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Abstract: The paper contains the results of fatigue tests of smooth and notched specimens made
of 10HNAP (S355J2G1W) subjected to proportional cyclic loading with use of mean values stress.
The results obtained for specimens under bending, torsion and one combination of bending with
torsion for four mean values have been compared. The experimental data have been collected in
the tables and shown in the figures with use of various σa(τa)-N fatigue characteristics for which
parameters of the regression equations have been determined. The influence of average values on the
allowable stress amplitudes and amplitude of moments at the level close to the fatigue limit depending
on the angle α determining loading combination and the average stress is also shown. The greatest
effect of the notch on fatigue life compared to smooth specimens is observed at symmetrical loads.
At unsymmetrical loads with non-zero mean stress, this effect clearly weakens or disappears.
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1. Introduction

Some structures are subjected to bending, torsion or a combination of both loads, which cause
fatigue processes in materials. In addition, mean stresses occur in the structure load,
resulting e.g., from the self-weight of the structure or the initial loads associated with the functions
fulfilled by the structure. It is then necessary to adopt certain calculation models for fatigue life,
taking into account the multiaxial load status and the effect of mean load values, and to perform their
experimental verification [1–5]. In real structures, stress concentrations often occur due to the notch in
the form of changes in cross-sectional dimensions, which significantly affect the fatigue strength of
materials. Therefore, it becomes important to examine the impact of the notch on the fatigue life of the
structure [6,7]. Modern methods of assessing fatigue life of machine elements can be divided into two
groups. The first is characterized by an analytical approach based on spectral analysis of stochastic
processes, while the second is characterized by an algorithmic approach based on numerical methods.
These methods are constantly modified and improved so that you can meet the requirements currently
set by designers.

Smaga et al. [8] present description on fatigue and transformation behavior at surrounding
temperature and 300 ◦C of austenitic stainless steel AISI 347 in the whole fatigue range from Low
Cycle Fatigue (LCF) to Very High Cycle Fatigue (VHCF). The test results show a significant effect of the
chemical composition and temperature of induced martensite creation and the behavior of cyclic strain.

The local approach to predict the fatigue strength of sharply notched components can be applied
to welded joints in a simplified form oriented to practical applications [9]. In this paper, satisfactory
calculation results, based on the analytic expressions of the local stress field have been shown.
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McDiarmid introduced some modifications of criterion determining the shear stress amplitude to
take into account the stress mean value and the impact of the stress concentrator on the final result [10].

Rozumek et al. [11] gave a comparison between the experimental and calculated fatigue lives of
specimens made of 10HNAP steel under non-proportional random bending with torsion including
changes of strain energy density in the critical plane.

Literature sources present various review papers describing the characteristics of materials [12],
which allow estimating the durability of structures and devices [13]. The ASTM [14] standards,
which define and describe the method of determining stress (σ-N) and strain (ε-N) characteristics,
are one of the most commonly used in the description of tests.

The purpose of the research described in the work is to investigate the behavior of smooth and
notched specimens made of 10HNAP (S355J2G1W) steel under conditions of cyclic loading with the
presence of various mean values. A wide database of material parameters describing its response for
fatigue loads is necessary for the formulation and verification of strength calculation models. This data
requires research and improvement for notched structures exposed to multiaxial fatigue loads.

2. Materials and Fatigue Test Stand

The subject of the study is 10HNAP (S355J2G1W) constructional steel included in the European
Standard (EN 10155) “Low-alloy rust-resistant steel”. It is a general purpose weldable steel,
with increased resistance to atmospheric corrosion. The content of elements in the tested steel
is included in Table 1, and strength properties in Table 2.

Table 1. Chemical composition of 10HNAP steel (wt %).

C-0.115 Mn-0.52 Si-0.26 P-0.098

S-0.016 Cr-0.65 Ni-0.35 Cu-0.26

Table 2. Mechanical properties of 10HNAP steel.

