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Abstract: Thermal ageing of cross-linked polyethylene (XLPE) cable insulation is an important issue
threatening the safe operation of power cables. In this paper, thermal ageing of XLPE was carried out at
160 ◦C in air for 240 h. The influence of oxygen diffusion on thermal ageing of XLPE was investigated
by Ultraviolet–visible spectrophotometer (UV–Vis), tensile testing, and Fourier transformed infrared
spectroscopy (FTIR). It was observed that the degradation degree not only depended on ageing time
but also on sample positions. The thermally aged samples were more oxidized in the surface region,
presented a darker color, more carbon atoms appeared in the conjugate cluster, had smaller elongation
at break and tensile strength, and a larger carbonyl index. As ageing time increased, the non-uniform
oxidation of the XLPE samples became more prominent. The degree of non-uniform oxidation caused
by oxygen diffusion was quantitatively studied by first order oxidation kinetic. The calculated results
demonstrated that carbonyl index measured by FTIR was more sensitive to non-uniform oxidation
with a shape parameter in the range of 1–2. The result shown in this paper is helpful for interpreting
and predicting the non-uniform ageing behavior of high voltage XLPE cables.

Keywords: XLPE; thermal ageing; oxygen diffusion; non-uniform

1. Introduction

Cross-linked polyethylene (XLPE) has been extensively used as insulating material for high
voltage power transmission and distribution cables because of its excellent mechanical, thermal,
and electrical properties [1–3]. The performance of XLPE is inevitably affected by various stresses
during operation [4]. Thermal ageing is considered as one of the major factors causing the modification
of structure and deterioration of properties [5,6]. It is of great significance to study thermal ageing
behavior of XLPE in order to guarantee the safety and reliability of power cables.

A considerable amount of literature has been published about the thermal ageing of XLPE.
These studies were mainly carried out by performing accelerated thermal ageing experiments in
air to XLPE cable or cable peelings [7,8]. The changes of properties and molecular structures were
characterized by a variety of techniques [9,10]. The elongation at break which is a key parameter for
XLPE cable insulation was found to decrease as thermal ageing proceeded [11]. The electrical breakdown
strength decreased with the ageing degree while the conductivity and dielectric loss increased [12,13].
Thermal properties of XLPE cable insulation can be studied by differential scanning calorimetry
(DSC) and thermogravimetric analysis (TGA). It was reported that melting peak temperature, melting
enthalpy, and crystallinity decreased with ageing time at high temperatures (120 and 140 ◦C) because
of the chain scission. When aged under low temperatures (80 and 100 ◦C), the crystallinity of XLPE
increased due to recrystallization from freed segments [14]. The TGA results showed that thermal
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stability of XLPE decreased after ageing, leading to the increase in the propagation rate of the electrical
trees [15]. Fourier transformed infrared spectroscopy (FTIR) studies showed that the oxidation products
increased with the oxidation degree [16]. The thermal ageing of XLPE has been accepted as a process
of oxidation chain reaction essentially, involving a participation of free radicals and peroxides [17].
These studies have significantly contributed to the understanding and prediction of the XLPE thermal
ageing behavior.

It is worthwhile to notice that oxygen diffusion is a critical factor for polymeric materials when
aged under oxidative conditions [18,19]. The oxygen dissolved in the material is consumed by oxidation
reactions under a thermal ageing process. At the same time, oxygen molecules in air diffuse into the
material and continue to participate in the oxidation reactions. When the oxygen consumption rate is
larger than the diffusion rate, the oxygen in the sample cannot be supplied in time. The reduced oxygen
concentration in the sample finally leads to a decrease of oxidation degree. Therefore, non-uniform
ageing is observed with a higher oxidation level in the surface than that in the interior.

The non-uniform oxidation of XLPE has been reported in several studies. The research results
showed that the density and carbonyl index increased dramatically in the surface after radiation at
a large dose rate while little change was observed in the interior region [20,21]. It was found that
the fast oxygen consumption rate in the surface resulted from high a dose rate. The effect of oxygen
diffusion needs to be eliminated or carefully interpreted since it would complicate or even prevent the
extrapolation of changes in material properties from the accelerated condition to the actual operation
condition [22,23]. Although the influence of thermal ageing on XLPE has been well studied, the role
of oxygen diffusion on the ageing of high voltage XLPE cable insulation has not been considered.
For thin XLPE films, oxygen consumed in the sample can be quickly supplied by the diffusion process.
The oxidation is uniform and the influence of oxygen diffusion is often unimportant. However, oxygen
diffusion cannot be neglected because of the large thickness of high voltage XLPE cable.

