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S1. Modelling Ion Exchange Equilibrium 

The ion exchange between counter ions AzA  and BzB  (with valences zA  and zB) 

present in the solution and in the solid exchanger, respectively, can be represented as [1,2]: 

𝑧BAzA + 𝑧ABzB̅̅ ̅̅ ̅  
 

↔ 𝑧BAzA̅̅ ̅̅ ̅ +  𝑧ABzB   (S1) 

where the capping bar denotes the exchanger phase, A is Hg2+ and B is Na+. The cor-

responding thermodynamic equilibrium expressed in terms of ion activities is: 

𝑲𝐁
𝐀(𝑻)   =   

�̅�𝐀
𝐳𝐁𝒂B

𝐳𝐀

𝒂𝐀
𝐳𝐁�̅�B

𝐳𝐀
 (S2) 

�̅�i   =   �̅�i × 𝒚i      𝒂𝒏𝒅      𝒂i   =   𝜸i × 𝒎i (S3) 

where 𝐾B
A(𝑇) is the equilibrium thermodynamic constant, 𝑎i and �̅�i are the activities of 

counter ions in solution and solid exchanger, respectively, 𝛾i and �̅� are the activity coef-

ficients in solution and in solid phases, respectively, 𝑦i is the mole fraction of 𝑖 in the 

exchanger, 𝑚𝑖 is the molality of 𝑖 in the liquid solution (mol kg−1).  

In the literature, several models to estimate activity coefficients have been success-

fully employed, such as Debye–Hückel, [3] Pitzer [3–8], and Bromley [9], for liquid solu-

tion, and Wilson [3–7,9], Margules [8], NRTL [4,8], and UNIQUAC [4,8] for the ion ex-

changer. In this work, the Debye– Hückel model was adopted for 𝛾i  and the Wilson 

model for �̅�i. The models are summarized in Table S1 [2,5,10]. 

In order to optimize the equilibrium constants of the system, 𝐾B
A(𝑇), independently 

of the parameters of the activity coefficients in the exchanger phase (𝛬12 and 𝛬21), two 

powerful and thermodynamically consistent approaches are available in the literature, 

namely Gaines and Thomas [11] and Ioannidis et al. [12]. The second method was adopted 

in this work, since it does not require experimental data over the entire concentration 

range. The Ioannidis et al. method is based on the following equation: 
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ln
�̅�A

𝑧B(𝜃2)

�̅�A
𝑧B(𝜃1)

+ ln
�̅�B

𝑧A(𝜃1)

�̅�B
𝑧A(𝜃2)

  =   ln 𝐾aB
A (𝜃1) − ln 𝐾aB

A (𝜃2) (S4) 

where 𝜃1 and 𝜃2 represent two points of the equilibrium isotherm, and 𝐾aB
A  is the cor-

rected selectivity coefficient: 𝐾aB
A  =  𝐾B

A(�̅�B
zA �̅�A

zB⁄ ). One data point is fixed (e.g., 𝜃1) while 

𝜃2  spans the remaining ones, for which ln 𝐾aB
A  are calculated. Then the differences 

ln 𝐾aB
A (𝜃1) − ln 𝐾aB

A (𝜃2) are computed, and the �̅�i parameters (𝛬12 and 𝛬21) are optimized 

by minimizing the sum of residuals [2]. 
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Table S1. Models adopted for the estimation of activity coefficients of counter ions in the liquid and exchange phase. 

Model for 𝛄𝐢 Notes 

Debye-Hückel (DH) 

𝐋𝐧 𝜸𝐢   =   −
𝑨𝛄𝒛𝐢

𝟐√𝑰

𝟏 + 𝜷𝒂√𝑰
 (S5) 

a (Å ) is the minimum approximation distance between ions; 

𝒏 is the number of charged species in solution,  

𝑨𝛄 is the Debye-Hückel constant; 

𝑵𝟎  =  𝟔. 𝟎𝟐𝟐𝟏𝟒𝟎𝟖𝟔 × 𝟏𝟎𝟐𝟑 mol-1 is the Avogadro’s constant,  

𝝆𝐰 (g cm−3) is the density;  

𝝐 (C2 N−1 m−2) is the dielectric constant; 

𝒌𝐁  =  𝟏. 𝟑𝟖𝟎𝟔𝟔 × 𝟏𝟎−𝟏𝟗 J K−1 is the Boltzmann’s constant; 

𝑻 (K) is the absolute temperature; 

𝒆 =  𝟏. 𝟔𝟎𝟐𝟎𝟔 × 𝟏𝟎−𝟏𝟗 C is the electron charge 

𝑨𝛄  =  (
𝜺𝟐

𝝐𝒌𝐁𝑻 
)

𝟑/𝟐

√
𝟐𝝅𝝆𝐰𝑵𝟎

𝟏𝟎𝟎𝟎
   (𝐒𝟔. 𝟏)   𝐚𝐧𝐝       𝜷 =  √

𝟖𝝅𝒆𝟐𝑵𝟎𝝆𝐰

𝟏𝟎𝟎𝟎𝝐𝒌𝐁𝑻
 (S6.2) (S6) 

