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Abstract: In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO)
nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach.
The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as
well as the evaluation of their antibacterial activity toward Gram-positive (Staphyloccocus aureus
and Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) bacteria were
performed. ZnO NPs were synthesized using a facile sol-gel approach. Gelatin nanofibers (GNF)
were obtained by an electrospinning technique. GNF@ZnO composites were obtained by adding
previously produced GNF into a Zn2+ methanol solution during ZnO NPs synthesis. Crystal struc-
ture, phase, and elemental compositions, morphology, as well as photoluminescent properties of
pristine ZnO NPs, pristine GNF, and GNF@ZnO composites were characterized using powder X-ray
diffraction (XRD), FTIR analysis, transmission and scanning electron microscopies (TEM/SEM), and
photoluminescence spectroscopy. SEM, EDX, as well as FTIR analyses, confirmed the adsorption of
ZnO NPs on the GNF surface. The pristine ZnO NPs were highly crystalline and monodispersed
with a size of approximately 7 nm and had a high surface area (83 m2/g). The thickness of the
pristine gelatin nanofiber was around 1 µm. The antibacterial properties of GNF@ZnO composites
were investigated by a disk diffusion assay on agar plates. Results show that both pristine ZnO NPs
and their GNF-based composites have the strongest antibacterial properties against Pseudomonas
fluorescence and Staphylococcus aureus, with the zone of inhibition above 10 mm. Right behind them
is Escherichia coli with slightly less inhibition of bacterial growth. These properties of GNF@ZnO
composites suggest their suitability for a range of antimicrobial uses, such as in the food industry or
in biomedical applications.

Keywords: ZnO NPs; gelatin nanofiber; antibacterial activity; morphology; luminescence

1. Introduction

Among semiconductor materials, zinc oxide (ZnO) is a well-known wide-bandgap
semiconductor with a bandgap energy (3.37 eV at room temperature) and a large exciton
binding energy (60 meV) [1]. The excellent properties of ZnO—mainly optical, luminescent,
catalytic, and electrical—allow its use in thin film transistors, photodetectors, light-emitting
diodes, solar cells, sensors, etc. [2,3]. Moreover, due to its good biocompatibility, low
cytotoxicity, high surface to volume ratio with enhanced surface reactivity, and antistatic,
antimicrobial, antibacterial, and antifungal properties, ZnO found broad application in
biomedicine as a drug carrier, a biomarker for cell labelling, a biosensor, and an antibacterial
agent [4–6]. The material’s functional properties can be achieved by modification of their
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crystal structure, e.g., by incorporation of impurities into the crystal structure or by surface
modification/construction of the materials with the core-shell structure, as well as by
obtaining organic/inorganic or inorganic/inorganic composites [7–11].

Polymeric materials are good carriers for incorporating or covering the functional
agents (nanofillers) for achieving new physicochemical properties [12]. They can enhance
the optical and mechanical properties, biocompatibility, antibacterial activity, or water
stability of the resulting materials [13]. For example, Beek et al. obtained composites based
on ZnO nanoparticles and nanorods with conjugated polymer (MDMO-PPV) for potential
application in solar cells [14].

Several polymeric materials, such as collagen and gelatin, have been investigated in
the past due to their low toxicity, excellent film forming ability, abundancy, high biocom-
patibility, and biodegradability in physiological environments [15,16]. Gelatin is one of the
most studied biopolymers, and it is widely used in food (mainly as biodegradable pack-
aging), cosmetics, pharmaceutical, and medical applications. Gelatin scaffolds consisting
of randomly oriented fibers are an ideal candidate for skeletal muscle tissue engineering,
developing biodegradable food packaging, and substituting for petroleum-based poly-
mers [17,18]. Gelatin can be obtained and used in many forms, such as films, micro- or
nanoparticles, and fibers [17,19].

