition of the studied material.

Designation Tensile Strength
[MPa]

Tensile Yield
Stress [MPa]

Elongation at
Fracture [%]

Reduction of Area
at Fracture [%]

True Fracture Strength in
Torsion [MPa]

ČSN 41
1523

560 400 31.1 74.0 516.6

Table 2. Chemical composition of the studied material.

Chemical Composition:

C [%] Mn [%] Si [%] P [%] S [%] Cu [%]
0.18 1.38 0.4 0.018 0.006 0.05

Three different specimen types: S1, S2 and S3 have already been used in [14]. The
diameters (D—outer diameter, d—inner diameter) in the critical cross-sections were: (S1)
D = 11 mm and d = 8 mm, (S2 and S3) D = 20 mm and d = 18 mm—see Figure 1. The
newly introduced specimen type S4 is also shown in the same figure with its cross-sectional
parameters slightly modifying the S1 configuration: D = 12 mm and d = 8 mm. All
specimens were polished on the outer surface, while the inner surface was reamed.

Figure 1. Drawings of specimens used in this campaign: (a) S1—top left, (b) S2—top right, (c) S3—bottom left, (d)
S4—bottom right.

2.2. Load Cases

The original experimental campaign from [14] is extended in this paper by 10 further new
load cases. The summary of all load cases imposed in the total of 34 configurations is provided
in Figures 2 and 3. The detailed description of individual tests sets, of their types, of applied
test frequencies and of geometric parameters of used specimens can be found in Table 3.

The new experimental load cases concern:

• Load case FF041—repeated plane bending.
• Load cases FF048-FF051—repeated bending with constant inner pressure imposed in

the mode of a pressure vessel.
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• Load cases FF062-FF063—fully reversed push–pull combined with inner pressure.
• Load cases FF064-FF065—repeated push–pull combined with inner pressure.
• Load case FF092—fully reversed torsion on S4 specimen (see Figure 1).

The S4 specimens were not manufactured on purpose after publishing [14]—they
were prepared before the whole test campaign in the moment, when the search for an
optimum geometry of specimens was targeted. As other specimen types were later selected
for testing, the results of S4 specimens tested in fully reversed torsion were put aside. They
were again uncovered, when the lack of the S-N curve for fully reversed torsion on smaller
specimen type, S1, became obvious.

Figure 2 provides schematic drawings explaining the way the individual specimens
were loaded for specific load cases marked FFXXX, where XXX is replaced by a unique ID
number for each load case. All load cases were run under the load control. The ranges of
forces, moments and pressures applied to individual load cases are provided in Table 4,
and the information on the phase shift between the axial load channel and the torsion load
channels accompanies them there.

Figure 2. Overview of various setups of experiments. F—push/pull, Mb—bending moment, Mk—torque and P—pressure.
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Figure 3. Setup of the experiments for load cases of torsion and bending on the torque controlled FF044 (right) and bending
load case FF040 (left), both using S2 specimens.

Table 3. Summary of all load cases. Abbreviations used: Ten—tension, To—torsion, RP—pressurized, PV—pressure vessel
mode, PB—plane bending, A—amplitude, M—mean value, D—outer diameter, d—inner diameter.

Mark
Specimen

Type
Machine No.

(Frequency [Hz]) Load Combination
Measured Diameters Input Load Channels

D [mm] d [mm] Ten
PB

RP
PV To

FF001 S1 1 (10) Ten + To 10.95 8.02 A A
FF002 S1 1 (10) Ten + To 10.95 8.02 A A
FF003 S1 1 (10) Ten + To 10.95 8.02 A A
FF004 S1 1 (10) Ten + To 10.95 8.02 A A
FF005 S1 1 (10) Ten + To 10.95 8.02 A, M A, M
FF030 S1 1 (10) Ten 10.95 8.02 A
FF031 S1 1 (10) Ten 10.95 8.02 A, M
FF033 S1 1 (10) To 10.95 8.02 A, M
FF040 S2 2 (25) PB 19.99 18.05 A
FF041 S2 3 (10) PB 19.96 18.06 A, M
FF042 S2 2 (25) To 19.99 18.05 A
FF044 S2 2 (25) PB + To 19.99 18.05 A A
FF045 S2 2 (25) PB + To 19.99 18.05 A A
FF046 S2 2 (25) PB + RP 20.00 18.03 A M
FF047 S2 2 (25) PB + RP 20.02 18.02 A M
FF048 S2 4 (20) PB + PV 19.93 18.05 A, M M
FF049 S2 4 (20) PB + PV 19.94 18.05 A, M M
FF050 S2 4 (20) PB + PV 19.94 18.05 A, M M
FF051 S2 4 (20) PB + PV 19.92 18.05 A, M M
FF054 S2 2 (25) To + PV 19.97 18.05 M A
FF055 S2 2 (25) To + PV 19.94 18.09 M A
FF056 S2 2 (25) To + PV 19.94 18.07 M A
FF057 S2 2 (25) To + Ten 19.99 18.05 M A
FF058 S2 2 (25) To + Ten 19.99 18.05 M A
FF059 S2 2 (25) To + Ten + RP 20.04 18.25 M M A
FF060 S2 2 (25) To + Ten + RP 19.96 18.29 M A
FF061 S2 3 (4) To + Ten 19.99 18.05 A A
FF062 S2 4 (20) Ten + RP 20.00 18.02 A M
FF063 S2 4 (20) Ten + RP 20.01 18.02 A M
FF064 S2 4 (20) Ten + RP 20.01 18.02 A, M M
FF065 S2 4 (20) Ten + RP 20.03 18.02 A, M M
FF074 S3 2 (25) To + RP 20.00 18.05 M A
FF075 S3 2 (25) To + RP 20.00 18.05 M A
FF092 S4 2 (25) To 12.00 8.00 A
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Table 4. Summary of all load cases as regards to the range of applied forces, moments and pressures; also, the phase shift
ϕat between the axial and torsion load signals is stated.