𝑰 =  
𝟏

𝟐
∑ 𝒛𝐢

𝟐𝒎𝐢

𝒏

𝒊  =  𝟏

 (S7) 

Model for �̅�𝐢 Notes 

Wilson (WL) 𝐋𝐧 �̅�𝐢  =  𝟏 − 𝐥𝐧 ( ∑ 𝒚𝐣

𝒏

𝒋 = 𝟏

𝜦𝐢𝐣) − ∑
𝒚𝐤𝜦𝐤𝐢

∑ 𝒚𝐣𝜦𝐤𝐣
𝒏
𝒋 = 𝟏

𝒏

𝒌 = 𝟏

 (S8) 
𝜦𝐢𝐣 and 𝜦𝐣𝐢 are binary interaction temperature-dependent parameters 

defined such that 𝒊 ≠ 𝒋; 

NRTL 

Ln �̅�i  =  
∑ 𝒚j𝝉ji𝑮ji

𝒏c
j = 𝟏

∑ 𝒚k𝑮ki
𝒏c

k = 𝟏

+ ∑
𝒚j𝑮ij

∑ 𝒚k𝑮kj
𝒏c

k = 𝟏

𝒏c

j = 𝟏

(𝝉ij −
∑ 𝒚r𝝉rj𝑮rj

𝒏c
r = 𝟏

∑ 𝒚k𝑮kj
𝒏c

k = 𝟏

) (S9) gij is an energy parameter characteristic of the i − j interaction;  

αij is related to the non-randomness in the mixture; 

𝕽 =  𝟖. 𝟑𝟏𝟒𝟓 J mol−1 K−1 is the universal gas constant 

𝝉ij  =  
𝒈ij−𝒈jj

𝕽𝑻
,    𝑮ij  =  𝐞𝐱𝐩 (−∝ij 𝝉ij),    ∝ji = ∝ij (S10) 
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S2. Modelling Ion Exchange Kinetics 

The mass transport phenomena can be effectively described by Nernst–Planck (NP) 

and generalized Maxwell–Stefan (MS) equations, taking into account both concentration 

and electrical potential gradients. In this work, the MS formalism is adopted to model the 

removal performance of mercury(II) ion from aqueous solution, in view of the reliable 

results achieved in other research works focusing ion exchange [2,13–17]. Although fre-

quently used, the semi-empirical pseudo-first and pseudo-second order equations for the 

kinetic performance of an ion exchange process possess no theoretical background, which 

limits their application and extrapolation [18]. However, Rodrigues and Silva [18] showed 

recently that, in the case of a system with a linear isotherm, the pseudo-first order equation 

provides equivalent results to the linear driving force model of Glueckauf.  

S2.1. Modelling Ion Exchange Kinetics 

Surface diffusion is the transport mechanism coherent with the small pore diameters 

of ETS-4 ((3 − 4) × 10−10 m). Assuming uniform distribution of fixed charges in the solid, 

which is taken as the (𝑛 + 1)th component and possesses null velocity ( 𝑢n+1  =  0, as in 

the dusty gas model), the generalized MS equation of species 𝑖 in multicomponent ionic 

system is given by [13–15,19,20]: 

−
𝑦i

′

ℜ𝑇
𝛻𝜇i̅ − 𝑦i

′𝑧i

𝐹

ℜ𝑇
𝛻�̅�  =  ∑

𝑦j
′𝑁i − 𝑦i

′𝑁j

𝑞tÐij

𝑛

𝑗 = 1
𝑗≠𝑖

+
𝑦s

′𝑁i

𝑞tÐis
 (S11) 

where 𝑦i
′  =  𝑞i 𝑞t⁄  is the molar fraction of ion 𝑖, 𝑦s

′  =  𝑞s/𝑞t the molar fraction of co-ions, 

and 𝑞t  =  𝑞A + 𝑞B + 𝑞s is the total molar concentration of ionic species in the exchanger 

(subscript s denotes the solid), 𝛻𝜇i̅ (J mol−1 m−1) corresponds to the chemical potential gra-

dient of i in the exchanger, Ðij (m s−2) is the MS counter diffusivity coefficient of i-j pair, 

Ðis is the MS surface diffusivity corresponding to the interaction between i and co-ions, 

𝑁i is the molar flux of the ionic species i (mol s−1 m−2), 𝐹 =  96485.33289(59) C mol−1 is 

the Faraday constant, and 𝛻�̅� (volt) is electric potential gradient in the solid. 