Yeld Strength
σY, MPa

Ultimate Strength
σU, MPa

Young Modulus
E, GPa

Poisson’s Ratio
ν

418 566 215 0.29

The specimens were cut from 16 mm thick sheet in accordance with the rolling direction. Figure 1
shows the shape and dimensions of the specimens. For a notched specimen the theoretical stress
concentration factor, determined in accordance with Neuber’s model [15], is for bending KtB = 2.46
and for torsion KtT = 1.76.
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The tests were carried out on the fatigue test stand MZGS-100 [16–18]. The stand used in the
experiment allows testing for fatigue bending, torsion and proportional bending with torsion. The tests
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of cyclic bending and torsion were performed in low cycle fatigue (where number of cycles to failure
is 104–105) and high cycle fatigue (where number of cycles to failure is 105–107) regime [19] with
controlled load (in the considered case, the moment amplitude was controlled). The loads were of a
sinusoidal nature under a frequency between 25–29 Hz. The amplitudes and the mean value were
changed in accordance with the applied load. The nominal stress amplitude and nominal mean stress
value (stress ratio) were used in calculations.

The load state of the specimen depends on the angular position of the rotary head of the stand,
which is defined by the angle α determining the combination of bending and torsion (Figure 2).
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Figure 2. Load scheme of the specimen.

The specimen load consists of a cyclically variable moment with amplitude Ma and its mean
value Mm:

M(t) = Mm + Masinωt, (1)

whereω is the frequency of load changes.
The vectors of the torsional moment MTα(t) and bending moment MBα(t) (Figure 2) are related to

the following relationships [20]
M(t) = MTα(t) + MBα(t) (2)

In the extreme position α = 0 rad the specimen is bent with a variable moment

MBα(t) = Mm + Masinωt, (3)

and in the position α = π/2 rad, the specimen is twisted with a torque

MTα(t) = Mm + Masinωt, (4)

The bending and torsional moments are related to the angle of rotation of the head with clamp
(Figure 2) with proportion:

tanα =
MTα(t)
MBα(t)

(5)

In intermediate positions 0 < α < π/2 rad, both moments occur simultaneously and their values
are determined from:

MBα(t) = (Mm + Masinωt)cosα, MTα(t) = (Mm + Masinωt)sinα, (6)
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The result of the operation of both synchronized moments is a state of stress in which nominal
normal stresses σα(t) and shear stresses τα(t) change their value according to phase and with the same
angular frequency (ω = 29 Hz):

σα(t) = σmα + σaαsinωt, τα(t) = τmα + τaαsinωt, (7)

where:

σα(t) =
MBα(t)

Wx
, τα(t) =

MTα(t)
W0

=
MBα(t)

2Wx
, (8)

Wx and W0 are section modulus for bending and torsion, respectively.
A stress ratio for bending RB and torsion RT are equal [21], since:

RB =
σmin
σmax

=
σa − σm

σa + σm
=

Ma·cosα
Wx

−
Mm·cosα

Wx

Ma·cosα
Wx

+ Mm·cosα
Wx

=
(Ma −Mm)

cosα
Wx

(Ma + Mm)
cosα
Wx

=
(Ma −Mm)

(Ma + Mm)
, (9)

and

RT =
τmin
τmax

=
τa − τm

τa + τm
=

Ma·sinα
W0

−
Mm·sinα

W0

Ma·sinα
W0

+ Mm·sinα
W0

=
(Ma −Mm)

sinα
W0

(Ma + Mm)
sinα
W0

=
(Ma −Mm)

(Ma + Mm)
, (10)

so RB = RT = R.
Main stresses in the plane stress state considered here on the surface of the specimen (σ1 , 0,

σ3 , 0 and σ2 = 0) can be saved for the condition RB = RT and compatible phases as

σ1α(t) = σ1mα + σ1aαsinωt, σ3α(t) = σ3mα + σ3aαsinωt, (11)

where:

σ1,3mα =
1
2

(
σmα ±

√
σ2

mα + 4τ2
mα

)
, σ1,3aα =

1
2

(
σaα ±

√
σ2

aα + 4τ2
aα

)
, (12)

Directions of main stresses in relation to stress σα (t) are rotated by angles

Ψ1 =
1
2

arctg
−2τα(t)
σα(t)

, Ψ3 = Ψ1 +
π
2

(13)