Load
Case

Axial Force [kN] Torque [Nm] Bending Moment [Nm]
Phase Shift [◦] ϕat

Pressure
[MPa]Fa Fm Mka Mkm Mba Mbm

From–To From–To From–To From–To From–To From–To Pm

FF001 4.34 0 34–25 0 0 0 0 0
FF002 8.5 0 24.5–16 0 0 0 0 0
FF003 4.34 0 34–26.15 0 0 0 90 0
FF004 8.5 0 33–23 0 0 0 90 0
FF005 5 5 24.1–17.5 24.1–17.5 0 0 0 0
FF030 12.85–10.4 0 0 0 0 0 0 0
FF031 9.5–8.2 9.5–8.2 0 0 0 0 0 0
FF033 0 0 37.5–27.7 37.5–27.7 0 0 0 0
FF040 0 0 0 0 99.6–81.6 0 0 0
FF041 0 0 0 0 73.3–64.7 73.3–64.7 0 0
FF042 0 0 94.5–83.9 0 0 0 0 0
FF044 0 0 81.1–63.7 0 60.5–47.5 0 0 0
FF045 0 0 42.2–33 0 94.4–73.7 0 0 0
FF046 0 0 0 0 90.1–76.5 0 0 23.3
FF047 0 0 0 0 88.0–74.0 0 0 36.0
FF048 0 0 0 0 65.6–59.6 65.6–59.6 0 10.5
FF049 0 0 0 0 67.7–57.6 67.7–57.6 0 20.0
FF050 0 0 0 0 68.5–56.5 68.5–56.5 0 30.0
FF051 0 0 0 0 66.7–54.1 66.7–54.1 0 40.0
FF054 0 0 93.0–76.2 0 0 0 0 15.0
FF055 0 0 95.0–78.0 0 0 0 0 10.0
FF056 0 0 75.5–62.8 0 0 0 0 20.2
FF057 0 14 98.8–71.6 0 0 0 0 0
FF058 0 10.2 100.6–76.6 0 0 0 0 0
FF059 0 0 91.0–77.5 0 0 0 0 40.0
FF060 0 5.9 84.7–77.0 0 0 0 0 40.0
FF061 16.6–12.3 0 27.1–20.1 0 0 0 0 0
FF062 17.0–14.6 0 0 0 0 0 0 20.0
FF063 16.5–13.0 0 0 0 0 0 0 40.0
FF064 7.2–6.3 7.2–6.3 0 0 0 0 0 20.0
FF065 7.3–6.4 7.3–6.4 0 0 0 0 0 40.0
FF074 0 0 87.6–74.9 0 0 0 0 13.0
FF075 0 0 85.7–48.2 0 0 0 0 27.0
FF092 0 0 55.7–45.2 0 0 0 0 0

To obtain the described load cases, various experimental machines had to be used as
noted in Table 3, and different special fixtures to impose the desired load configurations had
to be applied. Figure 3, left, depicts the example of the fixture model with the test specimen
in grips as used for the load case of reversed bending marked as FF040. The combined
bending and torsion loading as applied in FF044 test series is depicted in Figure 3, right.
The FF046 load case combining the reversed bending with constant internal pressure can be
found in Figure 4, left. The test specimens loaded by reversed torsion with inner and outer
pressure in the FF059 test case can be seen in Figure 4, right. These tests were performed
on the reconstructed and modernized biaxial testing machine Schenck type PWXN, which
is originally equipped by the control of torque. It is extended by the possibility to apply
additional axial constant force. Table 3 refers to this machine type by number 2. Number
1 in Table 3 corresponds to the biaxial servohydraulic pulsator INSTRON 8802. Another
used testing machine is the biaxial servohydraulic pulsator LABCONTROL 100 kN/1000
Nm, which is equipped by a combined hydraulic actuator able to impose push–pull and
torque. This machine was derived during the reconstruction of the original INOVA ZUZ
200 machine. It is marked by number 3 in Table 3. Number 4 in Table 3 concerns the
uniaxial hydraulic pulsator INOVA FU-63-930-V1.
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Figure 4. The load case of bending and pressurizing with the pressure chamber and the pressure sensor—FF046 load case
(left). The setup of the test case with the pressure chamber inducing inner and outer pressure—FF059 load case (right).

The necessary input into all multiaxial fatigue strength criteria are local stresses. The
purely elastic material response is assumed to derive them. To locate the hot-spot on more
complicated testing specimens for various superposed load channels’ acting, the finite
element (FE) solution is necessary in order to deliver stress tensor components induced by
individual load channels. All test cases and specimens were modeled and computed within
the Ansys FE-solver. The stress tensors were obtained for unit loads acting on individual
load channels, and the obtained stress components were then multiplied by the factor
related to the ratio between the actual load and the unit load. Experiments FF062-FF065 are
special, because the pressure causes higher (tangential) stress on the inner surface, while
the stress response to axial loading induces more or less uniform axial stress distribution
over the cross-section. For these specimens, thus, inner and outer surfaces were evaluated
in the stress analysis and also in the subsequent fatigue analysis.

During the fatigue tests, responses to individual load channels were measured by
certified sensors, which are regularly checked by the Czech Metrology Institute. To set
up the load parameters by individual tests, strain gages were installed on chosen tested
specimens; see the examples in Figure 5. The strain gages provided the information on
strains and stresses attained on the surface of test specimens for individual load cases.
These data items then could be compared with results of the finite element analyses to
verify the applied boundary conditions.