Despite the above-mentioned benefits, gelatin has some significant disadvantages,
such as its poor water-barrier and mechanical properties, which limits its application, for
instance, in food packaging. To overcome these difficulties, alternative solutions have
been developed, e.g., its incorporation into different kinds of nanoparticles to introduce a
synergistic effect of both components. Nowadays, the use of the gelatin matrix as an organic
additive in composites with inorganic nanoparticles is of great interest for bioapplication,
mainly as antibacterial agents [16,18,19]. Nourbakhsh et al. obtained composites based
on gelatin/ZnO nanocomposite films and studied their antibacterial properties [20]. The
authors showed that nanocomposite films containing 0.5% of ZnO nanoparticles had the
most resistance against Staphylococcus aureus and Escherichia coli bacteria.

The antibacterial activity depends on many factors, especially morphological (particle
size, shape, and concentration). The small size and high surface area of nanoparticles help
to achieve higher adsorption of the parcels on the cell membrane and more effective pene-
tration of particles into the bacteria. Chemical synthesis approaches allow nanoparticles
(including ZnO) with good characteristics (high crystallinity, dispersion, stability) to be
obtained [21].

In this research, we obtained composites based on gelatin nanofibres and ZnO nanopar-
ticles. First of all, we describe a simple synthetic route for the preparation of compos-
ites, consisting of gelatin nanofibres obtained by an electrospinning technique and ZnO
nanoparticles (NPs) prepared by a facile sol-gel approach. The composite’s crystallinity,
morphology, textural and luminescent properties, as well as its antibacterial activity toward
Gram-positive (S. aureus, B. pumilus) and Gram-negative (E. coli, P. fluorescens) bacteria were
assessed.

2. Materials and Methods
2.1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2 × 2H2O, Sigma-Aldrich, Poznan, Poland);
sodium hydroxide (NaOH, Stanlab, Lublin, Poland); methanol (Avantor, Gliwice, Poland);
ethanol (Avantor); and gelatin type A from porcine skin, D-(+)-glucose, and glacial acetic
acid (CH3COOH) (Labochema Estonia OÜ, Tartu, Estonia), were used as starting materials
for the synthesis of ZnO NPs, gelatin nanofiberse, and GNF@ZnO composites (gelatin
nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)).

2.2. Preparation of Gelatin Fibers

Gelatin nanofibers (GNF) were prepared by electrospinning, following the method
described by Siimon et al. [22]. Glucose and type A gelatin from porcine skin were used
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to prepare the solution for electrospinning. Glucose was mixed with gelatin in a ratio
of 1:10. The mixture was dissolved in 10 M acetic acid at room temperature (RT) during
vigorous stirring on a magnetic stirrer (Labochema Estonia OÜ, Tartu, Estonia). Fibrous
scaffolds were prepared by electrospinning under the following condition: a 5 mL syringe
containing gelatin solution was pumped at speeds of 5–7 µL/min at 17.5 kV. Aluminum
foil was used as the grounded target, placed 14.5 cm away from the syringe needle tip.
Fibrous gelatin scaffolds were removed from the foil and stored in Petri dishes (Labochema
Estonia OÜ, Tartu, Estonia) until thermal treatment. Subsequent cross-linking was carried
out by placing the fibrous scaffolds in an oven for 3 h at 175 ◦C to avoid gelatin degradation
and to ensure proper cross-linking.

2.3. GNF@ZnO Composite Synthesis

GNF@ZnO composites were obtained by synthesis of ZnO nanoparticles (ZnO NPs)
on previously prepared gelatin nanofibers pieces (~2.25 cm2). ZnO NPs were prepared
using an adapted sol-gel procedure based on the work of W. J. E. Beek et al. [15]. The
procedure used for the preparation of GNF@ZnO was as follows: 13.4 mmol of zinc
acetate dihydrate (Zn(CH3COO)2 × 2H2O)) was dissolved in 125 mL methanol (MeOH) at
constant temperature (60 ◦C) with vigorous stirring. After dissolving of the zinc acetate
dihydrate, the solution of NaOH (23 mmol) in 60 mL methanol was added. Then, the
gelatin nanofibers pieces were added to the reaction mixture. The formation of GNF@ZnO
composite was stopped after 2, 5, and 24 h of standing GNF in the mixture. The obtained
GNF@ZnO composites were separated and washed twice with methanol and dried for 12 h
at 50 ◦C before further characterization.