3. The Terms of Fatigue Tests

Smooth and notched specimens made of 10HNAP (S355J2G1W) steel were subjected to fatigue
testing. Fatigue tests included synchronous, sinusoidal variable loads with an additional mean loads.
The tests covered three states of specimens loading. The following mean stresses were used for
individual values of the angle α of rotation of the machine head

(a) α = 0 rad (bending),

σm = 0 MPa,

σm = 75 MPa,

σm = 150 MPa,

σm = 225 MPa.
(b) α = 1.107 rad (63.5◦) (bending with torsion) Mgα(t) = 2Msα(t) ; σα(t) = τα(t)

σm = τm = 0 MPa,

σm = τm = 36 MPa,

σm = τm = 75 MPa,

σm = τm = 114 MPa.
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(c) α = π/2 rad (torsion)

τm = 0 MPa,

τm = 75 MPa,

τm = 150 MPa,

τm = 225 MPa.

The tests were performed for 4–5 levels of stress amplitude, 2–3 specimens at each load level.

4. Fatigue Characteristics of the Material

The results of fatigue tests were approximated by the following regression Equations [14]:

logN = A + mlogσa (14)

logN = A + mlogτa (15)

where: σa—bending stress amplitude, τa—torsional stress amplitude, N—number of cycles for failure,
A and m—parameters of the regression equation.

Tables 3 and 4 contain the numerical values of the parameters of the regression Equations (14) and
(15), as well as the values of the correlation coefficient r for variables logN and logσa and logarithm
variance values from the number of cycles N, i.e., µlogN for smooth and notched specimens at various
load combinations. The parameter m, which in the double-logarithmic coordinate system is the slope
coefficient σa—N, takes negative values and shows fluctuations. The largest changes are observed in
the case of bending, where m is clearly smaller for smooth specimens compared to notched specimens.
For torsion there is no such clear tendency and differences between m coefficient are not so strong as in
bending case. The opposite trend to bending occurs for combining bending with torsion where mean
stress value is greater than 0. Negative values of the correlation coefficient r in both tables indicate a
strong relationship between the logarithm of the number of cycles to failure and the logarithm of the
stress amplitude for smooth and notched specimens at all types of loads.

Table 3. Parameters of regression equations describing fatigue life of smooth specimens.

Parameters of
Regression Equations

Bending Bending with Torsion Torsion

α = 0◦ α = 63.5◦ (τa = σa) (τm = σm) α = 90◦

A

σm = 0 38.03 σm = 0 34.62 τm = 0 39.28
σm = 75 28.41 σm = 36 26.17 τm = 75 25.50
σm = 150 34.30 σm = 75 25.63 τm = 150 36.45
σm = 225 30.78 σm = 114 23.31 τm = 225 28.00

m

σm = 0 −12.73 σm = 0 −13.18 τm = 0 −14.83
σm = 75 −9.25 σm = 36 −9.66 τm = 75 −9.10
σm = 150 −11.67 σm = 75 −9.25 τm = 150 −13.90
σm = 225 −10.08 σm = 114 −8.48 τm = 225 −10.15

correlation coefficient r

σm = 0 −0.97 σm = 0 −0.95 τm = 0 −0.92
σm = 75 −0.96 σm = 36 −0.93 τm = 75 −0.90
σm = 150 −0.94 σm = 75 −0.97 τm = 150 −0.94
σm = 225 −0.94 σm = 114 −0.99 τm = 225 −0.89

variance µlogN

σm = 0 9.30 × 10−3 σm = 0 2.13 × 10−2 τm = 0 3.81 × 10−2

σm = 75 6.07 × 10−2 σm = 36 5.34 × 10−2 τm = 75 1.01 × 10−1

σm = 150 5.50 × 10−2 σm = 75 2.86 × 10−2 τm = 150 3.90 × 10−2

σm = 225 4.56 × 10−2 σm = 114 8.22 × 10−3 τm = 225 8.67 × 10−2
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Table 4. Parameters of regression equations describing fatigue life of notched specimens.

