Supplementary Materials

NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane

Syota Imada ${ }^{1}$, Xiaobo Peng ${ }^{2}$, Zexing Cai ${ }^{1,3}$, Abdillah Sani Bin Mohd Najib ${ }^{2}$, Masahiro Miyauchi ${ }^{4}$, Hideki Abe ${ }^{2}$ and Takeshi Fujita ${ }^{1, *}$

1 School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi 782-8502, Japan; 245105w@gs.kochi-tech.ac.jp (S.I.); cai.zexing@kochi-tech.ac.jp (Z.C.)
${ }^{2}$ National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; peng.xiaobo@nims.go.jp (X.P.); abdillah.sani@nims.go.jp (A.S.B.M.N.); ABE.Hideki@nims.go.jp (H.A.)
${ }^{3}$ School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
${ }^{4}$ Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan; mmiyauchi@ceram.titech.ac.jp

* Correspondence: fujita.takeshi@kochi-tech.ac.jp

Figure S1. X-ray diffractograms of $\mathrm{NiYAl}_{4}, \mathrm{NiYAl}_{2}$, and NiYAl intermetallic precursors.

Figure S2. X-ray diffractograms of the $\mathrm{NiYAl}_{4}, \mathrm{NiYAl}_{2}$, and NiYAl samples obtained after the preferential oxidation with $\mathrm{CO}+\mathrm{O}_{2}$ gas mixture.

Figure S3. (left) Photograph of the initial and spent NiYAl-derived catalyst. The degree of carbon coking was estimated from the increase in volume between the initial and spent samples. (right) Photograph of the spent NiYAl-, NiYAl2-, and NiYAl4-derived catalysts. The initial NiYAl2- and NiYAl4-derived samples were similar in appearance to the initial NiYAl-derived catalyst.

Figure S4. TG analysis of the spent catalysts derived from NiYAl, NiYAl2, and NiYAl4.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