2.4. Characterization

The detailed morphological characterization of ZnO NPs was carried out by means of
high-resolution transmission electron microscopy (HRTEM; JEOL ARM 200F, JEOL, Tokyo,
Japan). Specimens were prepared by dispersing ZnO NPs in ethanol under ultrasonic stir-
ring, then dropping the solution onto a copper grid and evaporating the solvent naturally
in the air. Furthermore, the morphology of GNF and GNF@ZnO composites and their
chemical composition were also studied by scanning electron microscopy (SEM, JEOL,
JSM-7001F, JEOL, Tokyo, Japan) equipped with an energy dispersive X-ray (EDX) analyzer
(Oxford Instruments XMax 80 mm2 detector). Powder X-ray diffraction (XRD) studies of
the ZnO NPs were carried out on an Empyrean (PANalytical, Malvern, UK) diffractometer
using Cu Kα radiation (λ = 1.54 Å), a reflection-transmission spinner (sample stage), and a
PIXcel 3D detector, operating in the Bragg–Brentano geometry. Scans were recorded at RT
(300 K) in angles ranging from 20 to 80◦ (2Theta) with a step size of 0.006 and continuous
scan mode. The photoluminescence (PL) data were recorded using a HeCd laser (325 nm)
and a USB Ocean Optic spectrometer (Kimmon Koha, Tokyo, Japan). Fourier transform
infrared spectroscopy (FTIR) spectra were measured in the 400–4000 cm−1 range with
2 cm−1 resolution using a Bruker VERTEX 70 spectrometer (Bruker Baltic OÜ, Tallinn,
Estonia) with an attenuated total reflection (ATR) accessory. The N2 adsorption/desorption
isotherms were measured at 77 K on a Quantachrome Nova 1000 apparatus (Anton Paar,
Warsaw, Poland). The specific surface area of pristine ZnO NPs was determined using
the BET (Brunauer–Emmett–Teller) method. The total volume of pores (at p/p0 = 0.98)
was calculated using the single point model. The average pore radius was determined
by applying the Barrett–Joyner–Halenda (BJH) method to the desorption branch of the
isotherm. Thermal analysis (TG/DTA) was performed using a SETARAM SETSYS 12 ther-
mogravimetric analyzer (Comef, Katowice, Poland). The analysis was carried out in a
temperature range of 20–1000 ◦C, in an air atmosphere, and at a constant heating rate of
5 ◦C/min.
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2.5. Antibacterial Activity of the Obtained GNF@ZnO Composites

To evaluate the antimicrobial activity of the tested materials against Escherichia coli,
Staphylococcus aureus, Bacillus pumilus, and Pseudomonas fluorescens, the agar disk diffusion
method was applied [23,24]. In brief, 1 mL of fresh culture having 106 CFU/mL was added
to 9 mL of freshly prepared LB (Luria-Bertani) medium and incubated overnight on a
rotary shaker (37 ◦C, 230 rpm). To prepare the Petri plates, 20 mL of melted LB broth and
Lennox agar medium (Sigma Aldrich, Darmstadt, Germany) was poured into sterile plates
and cooled. Next, a disk made of GNF@ZnO composites (GNF with ZnO NPs after 2, 5,
and 24 h), pristine gelatin nanofibers, and 1 mg of pristine ZnO NPs, respectively, were
placed on agar plates inoculated with bacterial culture. The zones of inhibition growth
were measured after 24 h of incubation (37 ◦C). All experiments were done in triplicate.

