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Abstract

:

Dry reforming of methane can be used for suppressing the rapid growth of greenhouse gas emissions. However, its practical implementation generally requires high temperatures. In this study, we report an optimal catalyst for low-temperature dry reforming of methane with high carbon coking resistance synthesized from NiYAl alloy. A facile two-step process consisting of preferential oxidation and leaching was utilized to produce structurally robust nanoporous Ni metal and Y oxides from NiYAl4. The catalyst exhibited an optimal carbon balance (0.96) close to the ideal value of 1.0, indicating the optimized dry reforming pathway. This work proposes a facile route of the structural control of active metal/oxide sites for realizing highly active catalysts with long-term durability.
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1. Introduction


Continuously increasing greenhouse gas (CO2) emissions trigger various climatic disasters and are gradually raising the sea level, which considerably decrease habitable areas. Therefore, developing a feasible method for the chemical or physical utilization of vast CO2 quantities represents an urgent task. Methane (CH4) is both a major component of natural gas and a greenhouse gas; hence, the dry reforming of methane (DRM, CH4 + CO2→2H2 + 2CO) could become a promising strategy for tackling excessive CO2 output without disrupting the current infrastructure and converting it to valuable chemical products [1]. However, this reaction requires a relatively high temperature (>800 °C) because of its endothermicity (ΔH°298K = 247 kJ mol−1), which results in significant heat degradation due to material sintering. When DRM is performed in a low-temperature range from 400 to 600 °C, corresponding to low-temperature DRM (LT-DRM), its side reactions become more thermodynamically dominant leading to significant carbon coking due to methane decomposition (CH4→2H2 + C(s)) and the Boudouard reaction (2CO→CO2 + C(s)), that ultimately block the gas flow and cause a rupture of the reactor. Many heterogeneous (typically Ni-based) catalysts have been studied to date, and various modifications of the interactions between Ni atoms and oxide supports and/or structural design were considered [2,3,4,5,6,7,8,9]. To suppress a significant growth of carbon fabric on Ni particles, topological modification of the active sites located at the metal–oxide interface should be performed. Unlike the conventional nanoparticle–oxide supports, a well-connected metal–oxide topology obtained from bulk alloy via preferential oxidation [10,11,12] or leaching (dealloying) [13,14] was found to be a critical structural design with a highly active metal–oxide interface and long-term stability.



Here, we report nanoporous catalysts derived from NiYAlx intermetallic precursors by combining preferential oxidation with leaching. As was shown in our previous study on binary NiY alloy [10], the preferential oxidation process resulted in the nanophase separation of Ni, Y oxide, and Al oxide in the precursor alloy, and the subsequent leaching process dissolved all Al components (Al and Al oxides) to yield a structurally robust nanoporous Ni/Y oxide catalyst. In the course of catalyst evaluation that involved intentional carbon accumulation, the obtained nanoporous catalyst was more resistant to carbon deposition than the conventional Ni-based (Ni/Al2O3) and Raney Ni catalysts for LT-DRM. In contrast to conventional chemical routes, the top-down process starting from bulk alloy can produce advanced materials with high catalytic activity and coking tolerance for methane conversion.




2. Materials and Methods


2.1. Preparation of Nanoporous Catalysts


The utilized catalyst fabrication route is outlined in Figure 1.



Ni33.3Y33.3Al33.3, Ni25Y25Al50, and Ni16.7Y16.7Al66.6 (at.%) were selected as intermetallic precursors for NiYAl, NiYAl2 and NiYAl4, respectively, using the Ni–Al–Y ternary phase diagram [15]. Ingots were prepared by melting pure Ni, Y, and Al metals (>99.9 at.%) inside an Ar-protected arc melting furnace. The resulting Ni–Y–Al alloy ingots were ground in a mortar and sieved to obtain powder precursors with average particle sizes of 50–60 μm. During the preferential oxidation process, the Ni–Y–Al alloy precursors were heated in a gas stream consisting of CO (2 vol.%), O2 (1 vol.%), and Ar (97 vol.%) at a flow rate of 60 mL min−1 and temperature of 873 K for 12 h to obtain phase-separated Ni–Y2O3–Al2O3 composites. To perform acid leaching, these composites (~0.5 g) were autoclaved in a 15 M NaOH solution at a pressure of 5 atm and temperature of 150 °C for 6 h to dissolve Al, followed by thorough rinsing with water and drying under air.




2.2. Preparation of Conventional Ni Catalysts


Ni/Al2O3 composite was prepared by a conventional impregnation method. Following the dissolution of Ni(NO3)2∙6H2O (0.8 g, Sigma-Aldrich, Louis, MO, USA) in ethanol (20 mL), Al2O3 powder (0.3 g, Sigma-Aldrich Louis, MO, USA) was added to the reaction solution. The resulting mixture was stirred for 8 h, after which ethanol was removed by evaporation at 353 K. Ni/Al2O3 catalyst was synthesized through the calcination of the obtained product in an H2–Ar gas mixture (5 vol.% H2) at 873 K for over 4 h.