Figure 5. Examples of the load setup validations taken to ensure the applied stress are conforming to the expectations.

2.3. Regression Analyses

In the study by [14], experimental results were processed to obtain the regression S-N
curves either by the linear Basquin model or by the Kohout-Věchet [15] non-linear model.
Each load case was covered by at least 5 finished experiments on different load levels, and
by one run-out test, which was left unfinished at 10 million cycles. Some experimental
test cases were not described well above 750,000 cycles by any of the two mentioned
models—see Figure 12 in [14] as regards to the FF033 test case (or see Figure 6 hereafter).
This was the main reason why the fatigue strength analysis was covered only at 750,000
cycles in [14]. The newer paper by [16] documents a similar analysis of chosen multiaxial
fatigue strength criteria in the limited lifetime region; more precisely at 100,000, 200,000,
500,000 and 750,000 cycles. The tests were performed in compliance with the valid ČSN
42 0362 standard [20]. Every experimental load case is completed by at least one run-out
test, for which the specimen did not break even at 10 million cycles. The difference between
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amplitudes of the dominant stress channel for the run-out specimen and for the last broken
specimen with the longest lifetime does not exceed 10 MPa for most cases. The ČSN 42 0363
standard [20] in its paragraph No. 49 recommends choosing this difference in applied stress
levels in dependency on the expected fatigue limit of the evaluated tests’ case. The basic
number of cycles to determine the fatigue limit is set to 10 million by ČSN 42 0363 for steels.

Figure 6. Comparison of the three approximation models for three different load cases.

The value of 10 million cycles is therefore set as the limit of the possible approximation
domain. This paper compares results of three approximation methods for the S-N curve
data. The first, and the most commonly used method is the Basquin approximation, which
should be optimally used only within the experiments with limited lifetime. It is formulated
by the following [21]:

σ = σ′f ·(2N)b (1)

where σ′f is the coefficient of fatigue strength, and b is the exponent of fatigue strength.
Though this model is more than 100 years old, it presents the part of standards for steel
structures (e.g., Eurocode 3, ISO12107).

If the experimental points are selected to be included in the approximation, two
tendencies cause some bias. The first one concerns the requirement to include as many
experimental points into the regression analysis, as only possible. This requirement ensures
that the curve will really correspond to the behavior of material and will not describe the
response of only several experimental points. The second tendency to bear in mind are the
attempts to omit those data points, which do not conform to the expected material model
in the limited lifetime region. For the Basquin model, such data points then can be a part of
the S-N curve transition into the quasi-static domain or to the fatigue limit domain, which
cannot be approximated by it reasonably well.

A suitable approximation, which can integrate into the model most of experimental data
from all those domains, is the Kohout-Věchet regression model ([15], also, K&V hereafter):

σ = a·
(

C·N + B
N + C

)
β (2)

The non-linear regression analysis demands a certain setup for initial estimates of
material parameters a, β, B, C. They can be set based on the previously obtained Basquin
regression curve:

a = 2b·σ′f , β = b, B = 10[maxi(logσi)−loga]/b, C = 10[mini(logσi)−loga]/b (3)

Thanks to the additional two parameters available in this model in comparison with
the Basquin formula, the curve can follow the trend of the S-N data with two bends—one
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in the transition to the horizontal line at the quasi-static domain, and the other in the
transition to the horizontal line at the fatigue limit region. To define better the quasi-static
response, the tensile strength at 1

4 or 1
2 cycles can be taken as an additional regression

input to other experimental data points. Such inclusion affects, above all, the shape of the
curve in the domain of low-cycle fatigue and in the quasi-static domain. However, the
Kohout-Věchet model is not suitable for regression of multiple experiments per the outer
load levels (load level tests), because the outermost points substantially affect the trend of
the curve and its transition to horizontal lines.

To approximate the experimental data, the FF approximation first published in [22]
was used. The proposed approximation function is:

σ = σ0 − (σ0 − σC)· sin
{π

2
·[log(4·N0)/log(4·NC)]

a2
}

. (4)

This approximation is here used as a one-parametric, where a2 is the only fitted parameter
and σ0 is tensile strength. The σC parameter corresponds to the highest stress level, at
which the specimen did not break until the lifetime NC = 107 cycles. This stress level is in
accordance with [19], assumed to correspond to the fatigue limit. Thanks to the use of the
sinus function, the approximations are twice bent, which enables to follow the S-N curve
trends in both transitions to the horizontal lines. Materials and specimens leading to S-N
curve data items that show such S-like trend can thus be suitably modeled by the FF function.
On the other hand, the same function limits the use of this formula for lifetimes longer than
NC = 107 cycles, where the function would start to increase again to higher stresses, which is
unlikely for any material. The FF approximation is also not suitable for load level tests. The
examples of approximations by the three mentioned formulas can be compared in Figure 6.
The functions of the first two formulas (Basquin—Equation (1), Kohout-Věchet—Equation (2))
are shown also outside the interpolation domain of analyzed data, so that their general trends
were clearer. Due to the mentioned character of the sinus function, the FF approximation is
shown only until NC = 107 cycles, and not at higher lifetimes.