3. Results
3.1. Characterization of ZnO NPs
3.1.1. TEM and XRD Analyses

The morphology of pristine ZnO NPs was studied by high-resolution transmission
electron microscopy (HRTEM). The majority of obtained ZnO NPs were almost perfectly
spherical and uniform in their size distribution, with a mean value of nanoparticles’ diame-
ter of about 7 nm (Figure 1a).
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The phase purity and composition of ZnO NPs obtained by a sol-gel method was exam-
ined by the XRD technique. Figure 1b presents typical XRD data of ZnO NPs. All diffraction
peaks were indexed to the hexagonal phase of ZnO with main (100), (002), (101), (102), (110),
(103), (112), and weak (202) crystal planes (corresponding to the crystallographic data in
the ICDD PDF-4+ 2019 database). No characteristic peaks of impurity phases except ZnO
were found, which revealed the good crystalline nature of the samples. The broadening of
the peaks can be attributed to the small particle size of the synthesized ZnO NPs [25].

3.1.2. Textural Properties

It is known that due to their small size, nanoparticles have a relatively larger surface
area than the bulk phases [26]. This feature predestines the use of nanoparticles in many
scientific fields, including biological technologies [27]. High surface area leads to effective
adsorption of biomolecules, which is very important for biosensors and drug delivery, and
for enhancing antibacterial efficiency. Thus, the calculation of surface characteristics is
important for the study of antibacterial activity.

To study the textural properties, the N2 adsorption–desorption analysis was carried
out on dried ZnO NPs. Results show that the used procedure of ZnO NPs synthesis allowed
material with a surface area of 83 m2/g, a pore volume of 0.17 cm3/g, and an average pore
diameter of 8.3 nm to be obtained. The obtained ZnO NPs exhibited isotherms of Type IV,
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according to IUPAC classification, which is typical for mesoporous materials (Figure 2a).
The material showed a narrow pore size distribution in a range from 3 to 9 nm.
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3.2. Characterization of GNF@ZnO Composites
3.2.1. Morphology of the Gelatin Nanofibers and GNF@ZnO Composites

The morphology of the pristine gelatin nanofibers and GNF@ZnO composites was
studied by scanning electron microscopy and is presented in Figure 3. The fibers obtained
by the electrospinning technique were multifiber ones. The fibers were entangled and they
were arranged randomly. The diameter of one fiber was approximately 1 µm (Figure 3a).
Generally, to obtain layered composites with good quality characteristics (i.e., homoge-
neous layer on a substrate), methods based on physical deposition are used. Sputtering
or physical vapor deposition allows thin homogeneous layers to be obtained; however,
these approaches are technically advanced and costly. Materials obtained by deposition
techniques find application mainly in solar cells, diodes, lasers, etc. [28]. In our case,
the fabrication of GNF@ZnO composites was performed by a simple approach based on
maintaining the gelatin nanofibers in a Zn2+ methanol solution for 2, 5, and 24 h. After
maintaining the gelatin nanofibers for 2 h (as an example) it was clearly seen that ZnO NPs
homogeneously covered over the whole nanofibers surface (Figure 3b, inset). The SEM
images for 5 and 24 h are presented in Supporting Information (Figure S1).
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3.2.2. Elemental Composition of Studied GNF@ZnO Composites

The elemental identification of GNF@ZnO composites obtained at different maintain-
ing times was determined by EDX spectroscopy. The quantitative results were calculated
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from three independent regions of the samples and the average values are summarized in
Table 1. The detailed elemental analysis showed that the amount of Zn increased together
with the increase of maintaining time. Thus, by regulating the synthesis time we could
control the amount of ZnO NPs attached to gelatin nanofibers surfaces.

Table 1. Elemental composition of the studied samples.