The aim of this research is to quantitatively investigate the influence of oxygen diffusion on
thermal ageing of thick XLPE cable insulation, which would increase the knowledge about ageing
of high voltage cable insulation. In this paper, a 110 kV XLPE cable insulation was aged at 160 ◦C in
air for 240 h. The degradation along radial direction of XLPE during the thermal ageing process was
studied by Ultraviolet–visible spectrophotometer, tensile testing, and FTIR. The first order oxidation
model was introduced for a better understanding of the non-uniform ageing behavior of thick XLPE
cable insulation.

2. Materials and Methods

2.1. Sample Preparation

The sample used in this study was a new commercial 110 kV ac XLPE cable (Qingdao Hanhe
Cable Co., Ltd., Qingdao, China). The cylinder XLPE insulation samples were prepared by peeling
off the sheath and outer semiconductor shield layer of the cable. The thickness of the remaining
XLPE insulation sample was about 13 mm. Accelerated thermal ageing was performed by putting the
cylinder XLPE samples in an air-forced oven at 160 ◦C. After exposure for 48, 96, 144, 192, and 240 h,
the samples were taken out and cut spirally into long tapes for characterization.

The schematic diagram of the sample cutting method is illustrated in Figure 1a. The cylinder
XLPE sample was installed in a rotary machine and cut by a lathe whose blade was moving forward.
The cutting process was controlled by a numerical control machine. The thickness of the tape samples
was achieved by adjusting the rotation speed of the cable and the moving speed of the blade. A long
tape with a width of 10 cm and a thickness of 0.5 ± 0.05 mm was obtained. Then, the tape was divided
according to radial intervals of about 0.5 mm from the outer surface to the inner conductor. The samples
were denoted as 1, 2, 3, . . . , 20 as shown in Figure 1b. The relative positions of sheet samples were
normalized into 0–1.



Materials 2020, 13, 2056 3 of 12

Materials 2020, 13, x FOR PEER REVIEW 3 of 11 

 

Conductor

XLPE cable insulation

Blade

XLPE tape sample

Shield

 

Conductor

Shield 

Insulation

123...20

d=0.5±0.05 mm

d

...

160
o
C-240h

0 h 48 h 96 h 144 h 192 h 240 h

 
(a) (b) 

Figure 1. (a) The schematic diagram of cutting method; (b) the distribution of cross-linked 

polyethylene (XLPE) at different positions. The top is the surface color of the cylinder samples and 

the right is the color of the sheet samples. 

This method has been frequently applied in preparation of a cable insulation sample [24,25]. 

When the blade was close to the copper conductor, there was a risk of collision between conductor 

and blade. Therefore, few insulation residue near the conductor was left after processing, leading to 

a lower number of sections than 26. We chose 20 sections for all XLPE samples to study the 

dependence of thermal ageing on sample positions. 

2.2. Characterization 

The optical property of XLPE was characterized by color change and a Ultraviolet–visible 

spectrophotometer (UV–Vis, Shimadzu UV-3600, Kyoto, Japan). The absorption spectra in the 

wavelength range of 200–700 nm were recorded by mounting the sample in an integrating sphere. 

The reference curve was kept as air. The measurement was repeated twice for each sample. The 

UV–Vis absorption curves from the second measurement were presented in this paper. Calculation 

data points are the average value of two pieces. 

Changes in mechanical property of the samples were measured by a tensile test with a 

universal testing machine (5kNCMT-4503, MTS Industrial Systems Co., Ltd., Shanghai, China). The 

samples were cut into a dumbbell shape with a cut-off knife and punching machine. The specific 

size of the dumbbell shape sample is shown in Figure 2 [26]. The extension rate was 100 mm/min. 

The elongation at break and tensile strength data points were the average value of five pieces. 

75mm

25mm

20mm

4
m

m

12.5mm

50mm

R=8mm

R=12.5mm

R is radius  

Figure 2. Schematic diagram of XLPE dumbbell sample for the tensile test. 
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(FTIR, Nicolet iN10, Madison, WI, USA) ranging from 4000 to 500 cm−1 in transmission mode. FTIR 

spectra were obtained using scan summations of 32 and a resolution of 4 cm−1. For each XLPE 

sample, two pieces were measured. The FTIR spectra from the second measurement were analyzed 

in this research. Relative data points are the average value of two pieces. 