The shape of the Kohout-Věchet curve, e.g., for FF033 experiment in repeated torsion
(Figure 6), is caused by the model properties, where the transition to the quasi-static
region best follows the experimental data items, and it leads to the smallest coefficient
of determination R2. As only data items related to broken specimens are used for this
regression model, the obtained regression curves for most evaluated load cases are limited
in their interpolation region only to the lifetimes up to 2 million cycles. Some test cases
show the limitation even more stringently, as e.g., the FF033 test case that is usable only
up to approx. 900,000 cycles. To get the reasonably set fatigue strengths for each load
case, another approximation rather than the Kohout-Věchet model should be applied. To
increase the multiaxial fatigue strength analyses reported hereafter, also to the lifetimes of
1, 2, 5 and 10 million cycles, the FF approximation was chosen.

The quality of each of the approximations described in Equations (1), (2) and (4) is
compared in Figure 7. The chosen characteristics shown for each load case is the coefficient
of determination R2. In this comparison, the Kohout-Věchet model clearly attains the
best results, and the Basquin model and FF model are comparable one to another, but are
weaker than the Kohout-Věchet approximation. It should be anyhow reminded, that R2

parameters are computed on different sets of experimental points—the Basquin curve is
regressed only on points in the inclined part of the S-N curve, the Kohout-Věchet curve
excludes all run-outs, and only the FF model covers all data points. Logically, its results
can be comparably worse to the Kohout-Věchet model in R2 parameters due to the largest
scope of regression inputs.

The parameters of the FF model for each tested load case are summarized in Table 5.
To also show the limitation on the scope of usable lifetimes that should be imposed when
dealing with the regression curves, the shortest fatigue life obtained experimentally for
each load case is documented in Table 5 as Nmin parameter.
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Figure 7. Comparison of the coefficient of determination R2 for 3 evaluated regression formulas and individual load cases.

Table 5. Parameters of the FF approximations (Equation (4)) for each load case, including also the
lowest measured experimental lifetime Nmin, which together with the run-out level at 10,000,000
cycles define the complete interpolation region of each regression curve.

Mark a2 [-] σ0 [MPa] σC [MPa] N0 [-] Nmin [-]

FF001 1.366 405.5 135.6 0.25 59,663
FF002 1.6989 319.9 87.0 0.25 101,102
FF003 3.108 215.2 141.8 0.25 38,206
FF004 3.061 206.1 124.7 0.25 19,604
FF005 3.551 153.6 95.3 0.25 31,769
FF030 0.92 734.1 238.9 0.25 28,562
FF031 1.388 327.0 187.3 0.25 29,150
FF033 2.153 280.9 150.2 0.25 17,553
FF040 2.001 520.5 310.3 0.25 89,700
FF041 1.35 480.4 245.8 0.25 97,324
FF042 2.349 230.1 159.5 0.25 92,200
FF044 2.369 217.8 121.1 0.25 56,102
FF045 2.09 107.8 62.7 0.25 33,100
FF046 0.911 837.6 286.9 0.25 81,900
FF047 0.873 805.4 273.4 0.25 66,537
FF048 1.163 464.3 234.5 0.25 123,147
FF049 0.512 1362.4 225.2 0.25 79,393
FF050 1.304 540.5 220.8 0.25 72,732
FF051 1.207 610.6 214.1 0.25 75,425
FF054 2.509 247.4 146.6 0.25 96,540
FF055 2.729 231.7 155.3 0.25 51,330
FF056 8.14 153.2 123.9 0.25 175,000
FF057 2.135 233.4 136.1 0.25 8886
FF058 2.404 240.7 145.7 0.25 18,210
FF059 5.815 191.3 157.1 0.25 82,310
FF060 5.774 189.2 167.2 0.25 97,500
FF061 6.216 294.7 212.7 0.25 45,723
FF062 1.818 402.2 244.9 0.25 69,061
FF063 0.828 661.9 217.0 0.25 15,656
FF064 1.656 367.4 208.6 0.25 135,447
FF065 6.263 252.3 210.6 0.25 220,139
FF074 2.996 204.4 142.5 0.25 120,600
FF075 2.588 304.0 91.6 0.25 80,310
FF092 2.962 234.7 166.2 0.25 30,800
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3. Multiaxial Fatigue Strength Criteria

Though the validation program of multiaxial fatigue strength criteria on the presented
experimental data concerned 24 calculation methods, this paper presents only 11 of them
due to space limits. Mostly, the methods frequently appearing in papers on multiaxial
fatigue strength analyses or those implemented in commercial fatigue solvers were selected
in addition to some others performing well in other such comparisons [14,23–25]. The
chosen methods are summarized in Table 6, where each is described by the appropriate
reference, by its abbreviation used hereafter and, above all, by its formula.

The multiaxial fatigue strength criteria summarized in Table 6 cover a different ap-
proach to multiaxial prediction. The most common solution presently is the critical plane
model. If a given hot-spot in which the fatigue crack initiates is evaluated, the critical
plane model expects that there is some unique plane on which the stress parameters, when
evaluated, result in the highest equivalent stress amplitude, and that this critical plane
thus manifests the fatigue response of the whole specimen. From the models selected
for the documented validation, the Dan Van criterion [26], the Findley criterion [27], the
McDiarmid criterion [28], the Papuga QCP criterion [24,29] and the Papuga PCRN cri-
terion [23,29] belong to this family of criteria. The same concept of one decisive critical
plane can use another option to set the critical plane—this is the orientation for which the
maximum shear stress range is found on the plane during the load cycle. This solution is
here represented by the Matake criterion [30].

Another approach does not look for a critical plane but evaluates the composition of
stress parameters on all planes defined by two Euler angles: ϕ and θ resulting in its integral
mean value to be input into the final equivalent stress amplitude σeq,a. These criteria are
usually called integral criteria. Two representatives were chosen in this validation—the
Liu and Zenner criterion [31] and the Papadopoulos criterion [32]. The latter one processes
the projection of the shear stress path on the evaluated plane into a specific direction given
by the third angle χ. This projection is called resolved shear stress T.