Elements

Composite GNF@ZnO 2 h,
Atomic, %

GNF@ZnO 5 h,
Atomic, %

GNF@ZnO 24 h,
Atomic, %

C 53.01 50.04 27.11

O 31.03 33.95 32.34

Zn 15.87 16.01 40.55

total 100.00 100.00 100.00

3.2.3. Thermal Analysis of GNF@ZnO Composites

The results of the thermogravimetric analysis of GNF@ZnO composites are presented
in Figure S2 and Table 2. The resulting TG/DTA thermograms were used for determination
of special temperatures of composite weight loss and maximum weight loss of the compos-
ites caused by thermal decomposition. The thermal analysis of GNF@ZnO composites in
air indicated three weight losses on TG profiles (Figure S2). The first one (below 100 ◦C),
accompanied by the endothermic effect on DTA curve, was a result of the evaporation
of moisture. GNF@ZnO 2 h and GNF@ZnO 5 h composites indicated similar content of
water (~7 wt.%), whereas the GNF@ZnO 24 h was more hydrophobic. The next two weight
losses, in the range 200–550 ◦C, corresponded with the decomposition of gelatin nanofibers.
The decomposition of gelatin nanofibers was presented by the exothermic peaks due to the
oxidation of nanofibers, followed by the endothermic peaks attributed to the desorption of
the oxidation products. The first stage of degradation was due to degradation of gelatin
nanofibers not covered by ZnO NPs (the peaks at 300 ◦C and 360 ◦C) and the second one
is attributed to decomposition of nanofibers covered by ZnO NPs (effects at 460 ◦C and
530 ◦C). The thermal analysis indicated that GNF@ZnO 2 h and GNF@ZnO 5 h composites
included a similar amount of ZnO NPs (~40 wt.%), whereas soaking the gelatin nanofibers
in solutions of forming ZnO NPs for 24 h allowed composites with a much higher amount
of attached ZnO NPs to be obtained (Table 2).

Table 2. The thermal analysis data.

Sample 1st Weight Loss, % 2nd and 3th WEIGHT Loss, % Content of ZnO a, wt.% Content of ZnO b, wt.%

GNF@ZnO 2 h 7.1 55.1 37.8 40.7

GNF@ZnO 5 h 7.0 51.7 41.3 44.4

GNF@ZnO 24 h 4.4 32.2 63.4 66.3

Notes: a ZnO content in samples contained moisture, b ZnO content recalculated on dry sample.

3.2.4. Photoluminescence Properties of GNF@ZnO Composites

Figure 4 shows normalized PL spectra for pristine ZnO, GNF, and GNF@ZnO com-
posites obtained at different synthesis times. Under excitation, 325 nm pristine ZnO NPs
demonstrated two peaks centered at 380 nm and 620 nm. The PL peak in the ultraviolet UV
region (380 nm) corresponded with the near band edge emission (NBE) [29,30]. The broad
peak in the visible range was associated with defective PL, so-called deep level defects
(DLE) [29,31]. It is considered that zinc and ionized oxygen vacancies, as well as surface
defects, determine PL intensity in the visible range [32]. They were seen as two peaks at
445 nm and 540 nm in the spectrum of gelatin nanofibers. It should be noted that this value
of PL corresponds with the PL obtained by Azhniuk et al. and Li et al. [33,34].
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After the synthesis of GNF@ZnO composites, the intensity of PL became 50% higher
than for pristine ZnO. The most intense PL was observed for the GNF@ZnO 5 h sam-
ple. PL spectra of GNF@ZnO revealed that the visible PL peak was shifted down to
545 nm compared with the pristine ZnO (620 nm). It can be assumed that surface defects,
which determine the PL in the orange-red region, had been passivated during GNF@ZnO
composites synthesis.

3.2.5. FTIR Analysis of Studied Samples

FTIR analysis is an effective method to reveal the composition of products. The
IR spectrum of ZnO NPs consisted of characteristic peaks for ZnO, with main peaks at
545 cm−1 and 680 cm−1 attributed to the Zn–O bond (Figure 5a) [35]. The spectrum in
Figure 5b corresponds with typical pristine gelatin fibers, with C=O stretching vibration
appearing at 1664 cm−1, demonstrated by the amide I band, and the N–H bending vibration
at 1527 cm−1, corresponded to the amide band II [36]. Additionally, aliphatic C–H bending
vibrations were observed at 1450 cm−1, and small bands at 1331 and 1230 cm−1 showed
the C–N bond stretching vibrations.
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The spectra of the GNF@ZnO composites consisted of signals derived from both ZnO
NPs and gelatin originating bonds (Figure 5c–e). The peaks at 545 cm−1 in composites
increased with the increasing ZnO content and indicated the effective adsorption of ZnO
NPs on the GNF surface. The broad bands in the 3375–3000 cm−1 range for all samples
studied were assigned to the O–H stretching mode of surface hydroxyl groups.