To obtain Raney Ni catalyst, commercial Ni–Al (50/50 wt.%) precursor powder was purchased from Kojundo Chemical Laboratory CO., Ltd., Saitama, Japan. Approximately 0.5 g of this powder was dealloyed in a 30 wt.% NaOH (97% Wako, Japan) solution for 4 h at 50 °C, rinsed thoroughly with water, and dried under air.




2.3. Microstructural Characterization


Microstructures of the obtained catalysts were characterized by scanning transmission electron microscopy (STEM, JEM-2100F, JEOL, Tokyo, Japan) and energy-dispersive x-ray spectroscopy (EDS, Ince Energy TEM 250, Oxford, Abingdon, UK). The analyzed samples were transferred onto a Cu grid without using a uniform carbon support film. X-ray diffraction (XRD) profiles were recorded using a Rigaku SmartLab X-ray diffractometer (Rigaku, Tokyo, Japan) with Cu Kα radiation (40 kV). Surface morphologies were observed by scanning electron microscope (SEM, Hitachi SU-8030, Tokyo, Japan) at an accelerating voltage of 15 kV. The deposited carbon present after the DRM process was evaluated using a thermal gravimetric-differential thermal analyzer (TG-DTA, NETZSCH, STA 2500, Selb, Germany) under air. The sharp mass loss above 500 °C corresponded to the combustion of carbon.




2.4. Catalytic Studies


LT-DRM was conducted inside a fixed-bed flow reactor with an inner diameter of 10 mm. A sample with a mass of 0.1 g was loaded into the reactor at 550 °C in a gas mixture of CH4 (10 mL/min), CO2 (10 mL/min), and N2 (5 mL/min) with a total flow rate of 25 mL min−1 to accelerate the carbon accumulation process. The composition of the effluent gas was monitored by a gas chromatograph (Shimadzu, TCD, GC-8A) with a column made of activated charcoal. The formulas utilized for calculating consumption rates, formation rates, conversions, and the H2/CO ratio are provided below [13]:


   CH 4    conv .   [ % ] =     [    CH  4   ]   in   −   [    CH  4   ]   out       [    CH  4   ]   in     × 100  










    CO 2    conv .   [ % ] =        [    CO  2   ]    in   −    [    CO  2   ]    out        [    CO  2   ]    in     × 100   










CH4 consumption rate = [CH4]in flow rate × CH4 conv.










CO2 consumption rate = [CO2]in flow rate × CO2 conv.










   H 2    formation   rate = [  CH 4   ] in    flow   rate   ×        [   H 2   ]    out        [    CH  4   ]    in      










  CO   formation   rate = (    [    CH  4   ]    in     flow   rate +    [    CO  2   ]    in     flow   rate )   ×        [  CO  ]    out        [    CH  4   ]    in   +    [    CO  2   ]    in      










    H  2  / CO   ratio =     H  2    formation   ratio   CO   formation   ratio    








where […]in and […]out represent the molar concentrations in the feed gas and effluent gas, respectively.





3. Results and Discussion


Intermetallic precursors were obtained by arc-melting, and the resulting NiYAl4 (JCPDF#50-1236), NiYAl2 (#76-8082), and NiYAl (#22-0008) compounds were identified in the as-made precursor alloys by XRD, as shown in Figure S1. The subsequent preferential oxidation via the CO + O2 reaction induced the phase separation of Ni, Al2O3 (#04-0877), Y2O3 (#43-0661), and residual intermetallics according to Figure S2. After conducting high-pressure leaching to remove Al components, the resultant products were ultimately converted to Ni and Y(OH)3 (Figure 2); the latter was subsequently converted to Y2O3 through a catalytic reaction in the next step. The conversion from Y(OH)3 to Y2O3 was driven by the DRM reaction as well as heat treatment [13,16].



The obtained scanning electron microscope (SEM) images are displayed in Figure 3.



The microstructures of the NiYAl- and NiYAl4-derived samples contain mixed but distinct regions of squarish Y(OH)3 and nanoporous Ni. The microstructure of the NiYAl2-derived catalyst includes the nanoporous Ni and isolated Y(OH)3 regions. The nanoporous Ni region in the NiYAl4-based sample was analyzed by STEM–EDS, as shown in Figure 4.



Its average pore size was approximately 30 nm, while the composition of the nanoporous Ni region in the sample, represented by the formula 91.9Ni–2.6Y–0.5Al–5O (at.%), was relatively uniform.