In most of these criteria, the processed stress parameters relate to the examined plane—
these are normal stress N (normal to the plane), and shear stress C (lying in the examined
plane). All analyses, results of which are described hereafter, were done with the analysis
of the stress path parameters via the minimum circumscribed circle concept, as described
by Papadopoulos et al. in [25]. It is important to note that there are alternatives to this
solution, as discussed by Meggiolaro et al. [33] or by Papuga et al. [34]—e.g., the minimum
circumscribed ellipse method or the maximum prismatic hull. The difference in the method
of processing the shear stress path would, however, concern only the two load cases of
FF003 and FF004 run with the non-zero phase shift (see Table 4).

In addition to critical plane criteria and integral criteria, two more methods remain.
There are two criteria—by Crossland [35] and by Sines [36] —that process the history of
stress tensor components separated to the description of the stress deviator J2 and the
hydrostatic stress σH. To minimize the computation costs, the six stress tensor components
can be reduced to five, thanks to the dependency of stress deviator components on its trace.
This reduction to five parameters allows to project the load history into 5D Ilyushin’s devi-
atoric space and the concept of the minimum circumscribed hyperball (or hyperellipsoid)
which can be applied to it to provide the amplitude value as the radius of the hyperball.

The last criterion is the recently proposed MMP criterion, which offers the unique
simplicity of processing the load history (but only then, when the load cycle is clearly
defined). Each of the stress components is treated separately to define its amplitude and
mean values, which are then completed into the formula in Equation (12). The validation
of this method in [14] showed that despite the simple approach, the results are highly
competitive with other commonly used criteria.

The material parameters necessary for each criterion are derived from fatigue strengths
in axial loading and in torsion loading. They are reported in Table 7. The stress compo-
nents that correspond to the fatigue strengths at given Nx cycles are derived from the FF
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approximation and from the outputs of the FE-analyses. All fatigue strength analyses were
run in PragTic fatigue solver [37].

For the validation purposes, equivalent stress amplitude σeq,a(Nx) in Equations (6)–(16)
was compared with fatigue strengths in fully reversed push–pull loading p−1(Nx) or in
bending b−1(Nx), which replaced, in the formulas in Equations (6)–(16), the more general
fatigue strength in fully reversed axial loading s−1(Nx). The fatigue strength in fully reversed
bending was applied in all multiaxial load cases including the non-zero bending load channel,
while all other test cases were analyzed while using the fatigue strength p−1(Nx).

In the validation process, the prediction quality was not assessed directly for each experi-
mental data point, but on fatigue strengths derived from the FF regression curves within whole
interpolation domain of each test case. Seven levels of lifetimes (numbers of cycles) were chosen
for the analysis in this paper: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 million cycles.

The relative error between the computed equivalent stress amplitude σeq,a(Nx) and
the given material response in fully reversed axial fatigue strength s−1(Nx) corresponds to
the fatigue index error ∆FI(Nx):

∆FI(Nx) =

(
σeq,a(Nx)− s−1(Nx)

s−1(Nx)

)
·100% (5)

Table 6. Formulas of methods used within the validation program. Parameters used: s−1—fatigue strength in fully reversed
axial loading, Su—tensile strength, J2—second invariant of the deviatoric stress tensor, σH—hydrostatic stress, C—shear
stress on the examined plane, N—normal stress on the examined plane, θ, ϕ—Euler angles defining the orientation of the
examined plane, T—resolved shear stress (shear stress projection into a direction described by χ angle), w—Walker’s mean
stress effect parameter. Indexes a and m designate the amplitude and mean values, respectively. Formulas for computing a,
b, c, d parameters are provided in Table 7.

Criterion Abbrev. Formulation of the Equivalent Stress Amplitude Equation

Crossland CROSS σeq,a = aC·
(√

J2
)

a + bC·σH,max (6)

Dang Van DV σeq,a = max
ϕ,θ

(aDV ·Ca + bDV ·σH,max) (7)

Findley FIN σeq,a = max
ϕ,θ

(aF·Ca + bF·Nmax) (8)

Liu-Zenner LZ σeq,a =
√∫ 2π

ϕ=0

∫ π
θ=0
[
aLC2

a
(
1 + cLC2

m
)
+ bL N2

a (1 + dL Nm)
]
sinθ dθ dϕ (9)

Matake MATA σeq,a = aM·Ca + bM·Nmax (10)

McDiarmid MCD σeq,a = max
ϕ,θ

(
s−1
tAB
·Ca +

s−1
2Su
·Nmax

)
(11)

Manson-
McKnight-Papuga MMP

σeq,a = σw
aP·(σaP + βP·σmP)

1−w ≤ s−1

σaP =

√√√√ 1
2

[ (
σx,a − σy,a

)2
+
(
σy,a − σz,a

)2
+ (σz,a − σx,a)

2

+2·κ2
(

σ2
xy,a + σ2

yz,a + σ2
zx,a

) ]

σmP =

√√√√ 1
2

[ (
σx,m − σy,m

)2
+
(
σy,m − σz,m

)2
+ (σz,m − σx,m)

2

+2·X2
m

(
σ2

xy,m + σ2
yz,m + σ2

zx,m

) ] (12)

Papadopoulos PAPADO
σeq,a =

√
aP·T2

a + bP·σH,max√
T2

a =
√

5
8π2

∫ 2π
ϕ=0

∫ π
θ=0

∫ 2π
χ=0(Ta(ϕ, θ, χ))2dχ sinθ dθ dϕ

(13)