3.2.6. Antibacterial Activity

As was mentioned above, antibacterial activity depends on material type, particle
size, concentration, and the cell wall structure of the bacteria [37]. Thus, due to its unique
characteristics, ZnO is an ideal candidate to study for its antibacterial activity. To evaluate
the antibacterial activity of the synthesized pristine ZnO NPs and GNF@ZnO composites,
four bacterial strains were selected belonging to Gram-positive (Staphyloccocus aureus and
Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) strains
as model bacteria. The antimicrobial properties were evaluated by disk diffusion assay,
as it has been used not only in research concerning ZnO NPs but also with distinct types
of nanoparticles, such as copper and silver nanoparticles [23,38,39]. The inhibition zone
diameters of the samples against bacteria were shown in Table 3 and Figure 6. The strains
most sensitive to GNF@ZnO (2 and 5 h) were P. fluorescence, then S. aureus, E. coli, and
B. pumilus. It is worth noting that B. pumilus were sensitive only for ZnO NPs, whereas
the composites with gelatin nanofibers did not retain antibacterial properties against these
bacteria (Figure 6, Table 3).
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agar plates. Black circles indicate growth inhibition zones, and yellow dashed circles indicate
restricted/limited growth zones.
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In all cases, the pristine ZnO NPs exhibited the highest antibacterial properties,
whereas the gelatin nanofibers were fully biocompatible and showed no antibacterial
activity. The high antibacterial activity of pristine ZnO NPs was caused by the small parti-
cles size (~7 nm), and consequently, high surface area which led to effective penetration of
ZnO NPs into the bacteria membranes.

In the case of the E. coli strain, the shortest time of gelatin nanofibers incubation with
ZnO seemed to be the most effective, indicating the highest antibacterial properties of
this composite. On the other hand, in S. aureus, two types of gelatin fibers composites
were the most effective (2 h and 24 h). In the case of P. fluorescens, the results for all
types of gelatin fibers composites were comparable, and surprisingly, the largest zone of
growth inhibition was found for GNF@ZnO 5 h. Moreover, the composites also limited
the growth of bacteria without completed inhibition (Figure 6c). Interestingly, there is
no correlation between sensitivity to composites and bacteria type (Gram-negative vs.
Gram-positive). However, in the case of the Gram-positive B. pumilus strain, only pristine
ZnO effectively inhibited their growth. It is known that the cell wall of Gram-positive
bacteria is thick and composed of multilayer peptidoglycan, which could hamper the
internalization of nanoparticles. Moreover, the bacterial cell wall of B. pumilus, due to
specific composition [40], is able to reduce metal toxicity [41] and accumulate the Zn2+ ions,
which was presented by Ramstedt et al. [42].

The mechanisms of the antibacterial activity can be related to the release of Zn2+ ions,
which were penetrating and then killing bacteria, as well as to oxidative stress due to the
production of reactive oxygen species (ROS), which form oxidizing and highly reactive
radicals (O2−•). Due to ROS, the bacteria can be effectively destroyed or at least deactivated
by a reaction of the radicals and the macromolecules, such as DNA, enzymes (protein),
lipids, etc. [43]. Thus, the low sensitivity GNF@ZnO composites against B. pumilus can
be related to barrier properties against ROS and indicated no release of the Zn2+ into the
bacteria, probably due to large thickness [37].

Table 3. Mean diameter of the zone of inhibition (in mm, including the 6 mm diameter of the disk) after ZnO NPs, GNF,
and GNF@ZnO composites treatment.