3. Results 

3.1. Influence of Thermal Ageing on Optical Properties 

Figure 1. (a) The schematic diagram of cutting method; (b) the distribution of cross-linked polyethylene
(XLPE) at different positions. The top is the surface color of the cylinder samples and the right is the
color of the sheet samples.

This method has been frequently applied in preparation of a cable insulation sample [24,25].
When the blade was close to the copper conductor, there was a risk of collision between conductor
and blade. Therefore, few insulation residue near the conductor was left after processing, leading to a
lower number of sections than 26. We chose 20 sections for all XLPE samples to study the dependence
of thermal ageing on sample positions.

2.2. Characterization

The optical property of XLPE was characterized by color change and a Ultraviolet–visible
spectrophotometer (UV–Vis, Shimadzu UV-3600, Kyoto, Japan). The absorption spectra in the
wavelength range of 200–700 nm were recorded by mounting the sample in an integrating sphere.
The reference curve was kept as air. The measurement was repeated twice for each sample. The UV–Vis
absorption curves from the second measurement were presented in this paper. Calculation data points
are the average value of two pieces.

Changes in mechanical property of the samples were measured by a tensile test with a universal
testing machine (5kNCMT-4503, MTS Industrial Systems Co., Ltd., Shanghai, China). The samples
were cut into a dumbbell shape with a cut-off knife and punching machine. The specific size of the
dumbbell shape sample is shown in Figure 2 [26]. The extension rate was 100 mm/min. The elongation
at break and tensile strength data points were the average value of five pieces.
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3. Results 

3.1. Influence of Thermal Ageing on Optical Properties 

Figure 2. Schematic diagram of XLPE dumbbell sample for the tensile test.

The ageing products studies were carried out by Fourier transformed infrared spectroscopy (FTIR,
Nicolet iN10, Madison, WI, USA) ranging from 4000 to 500 cm−1 in transmission mode. FTIR spectra
were obtained using scan summations of 32 and a resolution of 4 cm−1. For each XLPE sample, two
pieces were measured. The FTIR spectra from the second measurement were analyzed in this research.
Relative data points are the average value of two pieces.
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3. Results

3.1. Influence of Thermal Ageing on Optical Properties

The visual change is the first impression of degradation when a polymer is exposed to thermal
ageing. As presented in the top of Figure 1b, the surface color of the entire cylinder XLPE sample
(thick insulation with conductor) changes from white to yellow after ageing for 48 h and it gets darker
with increasing ageing time. For each aged XLPE sample, the discoloration is also observed in radial
direction when they were cut into sheets with a thickness of 0.5 mm. The sheet sample aged after 240 h
presents more red in the surface region while the interior region is yellow as shown on the right side
of Figure 1b. The surface color of the cylinder sample seen in the top of Figure 1b is the compositive
expression of all sections while the color shown in the right belongs to each section. Therefore, the color
of cylinder sample is black after 240 h while the color of section 1 appears red. The color of the XLPE
samples aged for 48, 96, 144 and 192 h in radial direction also varies gradually, which is similar with
the sample aged for 240 h, thus not presented here.

The discoloration of XLPE with ageing time and sample position was further studied by UV–Vis.
Figure 3a shows the absorption spectra of the No.1 XLPE sample with different ageing time. It is clear
that the absorption edge is shifted to a longer wavelength with increasing ageing time. Figure 3b
compares the absorption spectra of unaged and aged for 240 h XLPE samples at different positions.
The absorption curves of unaged samples at different positions are nearly identical. On the contrary,
the absorption behavior of thermally degraded samples are quite dependent on the sample positions.
As can be seen in Figure 3b, the No.1 section of the thermally aged sample has largest absorbance at
each wavelength and absorption edge. It obviously indicates that the shift of the absorption edge
towards a longer wavelength is consistent with the sample discoloration.
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Figure 3. (a) UV–Vis absorption spectra of the No.1 sample as a function of ageing time; (b) UV–Vis
absorption spectra of unaged and aged for 240 h XLPE samples at different positions.