Papuga QCP QCP σeq,a = max
ϕ,θ

√
aQ·Ca

(
Ca + cQ·Cm

)
+ bQ·Na

(
Na + dQ·Nm

)
(14)

Papuga PCRN PCRN σeq,a = max
ϕ,θ

√
aI ·Ca(Ca + cI ·Cm) + bI ·

√
Na(Na + dI ·Nm) (15)

Sines SINES σeq,a = aS·
(√

J2
)

a + bS·σH,m (16)
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The multiaxial criteria often include the effect of the mean normal stress Nm in their
formula, but the effect of the mean shear stress Cm is usually neglected. The exact formula-
tion of the mean stress effect depends on each criterion. Crossland [35] covers the mean
stress effect only by σH,max, which corresponds to the maximum hydrostatic stress during
the loading cycle. Focusing on the mean normal stress only is probably historically caused
by Sines [36], who postulated on the basis of gathered experimental data, that the mean
shear stress has only limited effect on the fatigue limit, unless it exceeds the value of yield
stress in shear. Papadopoulos et al. [25] applied this assumption as the requirement for
assessing the suitability of various fatigue strength methods, and their work affected many
researchers who did not object to it.

Table 7. Material parameters of individual criteria and their limitations. s−1—fatigue strength in fully reversed axial
loading, t−1—fatigue strength in fully reversed torsion, t0—fatigue strength in repeated torsion (maximum stress of the
cycle), s0—fatigue strength in repeated axial loading (maximum stress of the cycle), σ1 is maximum principal stress, σ3 is
minimum principal stress, κ is ratio of fatigue strengths in fully reversed loadings (s−1/t−1), κ0 is ratio of fatigue strengths
in repeated loadings (s0/t0).

Criterion Formula Equation

Crossland aC = s−1
t−1

, bC = 3−
√

3· s−1
t−1

(17)

Dang Van aDV = s−1
t−1

, bDV = 3− 3
2 ·

s−1
t−1

(18)

Findley aF = 2·
√

s−1
t−1
− 1, bF = 2− s−1

t−1
(19)

Liu-Zenner
aL = 3

2

[
3
(

s−1
t−1

)2
− 4

]
, cL = 28

3aL ·t4
0

[
s2
−1 −

( s−1
t−1
·t0

2

)2]
bL = 3

[
3−

(
s−1
t−1

)2
]

, dL = 28
15bL ·s0

[(
2s−1

s0

)2
− 4

21 cL·aL·
( s0

2
)2 − 1

] (20)

Matake aM = s−1
t−1

, bM = 2− s−1
t−1

(21)

Manson-McKnight-Papuga
w =

log s0
s−1

log2 , Xm = 2·κ·
[(

2·t−1
t0

) 1
1−w − 1

]
|σ1,max| ≥

∣∣σ3,min
∣∣ : βP = σ1,max

σ1,max−σ3,min

|σ1,max| <
∣∣σ3,min

∣∣ : βP =
σ1,min

σ1,max−σ3,min

(22)

Papadopoulos aP =
(

s−1
t−1

)2
, bP = 3−

√
3· s−1

t−1
(23)

Papuga QCP

aQCP = κ2 , cQCP =
4·s2
−1

b·t2
0
− 1

κ <
√

2 : bQCP = 1 , dQCP =
4·s2
−1

bQCP ·s2
0
− 1

κ ≥
√

2 : bQCP = κ2 − κ4

4 , dQCP =
4·s2
−1

bQCP ·t2
0
·
(

1− κ2

4

)
− 1

(24)

Papuga PCRN

1 ≤ κ (κ0) <
√

4
3 : aI =

κ2

2 +
√

κ4−κ2

2 , bI = s−1

cI =
2s2
−1

aI ·t2
0
·
(

1 +
√

1− 1
κ0

2

)
− 1, dI =

(
2s2
−1

bI ·s0

)2
− 1

κ (κ0) ≥
√

4
3 : aI =

(
4·κ2

4+κ2

)2
, bI = 8·s−1·κ2· 4−κ2

(4+κ2)2 , cI =
z
aI
− 1,

dI =
z

bI 2 ·
(
4·s2
−1 − z·t2

0
)
− 1, z =

[
8·κ0·s−1

t0·(4+κ0
2)

]2

(25)

Sines aS = s−1
t−1

, bS = 6· s−1
s0
−
√

3· s−1
t−1

(26)

Experiments and references cited by Papuga and Halama in [35] document that
including the mean shear stress into the criterion can improve the prediction quality, which
is proven on PCRN and QCP criteria. Acceptance of this effect and its inclusion into
the formulas imposes another requirement on material parameters to be used—the S-N
curve in repeated torsion is necessary. In the test set presented here, the FF033 test case
performed on S1 configuration of specimens is available for these smaller specimens. To get
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the appropriate fatigue strengths in repeated torsion, also for bigger S2 and S3 specimens,
the formula proposed by Zenner et al. [28] is used:

4·t−1

t0
− 2·s−1

s0
= 1 (27)

The same formula was used by Papuga in [35]. Papuga described that the validation of
the formula in Equation (27) for test sets for which all four fatigue strengths were available
showed that the relative error of the estimated fatigue strength in repeated torsion did not
exceed 5%.

4. Discussion of Results

Results of chosen multiaxial fatigue strength estimation methods from Equations (6)–(16)
are statistically processed and provided to the reader in Tables 8–10. Table 8 describes
the mean ∆FI fatigue index errors. It also summarizes the sum of ∆FI squares over all
evaluated lifetimes, which nicely documents the overall prediction quality. To support
a quicker evaluation of this output, the conditional formatting of this parameter over all
validated methods is shown, with the red color marking the worst results and the green
color highlighting the best results. The same system of conditional formatting is also used
in Tables 9 and 10. The mean ∆FI errors are provided at each evaluated lifetime and also for
all of them together to document the overall trend and the potential deviations from it for
individual lifetimes. The results gathered in Table 8 highlight the good prediction quality
of PCRN, MMP and QCP formulas, and it also clearly shows the much worse results of
SINES, CROSS, PAPADO and FINDLEY criteria.