The chemical potential in the exchanger (𝜇i̅, J mol-1) can be defined in terms of the 

hypothetical liquid solution in equilibrium, taking into account the isofugacity conditions 

in this case (i.e., 𝜇i̅  =  𝜇i
∗): 

𝑦i
′

ℜ𝑇
𝛻𝜇i̅  =  ∑ 𝛤ij∇𝑦j

′

n

j = 1

j ≠ i

     with     𝛤ij ≡ 𝑦i
′

𝜕ln (𝛾i
∗𝑥i

∗)

𝜕𝑦j
′  

(S12) 

where 𝛾i
∗ is the activity coefficient of counter ion i in the equilibrium solution, 𝛤ij  is the 

so-called MS thermodynamic factor, and 𝑥i
∗ is the molar fraction of i in the hypothetical 

liquid solution and is related with 𝑦i
′ by the equilibrium isotherm. Combining the previ-

ous equations and solving for the fluxes, 𝑁i, a n-dimensional matrix form is obtained 

which introduces the well-known MS matrix, [𝐵]: 

(𝑵)  =  −𝒒𝐭[𝑩]−𝟏[𝜞](𝛁𝒚′) − 𝒒𝐭[𝑩]−𝟏(𝛁 �̅�) (S13) 

with 𝐵ii ≡
𝑦s

′

Ðis
+ ∑

𝑦j
′

Ðij

𝑛
𝑗  =  1
𝑗 ≠ 𝑖

      and      𝐵ij ≡ −
𝑦i

′

Ðij
 (S14) 

and ∇ 𝜉i̅ ≡ 𝑦i
′𝑧i

𝐹

ℜ𝑇
 𝛻�̅� (S15) 

The conditions of electroneutrality ( ∑ 𝑞i𝑧i  =  0
𝑛c+1
i = 1 ) and no electric current 

(∑ 𝑧i𝑁i  =  0
𝑛c+1
i = 1 ) are used to eliminate 𝛻�̅� from the generalized MS equations, giving rise 

to:  
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𝐹

ℜ𝑇
𝛻�̅�  =  −

∑ 𝑧i(∑ 𝐿ij∇𝑛
𝑗  =  1 𝑦j

′)𝑛
𝑖  =  1

∑ 𝑦i
′𝑧i(∑ 𝑧j

𝑛
𝑗  =  1 𝐿ji)𝑛

𝑖  =  1
, where [𝐿]  =  [𝐵]−1 (S16) 

S2.2. Modelling Ion Exchange Kinetics 

The material balance to the ion exchanger and to the whole system (liquid solution 

and solid) assumes: i) isothermal operation; ii) perfectly stirred tanks; iii) spherical solid 

particles; iv) negligible liquid and solid volume changes; v) film and intraparticle mass 

transfer limitations; and vi) Donnan exclusion, i.e., co-ions are excluded from the ETS-4 

particles [1]. Their mathematical expressions are:  

(
𝝏𝒒𝐀

𝝏𝒕
)  =  −

𝟏

𝒓𝟐

𝝏

𝝏𝒓
(𝒓𝟐𝑵𝐀) (S17) 

𝑑𝐶A

𝑑𝑡
 =  −

𝑚s

𝜌s 𝑉L

𝑑〈𝑞A〉

𝑑𝑡
 (S18) 

where 𝑞A (𝑡, 𝑟) (mol m−3) is the cation concentration in the exchanger (solid loading), 𝑡 (s) 

is time, 𝑟 (m) is radial position in the particle, 𝑁A (mol s−1 m−2) is internal counter ion flux, 

𝐶A (mol m−3) is the counter ion concentration in the liquid, 𝑚s (kg) is the exchanger dry-

weight, 𝜌s (kg m−3) is exchanger density, and 𝑉L (m3) is the volume of liquid solution. 

The average loading per unit particle volume is computed by: 

〈𝑞A(𝑡)〉  =  
3

𝑅p
3

∫ 𝑟2𝑞A

𝑅

0

(𝑡, 𝑟)𝑑𝑟 (S19) 

where 𝑅p (m) is the particle radius. The initial and boundary conditions are: 

𝑡 =  0,     𝑞A  =  𝑞A,0  =  0   and  𝐶A  =  𝐶A,0 (S20) 

𝑟 =  𝑅p, 𝑞A  =  𝑞A,R  (S21) 

𝑟 =  0, (
𝜕𝑞A

𝜕𝑟
)  =  0 (S22) 

with 𝑞A,R  (mol m−3) being the ion concentration at particle surface, which is calculated by 

equalizing the internal diffusion and the external convective fluxes at surface (𝑟 =  𝑅p): 

𝑁A|𝑟 = 𝑅  =  𝑘f (𝐶A − 𝐶A,R) (S23) 

The convective mass transfer coefficient, 𝑘f (m s−1), and the fluid concentration at 

particle surface 𝐶A,R (mol m−3) may be related to 𝑞A,R  by an isotherm, since they are in 

equilibrium.  

2.3. Semi-Empirical Equations 

The kinetic data were also fitted using two of the most popular expressions in envi-

ronmental science, namely the pseudo-first and pseudo-second order equations [21,22]: 

〈𝑞A〉  =  𝑞A,e(1 − 𝑒−𝑘1𝑡) (S24) 

〈𝑞A〉  =  𝑞A,e
2

𝑘2𝑡

1 + 𝑞A,e𝑘2𝑡
 (S25) 

where 𝑞A,e is the concentration of Hg2+ in the exchanger phase in equilibrium with the 

fluid phase with concentration 𝐶A,e, and 𝑘1 (h−1) and 𝑘2 (m3 mol−1 h−1) are the sorption 

rate constants of each model. 
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