Parameters of
Regression Equations

Bending Bending with Torsion Torsion

α = 0◦ α = 63.5◦ (τa = σa) (τm = σm) α = 90◦

A

σm = 0 25.13 σm = 0 29.84 τm = 0 32.74
σm = 75 18.73 σm = 36 30.45 τm = 75 29.84
σm = 150 21.81 σm = 75 27.74 τm = 150 27.26
σm = 225 22.72 σm = 114 30.34 τm = 225 28.2

m

σm = 0 −8.79 σm = 0 −12.64 τm = 0 −12.84
σm = 75 −5.98 σm = 36 −11.69 τm = 75 −11.32
σm = 150 −7.13 σm = 75 −10.45 τm = 150 −10.14
σm = 225 −7.53 σm = 114 −11.67 τm = 225 −10.45

correlation coefficient r

σm = 0 −0.94 σm = 0 −0.94 τm = 0 −0.99
σm = 75 −0.96 σm = 36 −0.89 τm = 75 −0.83
σm = 150 −0.95 σm = 75 −0.90 τm = 150 −0.88
σm = 225 −0.94 σm = 114 −0.93 τm = 225 −0.93

variance µlogN

σm = 0 3.64 × 10−2 σm = 0 4.67 × 10−2 τm = 0 1.29 × 10−2

σm = 75 2.48 × 10−2 σm = 36 1.18 × 10−1 τm = 75 1.49 × 10−1

σm = 150 7.06 × 10−2 σm = 75 8.38 × 10−2 τm = 150 7.27 × 10−2

σm = 225 4.61 × 10−2 σm = 114 6.89 × 10−2 τm = 225 4.31 × 10−2

Figures 3–5 show the fatigue characteristics of specimens for bending, torsion and the combination
of bending and torsion, to illustrate the impact of notch and mean stress value on fatigue life.

Materials 2020, 13, x FOR PEER REVIEW 6 of 13 

 

Table 4. Parameters of regression equations describing fatigue life of notched specimens. 

Parameters of 
Regression 
Equations 

Bending Bending with Torsion Torsion 

α = 0° α = 63.5° (τa = σa) (τm = σm) α = 90° 

A 

σm = 0 
σm = 75 

σm = 150 
σm = 225 

25.13 
18.73 
21.81 
22.72 

σm = 0 
σm = 36 
σm = 75 

σm = 114 

29.84 
30.45 
27.74 
30.34 

τm = 0 
τm = 75 
τm = 150 
τm = 225 

32.74 
29.84 
27.26 
28.20 

m 

σm = 0 
σm = 75 

σm = 150 
σm = 225 

−8.79 
−5.98 
−7.13 
−7.53 

σm = 0 
σm = 36 
σm = 75 

σm = 114 

−12.64 
−11.69 
−10.45 
−11.67 

τm = 0 
τm = 75 
τm = 150 
τm = 225 

−12.84 
−11.32 
−10.14 
−10.45 

correlation 
coefficient r 

σm = 0 
σm = 75 

σm = 150 
σm = 225 

−0.94 
−0.96 
−0.95 
−0.94 

σm = 0 
σm = 36 
σm = 75 

σm = 114 

−0.94 
−0.89 
−0.90 
−0.93 

τm = 0 
τm = 75 
τm = 150 
τm = 225 

−0.99 
−0.83 
−0.88 
−0.93 

variance μlogN 

σm = 0 
σm = 75 

σm = 150 
σm = 225 

3.64 × 10−2 
2.48 × 10−2 
7.06 × 10−2 
4.61 × 10−2 

σm = 0 
σm = 36 
σm = 75 

σm = 114 

4.67 × 10−2 
1.18 × 10−1 
8.38 × 10−2 
6.89 × 10−2 

τm = 0 
τm = 75 
τm = 150 
τm = 225 

1.29 × 10−2 
1.49 × 10−1 
7.27 × 10−2 
4.31 × 10−2 

Figures 3–5 show the fatigue characteristics of specimens for bending, torsion and the 
combination of bending and torsion, to illustrate the impact of notch and mean stress value on fatigue 
life. 

Figure 3 shows that with pure bending, the presence of a notch in the specimens significantly 
reduces the allowable stress amplitudes in relation to smooth specimens for the same fatigue life. 