The shift of the absorption edge towards longer wavelength direction is generally attributed to
the formation of radicals, unsaturated bands, and conjugated bands [27]. As shown in Figure 3a,b,
the absorption maximum at 215 nm and 256 nm come from the electronic vibration of –(CH=CH)2– and
–(CH=CH)3–. The absorption band located at 285 nm is the characteristic of transition in unsaturated
ketones (–C=C-C=O–). The formation of conjugated –CH=CH– bonds and unsaturated ketones
(–C=C-C=O–) upon thermal ageing could be result of the coupling of –C=C– and –C=O–. The –C=C–
and –C=O– were generated when radicals deactivate one another in pairs [28].

It was reported that the average number of carbon atoms per conjugate cluster (N) could be
estimated from UV–Vis spectra [29]. The number of carbon atoms in a conjugate cluster means the
number of carbon atoms participating in the conjugation effect. For example, N is 4 for the conjugate
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cluster 1,3-Butadiene (CH2=CH–CH=CH2). For polyethylene, N is an average number and can be
calculated by Equation (1) [30].

N = 2βπ/Eg (1)

where 2βπ is the band gap energy of a pair of adjacent π sites. The value of β is 2.9 eV as it is associated
with π–π* optical transitions in –C=C– structure. Eg is the band gap energy of XLPE, which can be
calculated by Equation (2) [31]

Eg = hc/λg (2)

where h = 6.626 × 10−34 J·s is the plank constant, c = 3.0 × 108 m/s is the velocity of light, and λg is the
absorption edge obtained from UV–Vis spectra.

The variation of N as a function of sample relative position during thermal ageing is presented in
Figure 4. It can be found that N increases after thermal ageing and the value increases from about 5 for
the unaged sample to 7 for the sample aged for 240 h. It is notable that the value is larger near the
surface region than that in the interior region. The increase of N during thermal ageing contributes to
the discoloration of the XLPE sample from white transparent to yellow opaque. These results clearly
demonstrate that the degradation in optical property is non-uniform and the surface region is more
affected by the thermal ageing condition.
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3.2. Influence of Thermal Ageing on Mechanical Properties

Tensile testing has been frequently employed to evaluate the degradation degree of polymeric
insulating materials. Figure 5 shows the dependence of mechanical properties including elongation at
break and tensile strength on ageing time and sample relative position.
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As shown in Figure 5a,b, the elongation at break is about 570% and the tensile strength is about
28 Mpa for the unaged XLPE sample no matter where the sample position is. With the increase of
ageing time, the elongation at break and tensile strength decrease gradually as frequently reported in
the literature [11]. Furthermore, the decreases of elongation at break and tensile strength are dependent
on the sample position. The dramatic reduction in elongation at break and tensile strength is observed
in the surface region of the aged samples. Longer ageing time leads to greater difference in elongation
at break and tensile strength between the surface and interior region. The drop of elongation at break
and tensile strength indicates the reduction of molecular chain flexibility which arises from the rupture
and oxidation of molecular chains. It was reported that the mechanical properties decreased with an
increase in the thermal oxidation degree [32], which certifies the close relation between non-uniform
degradation and oxygen diffusion when aged under 160 ◦C.

3.3. Influence of Thermal Ageing on Oxidation Products

FTIR spectroscopy is acknowledged as a powerful tool to detect oxidation products by
characterizing molecular rotation and vibration [33]. The FTIR spectra of the No.1 XLPE sample during
thermal ageing are shown in Figure 6. The absorption peaks at 2912 cm−1 and 2847 cm−1 correspond
to the asymmetric and symmetric stretching vibration of –CH2, respectively. The peaks at 1466 cm−1

and 719 cm−1 are from the wag and rocking vibration of –CH2, respectively. The decrease of the XLPE
characteristic peaks (719, 1466, 2847, and 2912 cm−1) after ageing was attributed to the molecular
chain scission [34]. In addition, an increase in absorbance located in the range of 1400–800 cm−1

can be observed. The absorption peaks at the 1307 and 1170 cm−1 regions are assigned to –C–O–C
vibrations [35]. The peaks at 1082, 976, and 896 cm−1 are related to unsaturated C=C groups [27].
The increase of carbonyl groups is observed in the range of 1850–1650 cm−1. Since the carbonyl groups
are closely related to the oxidation degree, the FTIR spectra in carbonyl regions were further analyzed.
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Figure 6. FTIR spectra of the No.1 sample as a function of ageing time in the range of 4000–500 cm−1.