Table 8. Results of the ∆FI statistics for 11 methods at different Nx—sum of squares and mean values.

Comp.
Method

Sum of ∆FI
Squares

Mean Value of ∆FI for Nx

All 100,000 200,000 500,000 1 × 106 2 × 106 5 × 106 1 × 107

CROSS 1334% −9.1% −9.2% −8.9% −8.5% −8.2% −9.1% −9.8% −10.1%
DV 841% 2.4% 1.9% 2.2% 2.8% 3.2% 2.6% 2.1% 1.8%

FINDLEY 1134% 7.8% 7.0% 7.7% 8.5% 8.7% 8.1% 7.5% 7.1%
LZ 295% 2.0% 3.6% 3.3% 2.8% 1.7% 1.5% 0.7% 0.2%

MATA 864% 4.5% 4.0% 4.5% 5.1% 5.2% 4.7% 4.1% 3.8%
MCDMD 279% −0.2% 2.7% 1.7% 0.5% −0.9% −1.1% −1.9% −2.2%

MMP 148% 0.3% 1.6% 1.4% 1.0% 0.0% −0.1% −0.8% −1.2%
PAPADO 1341% −8.3% −8.6% −8.1% −7.7% −7.4% −8.2% −8.8% −9.1%

QCP 165% 0.7% 2.3% 2.0% 1.5% 0.4% 0.3% −0.4% −0.8%
PCRN 98% 2.8% 4.0% 3.9% 3.4% 2.6% 2.5% 1.9% 1.6%
SINES 1561% 11.7% 13.1% 13.0% 12.5% 11.6% 11.3% 10.5% 10.0%

Table 9. Results of the ∆FI statistics for 11 methods at different Nx—sample standard deviations.

Comp.
Method

Sample Standard Deviation of ∆FI for Nx

All 100,000 200,000 500,000 1 × 106 2 × 106 5 × 106 1 × 107

CROSS 21.9% 22.8% 22.8% 22.8% 22.0% 22.1% 21.5% 21.2%
DV 18.7% 18.2% 18.9% 19.5% 19.4% 19.2% 18.7% 18.4%

FINDLEY 20.4% 20.1% 20.7% 21.3% 21.3% 21.0% 20.4% 20.0%
LZ 11.0% 10.9% 11.0% 11.1% 10.8% 11.3% 11.3% 11.1%

MATA 18.6% 18.9% 19.2% 19.5% 19.1% 18.8% 18.2% 17.8%
MCDMD 11.1% 11.1% 10.9% 10.8% 10.5% 10.8% 10.9% 10.9%

MMP 7.9% 8.1% 8.0% 8.0% 7.6% 8.0% 8.0% 7.9%
PAPADO 22.3% 23.2% 23.2% 23.2% 22.4% 22.5% 22.0% 21.6%

QCP 8.3% 7.1% 7.4% 7.9% 8.3% 8.8% 9.2% 9.3%
PCRN 5.8% 5.4% 5.4% 5.6% 5.6% 6.0% 6.2% 6.3%
SINES 22.8% 22.7% 23.1% 23.5% 23.2% 23.4% 23.1% 22.6%
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Table 10. Results of the ∆FI statistics for 11 methods at different Nx—minimum and maximum values
and the variation range.

Comp. Method Minimum Maximum Variation Range ∆FI
CROSS −70.6% 30.5% 101.1%

DV −30.1% 65.2% 95.3%
FINDLEY −30.4% 58.4% 88.8%

LZ −30.2% 42.8% 73.0%
MATA −30.4% 49.4% 79.8%

MCDMD −28.3% 22.7% 51.1%
MMP −18.5% 25.2% 43.6%

PAPADO −70.6% 30.5% 101.1%
QCP −31.8% 27.5% 59.3%

PCRN −16.5% 17.0% 33.5%
SINES −25.0% 92.7% 117.6%

A quite important question is whether the individual criteria will show some sys-
tematic change of the ∆FI output at different lifetimes. Tables 8 and 9 show that there are
changes for different lifetime levels, but the values remain quite stable—the typical range
of values of 2% can be found for most cases. This confirms the expectation by Karolczuk
et al. [36] that the fatigue strengths at the evaluated lifetime (and not for some hypothetical
fatigue limit) should be used for computing the material parameters of individual multiax-
ial fatigue criteria. The relative insensitiveness of the ∆FI level to Nx fatigue life, at which it
is computed, demonstrates also that the regression by the FF function did not affect the
output in a negative way.

Table 9 states the sample standard deviations of ∆FI, both at individual lifetimes
and over all of them, where the conditional formatting is again used. The evaluation of
individual methods do not differ substantially from the conclusion made for Table 8.

The smallest sample standard deviation can be detected by PCRN, MMP and QCP
methods. Its highest value is the result of applying SINES, PAPADO and CROSS methods.
If the overall prediction quality is compared over all evaluated lifetimes, the PCRN, QCP
and MMP methods provide better output than other validated methods. If the sample
standard deviation of PCRN is compared with the Dang Van method (DV), which is the
most often used solution in the engineering practice, it can be noted that the sample
standard deviation of ∆FI for the PCRN criterion is three times smaller than the sample
standard deviation of the DV criterion.