The catalytic properties of the nanoporous catalysts produced from NiYAl, NiYAl2, and NiYAl4 precursors are summarized in Table 1. Here, the conventional Ni/Al2O3 and Raney Ni catalysts serve as references. The H2/CO ratio is an important indicator of the coking resistance (its ideal value is equal to one, while higher magnitudes of this parameter indicate a significant coking effect). Photographs of the initial and spent catalyst samples are shown in Figure S3. As expected from the increased volume in Figure S3, the spent NiYAl2-derived sample demonstrated the most intense coking effect (H2/CO ratio = 2.4), and the NiYAl4-derived catalyst exhibited the weakest coking effect (H2/CO ratio = 0.7). The XRD analysis (Figure 5a) reveals that the spent samples are composed of Ni and Y2O3 converted from Y(OH)3. In addition, the carbon peaks with the highest intensity appear for the NiYAl2-derived catalyst, whereas the smallest carbon peaks are observed for the NiYAl4-derived one. The NiYAl4-base sample exhibited no catalytic activity after the preferential oxidation (without etching), indicating that the final leaching process was an important step toward achieving the optimal catalyst microstructure. The conventional Ni/Al2O3 and Raney Ni catalysts also demonstrated strong coking effects (their H2/CO ratios were 2.3 and 1.4, respectively). We calculated the carbon balance for these catalysts; carbon balance = {CO formation rate/(CH4 consumption rate + CO2 consumption rate)}, and the results are shown in Figure 5b. The conventional catalyst Ni/Al2O3 exhibits the lowest carbon balance of 0.31. Although Raney Ni shows a relatively higher carbon balance (0.74), the NiYAl4-derived sample represented the optimal carbon balance (0.96) close to the ideal value of 1.0, indicating the optimal DRM pathway. The thermal gravimetric analysis (Figure S4) confirms that the spent NiYAl4-derived sample exhibit the lowest amount of coking.




4. Conclusions


In this study, we fabricated nanoporous catalysts from NiYAlx intermetallic precursors by a combined process of preferential oxidation and leaching. The optimal catalyst obtained from NiYAl4 possessed a structurally robust nanoporous Ni metal and Y oxide structure with high coking resistance for LT-DRM. The described facile fabrication process can be utilized for fabricating highly active catalysts with long-term stability from various binary, ternary, and quaternary metal alloys.
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Figure 1. Schematic illustration of the catalyst preparation from NiYAlx alloys. 






Figure 1. Schematic illustration of the catalyst preparation from NiYAlx alloys.



[image: Materials 13 02044 g001]







[image: Materials 13 02044 g002 550] 





Figure 2. X-ray diffractograms of the nanoporous catalysts obtained from NiYAl4, NiYAl2, and NiYAl intermetallic precursors. 
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Figure 3. SEM images of the nanoporous catalysts derived from (a–c) NiYAl4, (d–f) NiYAl2, and (g–i) NiYAl intermetallic precursors. 
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Figure 4. (a) STEM image and (b–d) energy-dispersive x-ray spectroscopy (EDS) chemical maps of the nanoporous Ni region in the NiYAl4-derived sample showing the distributions of Ni (red), Y (green), and O (yellow) elements. 
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Figure 5. (a) X-ray diffractograms of the spent catalysts prepared from NiYAl4, NiYAl2, and NiYAl intermetallic precursors. The arrow indicates the position of the carbon peak. (b) Carbon balance ratio for the present catalysts and reference catalysts. Carbon balance = {CO formation rate/(CH4 consumption rate + CO2 consumption rate)}. 
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Table 1. Dry reforming of methane (DRM) parameters of various Ni catalysts including the nanoporous catalysts obtained from NiYAl, NiYAl2, and NiYAl4 intermetallic precursors in this study as well as conventional Ni/Al2O3 and Raney Ni catalysts. The NiYAl4 sample showed no catalytic activity after the preferential oxidation (CO + O2) without leaching.
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	Sample
	CH4

Conv.

(%)
	CO2

Conv.

(%)
	CH4

Consumption Rate

(mmol h−1)
	CO2

Consumption Rate

(mmol h−1)
	H2

Formation Rate

(mmol h−1)
	CO

Formation Rate

(mmol h−1)
	H2/CO

Ratio





	NiYAl4
	12
	19
	3.3
	5.1
	5.7
	8.1
	0.7



	NiYAl2
	45
	33
	12
	8.8
	18
	8.5
	2.2



	NiYAl
	32
	29
	8.5
	7.9
	14
	9.8
	1.4



	NiYAl4

(CO + O2)
	0
	0
	-
	-
	-
	-
	-



	Ni/Al2O3
	56
	37
	15
	10
	18
	7.7
	2.3



	Raney Ni
	33
	31
	8.9
	8.5
	17
	13
	1.4







Reaction conditions: 0.1 g; 550 °C; CH4 (10 mL/min), CO2 (10mL/min), and N2 (5 mL/min) with a total flow rate of 25 mL min−1; 4–6 h.
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