 

(a) 
 

(b) 

Figure 3. Comparison of fatigue characteristics of smooth (a) and notched (b) specimens under 
bending and different values of mean stress. 

The increase in mean stresses σm when bending smooth samples (Figure 3a) in the range of 0–
150 MPa reduces (as expected) the allowable stress amplitudes σa, while at σm = 225 MPa it increases 
unexpectedly σa. The growth trend σa, with the increase σm, for a constant number of cycles to damage, 
is more clearly manifested in notched specimens (Figure 3b). These observations lead to the 
conclusion that from certain, sufficiently high levels of mean stress in smooth specimens and from 

Figure 3. Comparison of fatigue characteristics of smooth (a) and notched (b) specimens under bending
and different values of mean stress.

Figure 3 shows that with pure bending, the presence of a notch in the specimens significantly
reduces the allowable stress amplitudes in relation to smooth specimens for the same fatigue life.

The increase in mean stresses σm when bending smooth samples (Figure 3a) in the range of
0–150 MPa reduces (as expected) the allowable stress amplitudes σa, while at σm = 225 MPa it increases
unexpectedly σa. The growth trend σa, with the increase σm, for a constant number of cycles to damage,
is more clearly manifested in notched specimens (Figure 3b). These observations lead to the conclusion
that from certain, sufficiently high levels of mean stress in smooth specimens and from much lower
levels σm notched specimens have large plastic strains and cyclic strengthening of the material.
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Taking into account the Neuber’s model with specified factor KtB = 2.46 and using Goodman
model for mean stress correction it was found, that for the case of smooth specimens and σm = 225 MPa
maximum stress varies from 455 MPa for HCF up to 640 MPa for LCF range. These stresses exceed the
yield stress of material. Meanwhile, for notched specimens, these stresses are respectively 512 MPa
and 920 MPa for σm = 150 MPa and 650 MPa and 150 MPa for σm = 225 MPa.

Additional factors that should be taken into account when explaining these observations are the
presence of biaxial stress states in the notch bottom and stress gradients in the cross sections of the
specimens. With pure torsion, the presence of a notch in the samples weakens them compared to
smooth specimens (Figure 4), but to a lesser extent than is observed when bending (Figure 3).

The influence of mean shear stresses τm on the permissible amplitudes of shear stresses τa for
smooth specimens (Figure 4a) and notched specimens (Figure 4b) with constant life is similar here
as for bending. When comparing the fatigue diagrams of smooth specimens (Figures 3a and 4a)
and notched specimens (Figures 3b and 4b) under bending and torsion, it can be seen that the mean
stresses σm and τm strongly affect the allowable stress amplitudes σa and τa in smooth specimens
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than in notched specimens, where in turn the effects that can be the result of cyclic strengthening of
the material are more pronounced. Manifested in an increase in allowable stress amplitudes with an
increase in mean stresses for the same number of cycles for damage. With the combination of bending
and torsion (Figure 5), the strongly weakening effect of the specimens notch is observed only with
symmetrical cycles (σm = τm = 0), while with asymmetrical cycles (σm = τm > 0) this effect is blurred and
can be assume that it disappears. Increasing mean stresses σm = τm for smooth specimens (Figure 5a)
basically reduces the allowable stress amplitudes σa = τa, while for notched specimens (Figure 5b)
it unexpectedly increases the allowable stress amplitudes. To determine the equivalent stress for a
complex load, the Huber-Mises hypothesis was used. The effect of the mean load value was taken
into account with the Goodman correction and with the use of the Neuber’s model notch effect was
included (KtB = 2.46, KtT = 1.76). For smooth specimens the maximum stress varies from 260 MPa
for HCF up to 500 MPa for LCF regime. In the case of notched specimens (Figure 5b), these stresses
exceed the yield stress of material and they are 660 MPa and 873 MPa for σm = τm = 36 MPa, 783 MPa,
1037 MPa for σm = τm = 75 MPa, 964 MPa and 1227 MPa for σm = τm = 114 MPa.