Table 10 shows minimum and maximum ∆FI values and its variation range. It can be
concluded that even this parameter results in a very similar ranking of individual fatigue
strength criteria as found in Tables 8 and 9. Histograms of ∆FI occurrence in all experiments
and at all evaluated lifetimes are depicted in Figure 8 for all validated multiaxial fatigue
strength criteria.
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Figure 8. Histograms of ∆FI errors for all 34 test cases, 7 evaluated lifetimes and all 11 multiaxial fatigue strength criteria
validated according to Table 6.

5. Conclusions

The analysis presented in this paper focuses on validating 11 different multiaxial
fatigue strength criteria on the own test set composed of 34 S-N curves describing the
fatigue response for different multiaxial load cases. The S-N curves were approximated on
the experimental data based on the FF regression function. All test cases relate to hollow
specimens manufactured from a single melt of the ČSN 41 1523 structural steel equivalent
to S355JR.

Eleven chosen fatigue strength criteria comprise commonly used criteria and some
new criteria, which were recently proven to provide good prediction results. For each load
case, the validation is realized on fatigue strengths retrieved from the FF approximation
at seven different lifetimes between 0.1 and 10 million cycles. The results are assessed
based on the defined fatigue index error ∆FI and its statistical processing over all evaluated
lifetimes and checked load cases. The mean value of ∆FI, the sum of its squares, sample
standard deviation or its variation range are assessed. Based on the comparison for various
evaluated multiaxial criteria, for the tested material and for tested load cases, it can be
concluded:

• PCRN, QCP and MMP methods result in the best prediction quality, and their sample
standard deviation is multiple times lower than the sample standard deviation of the Dang
Van method, though the Dang Van method is commonly used in the engineering practice.

• In the range between 0.1 and 10 million cycles, the prediction quality is stable, and the
variability of ∆FI over this interval is negligible if compared with the overall prediction
scatter. This holds true only then, when the complete calculation of the equivalent
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stress amplitude and of the material parameters specific to each multiaxial fatigue
strength criterion, as described in Tables 6 and 7, is done at the same fatigue life.

Author Contributions: Conceptualization, J.P. and F.F.; methodology, J.P.; software, J.P. and F.F.;
validation, J.P. and F.F.; formal analysis, J.P. and F.F.; investigation, J.P. and F.F.; data curation,
F.F.; writing—original draft preparation, J.P. and F.F.; writing—review and editing, J.P. and F.F
visualization, J.P., F.F, M.F. and R.H; supervision, M.F. and R.H.; project administration, F.F., M.F. and
J.P. All authors have read and agreed to the published version of the manuscript.

Funding: The research by František Fojtík, Martin Fusek and Radim Halama was supported by
19-03282S project of the Czech Science Foundation, and by the specific research SP2020/23 project,
supported by the Ministry of Education, Youth and Sports of the Czech Republic. Jan Papuga
acknowledges support from the ESIF, EU Operational Programme Research, Development and Edu-
cation, from the Center of Advanced Aerospace Technology (CZ.02.1.01/0.0/0.0/16_019/0000826);
Faculty of Mechanical Engineering, Czech Technical University in Prague, and from the Grant Agency
of the Czech Technical University in Prague, grant number SGS20/158/OHK2/3T/12.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to their complexity.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Nomenclature
a2 [-] parameter for FF approximation

a, b, c, d [-]
material parameters for various multiaxial fatigue limit estimation
methods

a, β, B, C [-] material parameters of Kohout-Věchet regression
b−1 [MPa] fatigue strength in fully reversed bending loading
b [MPa] exponent of fatigue strength
β [-] mean stress coefficient
C [MPa] shear stress on an examined plane
d [mm] inner diameter
D [mm] outer diameter
∆FI [%] fatigue index error
F [N] axial force
ϕ, θ [◦] Euler angles defining the orientation of the examined plane
ϕat [◦] phase shift between signals on axial and torsion load channels
J2 [MPa] second invariant of the deviatoric stress tensor
κ [-] ratio of fatigue strengths in fully reversed loadings κ = s−1/t−1
κ0 [-] ratio of fatigue strengths in repeated loadings κ0 = s0/t0
Mb [Nmm] bending moment
Mk [Nmm] torque
N [MPa] normal stress on an examined plane
Nx [-] number of cycles
NC [-] number of cycles at σc
p−1 [MPa] fatigue strength in fully reversed push–pull
P [MPa] pressure
R2 [-] coefficient of determination

s−1 [MPa]
fatigue limit in fully reversed axial loading (stress amplitude of the
cycle)

s0 [MPa] fatigue limit in repeated axial loading (maximum stress of the cycle)
Su [MPa] tensile strength
σ1 [MPa] maximum principal stress
σ3 [MPa] minimum principal stress

σc [MPa]
the highest stress level, at which the specimen did not break until
Nc = 107 cycles
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σeq,a [MPa] equivalent stress amplitude
σ’f [MPa] coefficient of fatigue strength
σH [MPa] hydrostatic stress
t0 [MPa] fatigue limit in repeated torsion (maximum stress of the cycle)
t−1 [MPa] fatigue limit in fully reversed torsion (stress amplitude of the cycle)
T [MPa] resolved shear stress (shear stress projection into a given direction)
Xm [-] shear stress weight coefficient in the MMP method
w [-] Walker exponent

Abbreviations
K&V Kohout-Věchet regression curve
PB plane bending
PV pressure vessel mode
RP pressure loading
Ten tension-compression (push–pull) loading
To torsion loading

Indexes
a, A amplitude
m, M mean value
max maximum value
0 referring to repeated loading (from zero to maximum value)
−1 referring to fully reversed loading (from −x to +x)
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