

Supplementary Materials NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane

Syota Imada ¹, Xiaobo Peng ², Zexing Cai ^{1,3}, Abdillah Sani Bin Mohd Najib ², Masahiro Miyauchi ⁴, Hideki Abe ² and Takeshi Fujita ^{1,*}

- ¹ School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi 782-8502, Japan; 245105w@gs.kochi-tech.ac.jp (S.I.); cai.zexing@kochi-tech.ac.jp (Z.C.)
- ² National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; peng.xiaobo@nims.go.jp (X.P.); abdillah.sani@nims.go.jp (A.S.B.M.N.); ABE.Hideki@nims.go.jp (H.A.)
- ³ School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
- ⁴ Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan; mmiyauchi@ceram.titech.ac.jp
- 0 NiYAI₄ θ NiYAl₂ Φ NiYAI NiYAL Intensity(a.u.) NiYAl₂ NiYA 60 40 80 20 100 2θ (deg.)
- * Correspondence: fujita.takeshi@kochi-tech.ac.jp

Figure S1. X-ray diffractograms of NiYAl4, NiYAl2, and NiYAl intermetallic precursors.

Figure S2. X-ray diffractograms of the NiYAl₄, NiYAl₂, and NiYAl samples obtained after the preferential oxidation with CO + O₂ gas mixture.

Figure S3. (left) Photograph of the initial and spent NiYAl-derived catalyst. The degree of carbon coking was estimated from the increase in volume between the initial and spent samples. (right) Photograph of the spent NiYAl-, NiYAl₂-, and NiYAl₄-derived catalysts. The initial NiYAl₂- and NiYAl₄-derived samples were similar in appearance to the initial NiYAl-derived catalyst.

Figure S4. TG analysis of the spent catalysts derived from NiYAl, NiYAl2, and NiYAl4.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).