Table 5 shows values of the fatigue limits for the material. In the case of bending with torsion,
providing the fatigue limit value requires the adoption of an appropriate multiaxial fatigue criterion,
which will be the subject of analysis in a separate work.

Table 5. Fatigue limits of smooth and notched specimens for different values of mean stress.

σm, MPa
Smooth Specimens Notched Specimens

Bending Torsion Bending Torsion

0 298 169 137 109
75 229 130 137 124

150 266 138 161 129
225 261 134 161 129

Based on the parameters of the regression equations in Tables 3 and 4, charts were drawn for
the impact of mean values σm = τm = 0, 36, 75 and 114 MPa on the allowable stress amplitudes for
the three selected number of cycles for damage N = 104, 105 and 106 smooth and notched specimens
(Figure 6). Lines approximating the results of Figure 6 obtained by interpolation. Thanks to these
graphs, forecasting of fatigue life or allowable stress amplitudes for other load combinations than
α = 1.107 rad becomes possible without conducting additional tests. Figure 6a shows that with
symmetrical load combinations, the presence of a notch on the specimens reduces the allowable stress
amplitudes by about 50% compared to the stress amplitudes for smooth specimens at the same lifetime.
However, in Figure 6b–d it can be seen that the impact of the notch on the permissible stress amplitudes
decreases when non-zero mean stresses appear. In Figure 6d an unexpectedly favorable effect of the
notch is observed at more cycles for damage (105; 106 cycles) for the combination of bending and
torsion with the mean stress σm = τm = 114 MPa.

The parameters of the regression equations from Tables 3 and 4 were also used to illustrate in
Figure 7 the impact of mean stresses σm and τm on the permissible stress amplitudes σa and τa for three
different combinations of loads and three fatigue life N = 104, 105 and 106 cycles.

In the graphs (Figure 7) there is a lack of a clear decrease in the stress amplitudes σa and τa with an
increase in mean stresses, respectively, σm and τm as would be expected according to many well-known
graphs, e.g., Haigh, Soderberg [21], for smooth specimens. In the case of notched specimens is
surprising increase in the stress amplitudes σa and τa with the increase in mean stresses σm and τm,
which with pure bending and pure torsion is insignificant and explicit with the combination of bending
and torsion.



Materials 2020, 13, 2141 9 of 13

Materials 2020, 13, x FOR PEER REVIEW 9 of 13 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Graphs of bending and torsion stress of smooth and notched specimens for various fatigue 
life and (a) σm = τm = 0, (b) σm = τm = 36, (c) σm = τm = 75, (d) σm = τm = 114 MPa 

The parameters of the regression equations from Tables 3 and 4 were also used to illustrate in 
Figure 7 the impact of mean stresses σm and τm on the permissible stress amplitudes σa and τa for three 
different combinations of loads and three fatigue life N = 104, 105 and 106 cycles. 

In the graphs (Figure 7) there is a lack of a clear decrease in the stress amplitudes σa and τa with 
an increase in mean stresses, respectively, σm and τm as would be expected according to many well-
known graphs, e.g., Haigh, Soderberg [21], for smooth specimens. In the case of notched specimens 
is surprising increase in the stress amplitudes σa and τa with the increase in mean stresses σm and τm, 
which with pure bending and pure torsion is insignificant and explicit with the combination of 
bending and torsion. 

 

0 100 200 300 400 500
    [MPa]

0

100

200

300

400

500
   

 [M
Pa

]

σa

τ a
- N=10

- N=10

- N=10

4

5

6

- próbki gładkie
- próbki z karbem

σ  = 0 m

τ  = 0m

σ  = τ  =0m          m

□ - smooth specimens 

■ - notched specimens 

0 100 200 300 400 500
    [MPa]

0

100

200

300

400

500

   
 [M

Pa
]

σa

τ a

σ   = 36m

- N=10

- N=10

- N=10

4

5

6

- próbki gładkie

- próbki z karbem

τ  = 36m

σ  = τ  = 36m         m

[MPa]

[MPa]
[MPa]

□ - smooth specimens 

■ - notched specimens 

0 100 200 300 400 500
    [MPa]