Figure 7a depicts the spectra of sample No.1 in carbonyl stretching regions at different ageing
times. It is observed that the absorbance of carbonyl groups increases dramatically as thermal ageing
progresses. Three absorption peaks are observed in the carbonyl regions. The 1720 cm−1 peak is
assigned to the carbonyl in the ketone group. The carbonyl peak at 1735 cm−1 belongs to the ester.
The stretch of C=O in γ-lactone appears at 1769 cm−1. The accumulation of three carbonyl groups with
ageing time indicates the increase of the oxidation degree of the XLPE samples.

The FTIR spectra of XLPE samples located at different positions are shown in Figure 7b.
The absorbance is quite small and minor differences are detected between each section of unaged
samples. After ageing for 240 h at 160 ◦C, the spectra become position dependent from sample No.1 to
No.20. Considerable non-uniformity in distribution of oxidation products is observed with deeper
oxidation in the surface region than in the interior region.
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Figure 8. Profile of carbonyl index for different XLPE samples. 

4. Discussion 

Thermal oxidative ageing of polymeric materials has been an important subject for several 
decades. Great effort has been made by many researchers on the study of ageing characteristics. 
Based on the characterization of material structure and properties, the ageing mechanism was 
proposed to explain various experimental phenomena. It is widely accepted that the thermal 
oxidation process of XLPE can be described by an auto-oxidation scheme. During thermal ageing, 
the weak chemical C–H bonds in XLPE are broken, leading to a formation of free radicals R·. These 
radicals R· are instantly turned to peroxy radicals ROO· by oxygen. Then, ROO· can capture 

Figure 7. (a) FTIR spectra of the No.1 sample as a function of ageing time; (b) FTIR spectra of unaged
and aged for 240 h XLPE samples at different positions.

To describe the oxidation products quantitatively, carbonyl index is calculated by the ratio
between the area of carbonyl band (1850 cm−1–1650 cm−1) and internal standard peak at 2010 cm−1 [7].
The dependence of the carbonyl index on the relative position of the sample is shown in Figure 8.
As expected, the profile of the carbonyl index is not only time dependent but also position dependent.
At the initial ageing stage, the carbonyl index profile is flat and then it evolves with ageing time to
become highly non-uniform. The results in Figure 8 clearly indicate the non-uniform oxidation of
XLPE cable insulation.
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4. Discussion

Thermal oxidative ageing of polymeric materials has been an important subject for several decades.
Great effort has been made by many researchers on the study of ageing characteristics. Based on the
characterization of material structure and properties, the ageing mechanism was proposed to explain
various experimental phenomena. It is widely accepted that the thermal oxidation process of XLPE
can be described by an auto-oxidation scheme. During thermal ageing, the weak chemical C–H bonds
in XLPE are broken, leading to a formation of free radicals R·. These radicals R· are instantly turned
to peroxy radicals ROO· by oxygen. Then, ROO· can capture hydrogen atoms again from molecular
chains generating hydro-peroxides ROOH. Once produced, ROOH can decompose to RO· and OH·,
resulting in successive oxidation reactions. The termination of R·, RO·, and ROO· finally forms the
inactive products such as carbonyl groups, as well as unsaturated and conjugated groups. Therefore,
the chain scission and oxidation reactions result in the discoloration and decrease of elongation at
break after thermal ageing.
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On the basis of the above analysis, the non-uniform oxidation of XLPE is well understood and can
be explained by the oxygen diffusion theory. For the thick XLPE sample, oxygen in air diffuses into the
XLPE sample and participates in oxidation reactions with molecular chains. The large thickness means
that a longer time is needed for oxygen to diffuse into the interior of the sample. Therefore, the oxygen
consumed by oxidation reactions cannot be replenished in time, leading to a region in the interior with
reduced oxygen concentration. The degree of non-uniform oxidation is closely dependent on oxygen
concentration distribution in the sample according to the auto-oxidation scheme. For the purpose of
quantifying the non-uniform oxidation behavior, the oxygen concentration (O2) in XLPE at different
positions is calculated theoretically according to Fick’s second law [36]. The oxygen consumption rate
satisfies Equation (3)

d(O 2)

dt
= D

d2(O 2)

dx2 − r (3)

where t is time, D is oxygen diffusion coefficient, x is the distance to the surface, and r is the reaction
rate of oxygen. To simplify the model, it is assumed that r is proportional to the oxygen concentration.
In an equilibrium state, Equation (3) becomes Equation (4)

D
d2(O 2)

dx2 − k(O2) = 0 (4)

where k is the rate constant. The solution of Equation (4) is shown in Equation (5)

(O 2)x

(O 2)0
=

cosh(θ(x− l))
cosh(θl)

(5)

where (O2)x/(O2)0 is the relative oxygen concentration at depth x, l is the thickness of the sample,
and θ = (k/D)0.5 is called the shape parameter which determines the degree of non-uniform for oxygen
concentration curve.