Samples S. aureus (G+) B. pumilus (G+) E. coli (G−) P. fluorescens (G−)

ZnO NPs x 19 ± 0.82 16 ± 0.32 11.3 ± 0.47 17.7 ± 0.47

GNF@ZnO 2h x 10 ± 0.63 0 9.2 ± 0.75 10 ± 0

GNF@ZnO 5h x 7.8 ± 0.4 0 8.9 ± 0.49 11.1 ± 0.8

GNF@ZnO 24h x 11 ± 0 0 0 9.8 ± 0.75

GNF x 0 0 0 0

gelatin + ZnO * 4.9 ± 0.6 5.3 ± 0.2

G.ZnO NP **
G.CHNF.ZnO NPs **

30.62 ± 0.56
33.13 ± 0.67

15.06 ± 0.17
25.06 ± 0.24

ZnO/4A z *** 6.21 ± 0.02 6.86 ± 0.03 6.34 ± 0.03

ZnO NPs (~50 nm) **** 6.0 6.0

Notes: x—our results; *—[44]; **—[37]; ***—[45]; ****—[46].

Since ZnO has excellent characteristics for bioapplication, a large number of publi-
cations describe the antibacterial activity of ZnO with different morphologies and their
composites. For example, Thanusha et al. obtained hydrogel composite based on gelatin
and bioactive components, including ZnO NPs [44]. Antibacterial activity was studied
using E. coli and S. aureus. Our results using ZnO NPs and GNF have higher antibacterial
activity in similar bacteria, and a little less than gelatin-based nanocomposite containing
chitosan nanofiber and ZnO nanoparticles obtained in [37]. To compare the antibacterial ac-
tivity of previously reported results with our studies, the respective data sets are presented
in Table 3. The composites based on 4A zeolite mixed with semiconductor oxides (TiO2,
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ZnO, and their mixture, TiO2/ZnO) were obtained using wet chemistry methods, and their
antimicrobial as well as antibacterial activities were studied against four types of bacteria
(E. coli, Listeria monocytogenes, P. fluorescens, and S. aureus) for the first time [45]. The results
showed that the most sensitive bacteria to the ZnO/4A composite were P. fluorescens and
E. coli. Another group studied the antibacterial assay against S. aureus and E. coli bacterial
strains using pristine ZnO NPs with a size of approximately 50 nm [46]. The obtained
results showed that the zone of inhibition of the ZnO NPs on S. aureus and E. coli was 6 mm.
Thus, from our results, we can conclude that the small ZnO NPs that covered the GNF are
potential agents against the various types of bacteria.

4. Conclusions

ZnO, gelatin nanofibers, and GNF@ZnO composites were successfully synthesized
through facile and low-cost methods. Their structural, morphological, and luminescence
properties were studied. Their antimicrobial activity toward Gram-positive (S. aureus,
B. pumilus) and Gram-negative (E. coli, P. fluorescens) bacteria were performed. Results
show that the mean size of as-obtained ZnO nanoparticles was approximately 7 nm.
Particles were highly crystalline and monodispersed, with a high specific surface area
of 83 m2/g. The thickness of the gelatin fiber obtained by the electrospinning technique
was around 1 µm. SEM, EDX, as well as FTIR analyses confirmed the adsorption of ZnO
NPs on the gelatin fibers surface. The antibacterial properties of the obtained composites
were investigated by disk diffusion assay on agar plates. The pristine gelatin nanofibers
did not show any antibacterial activity for any of the selected bacteria types. At the
same time, pristine ZnO NPs exhibited the highest antibacterial properties, caused by the
high surface area of the ZnO NPs. In the case of the GNF@ZnO composites, results did
not show a correlation between the sensitivity of the composites and bacteria type. The
most pronounced sensitivity to GNF@ZnO (2 h and 5 h) was observed for P. fluorescence
strains. Hence, the proposed composites, prepared by simple approaches and due to
their obtained characteristics, can have a potential application in the food industry as
antibacterial inhibitor agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/1/103/s1, Figure S1. SEM images (magnification ×2000, ×4000 and ×7000) of GNF@ZnO 2 h,
GNF@ZnO 5 h and GNF@ZnO 24 h, Figure S2.TG-DTA curves of GNF@ZnO 2 h (a), GNF@ZnO 5 h
(b) and GNF@ZnO 24 h (c).
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