0

100

200

300

400

500

   
 [M

Pa
]

σa

τ a

σ   = 75m

- N=10

- N=10

- N=10

4

5

6

- próbki gładkie

- próbki z karbem

τ  = 75m σ  = τ  = 75m         m

[MPa]

[MPa][MPa]

□ - smooth specimens 

■ - notched specimens 

0 100 200 300 400 500
    [MPa]

0

100

200

300

400

500

   
 [M

Pa
]

σa

τ a

σ   = 114m

- N=10

- N=10

- N=10

4

5

6

- próbki gładkie

- próbki z karbem

τ  = 114m

σ  = τ  = 114m         m

[MPa]

[MPa]
[MPa]

□ - smooth specimens 

■ - notched specimens 

Figure 6. Graphs of bending and torsion stress of smooth and notched specimens for various fatigue
life and (a) σm = τm = 0, (b) σm = τm = 36, (c) σm = τm = 75, (d) σm = τm = 114 MPa.

Permissible values of amplitudes of the total moment of the loading force at a level close to the
fatigue limit (N = 106 cycles) depending on the type of nominal stresses (α = 0, 63◦ and 90◦), as well
as the values of mean stress (σm, τm) and notch shown in Figure 8. Figure 8 shows that the lowest
values of moment amplitudes are required to damage notched specimens under bending and they are
on average twice as large as the moment amplitudes for damage of these specimens when torsion.
Such significant differences in the values of amplitudes for pure bending and pure torsion are not
observed in the case of smooth specimens. At asymmetrical loads of notched specimens, the levels of
torque amplitudes under pure torsion and the tested combination of bending and torsion are similar
(Figure 8b–d). Figure 8d shows again that with the combination of bending and torsion larger moments
are needed to damage notched specimens than smooth specimens. This anomaly deserves a separate,
elastic-plastic analysis of the phenomena observed in specimens from the tested material.
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Figure 7. Influence of mean stress values on permissible stress amplitudes: (a) for bending, (b) for
bending with torsion, (c) for torsion.

The effect of negligible small influence of mean shear stress on fatigue life, especially for high
cycle fatigue regime, is well known [21,22]. The mean stress value can involve the ratcheting effect in
material and phenomena of ratcheting strains can influence on damage accumulation process.

Additionally, investigation of 10HNAP (S355J2G1W) steel shows that for fatigue limit the coefficient
of the cycles asymmetry sensitivity for torsion is about two times smaller in comparison to bending
loads [23]. Assuming a negligible effect of the shear means stress the allowable amplitude of the loads
at the fatigue limit.
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Figure 8. Amplitudes of moments at the level close to the fatigue limit (N = 106 cycles) depending on
angle α and mean stress level: (a) 0, (b) 75 MPa, (c) 150 MPa, (d) 225 MPa.

5. Conclusions and Finding

The following conclusions can be drawn from the tests of smooth and notched specimens made of
10HNAP steel at cyclic loads, taking into account the effect of mean stress values

1 Notch significantly reduces the allowable nominal stress amplitudes in the case of pure bending
and pure torsion, while the effect is smaller in the combination of bending and torsion.
These observations confirm the typical behavior of structural steels in machine elements where
stress concentrations occur.

2 The greatest effect of the notch on fatigue strength compared to smooth specimens is observed
at symmetrical loads. At unsymmetrical loads with non-zero values of mean stress, this effect
clearly weakens or disappears and incidentally turned out to be unexpectedly opposite to the
general trend in a large number of cycles.
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3 In smooth specimens with sufficiently high mean stresses (σm = τm = 225 MPa) and for significantly
lower mean stress levels (σm = τm = 36 MPa) in notched specimens there appears the effect of
strengthening the material, which indicates the presence of significant plastic deformations.

4 The calculation models proposed for assessing the fatigue life of 10HNAP steel under bending,
torsion and combination of bending with torsion taking into account the value of mean stresses and
the presence of notches should take into account the appearance of significant local plastic strains,
cyclic strengthening of the material and the occurrence of stress gradients in the cross-sections of
the rods. Proposals for such models will be the subject of a separate publication by the authors.
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