Figure 9 plots the computed relative oxygen concentration profile with different values of θ. It is
clearly apparent that the profile of relative oxygen concentration has a similar shape with the profile of
N, elongation at break, and the carbonyl index as shown in the experimental results. Greater value of θ
means steeper shape of the curve and larger degree of non-uniform oxidation. When the reaction rate
constant k and oxygen diffusion coefficient D are experimentally accessible, θ can be obtained. It can be
expected that θ becomes larger when XLPE is aged at higher temperature since a higher temperature
gives larger k. Therefore, the accelerated thermal ageing temperature of the complete 110 kV XLPE
cable insulation should be lower than 160 ◦C when uniform oxidation is required.
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The conjugate cluster measured by UV–Vis and carbonyl groups measured by FTIR are closely
related to the oxidation reactions, while the elongation at break would be influenced by other factors
in addition to oxidation reactions. In this paper, it is reasonable to use N and the carbonyl index to
determine the degree of non-uniform oxidation of XLPE aged at 160 ◦C. For simplicity, it is assumed
that N and the carbonyl index are proportional to the oxygen concentration [36]. Therefore, the relative
N and carbonyl index can be expressed by Equation (5). Consequently, the relative N and carbonyl
index data points of aged XLPE were fitted by Equation (5) and presented as lines in Figure 10. The inset
table in Figure 10 illustrates the calculated values of θ and goodness of fit R2.Materials 2020, 13, x FOR PEER REVIEW 9 of 11 
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It is observed that θ obtained from UV–Vis is in the range of 0.2–0.5, while θ is in the range of
1–2 from carbonyl index measured by FTIR. The common feature of the fitting result is that θ tends
to increase with ageing time. The difference of θ may be attributed to the sensitivity of parameters
to the oxidation degree. In other words, the carbonyl index may be more sensitive to oxidation and
can be used to determine the degree of non-uniform oxidation of XLPE. The agreement between the
theory and experiment is achieved since R2 is about 0.9. To date, the quantitative study of non-uniform
oxidation for XLPE cable insulation has not been reported, whereas a similar study was noticed in the
thermal ageing of polyamide 6. It was found that the shape parameter of polyamide 6 obtained from
the carbonyl index (7.9 aged at 120 ◦C) was also larger than that from absorbance at 280 nm (5.1 aged
at 120 ◦C) [37]. According to the expression of the shape parameter, the different values of the shape
parameter between XLPE and polyamide 6 may be ascribed to the difference in the diffusion coefficient
and reaction rate constant.

It can be concluded that the non-uniform oxidation of XLPE under thermal ageing can be described
by first order oxidation kinetics. Oxygen diffusion is a critical factor for materials aged in accelerated
conditions in an aerobic atmosphere, which often leads to spatially dependent degradation. In addition
to the optical and mechanical properties, thermal properties would also be influenced by oxygen
diffusion during thermal ageing. Further study is still needed to disclose a full picture of non-uniform
oxidation of high voltage XLPE cable insulation. Our research results would be beneficial to understand
and determine the characteristics of non-uniform degradation for high voltage XLPE cable insulation.

5. Conclusions

In this paper, the influence of oxygen diffusion on thermal ageing of high voltage XLPE cable
insulation was investigated. Several conclusions were shown as follows:
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(1) Significant non-uniform oxidation of XLPE was caused by oxygen diffusion during thermal
ageing. The color, average number of carbon atoms per conjugate cluster, elongation at break,
tensile strength, and carbonyl index of XLPE varied spatially along radial direction;

(2) The degradation of aged samples in the surface region was more severe than that in the interior
region. As ageing time increased, the oxidation behavior transited from uniform to non-uniform;

(3) The degree of non-uniform degradation of XLPE can be calculated by first order oxidation kinetic.
The carbonyl index measured from FTIR was more sensitive to non-uniform oxidation than the
average number of carbon atoms per conjugate cluster from UV–Vis;

(4) The ageing temperature should be lower than 160 ◦C when uniform oxidation of 110 kV XLPE
cable insulation was required.
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