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Abstract: The study presents the effect of annealing process parameters on the microstructure, 
hardness, and strain-hardening coefficients, that is, the strength coefficient c and the strain-
hardening exponent n, of 42CrMo4 steel. Seven selected annealing time–temperature schemes are 
examined for superior steel formability in cold metal forming conditions. The c and n coefficients 
are first determined in experimental upsetting of annealed samples and then used in FEM (finite 
element method) simulations of the upsetting process. The results demonstrate that the strain-
hardening coefficients (c and n) depend on the employed annealing scheme. Compared with the as-
received sample, the annealing process reduces the true stress and effectively decrease the hardness 
of 42CrMo4 steel; improves microstructural spheroidization; and, consequently, facilitates 
deformability of this material. The annealing schemes, relying on heating the material to 750 °C and 
its subsequent slow cooling, lead to the highest decrease in hardness ranging from 162 to 168 HV. 
The results obtained with the SEM-EDS (scanning electron microscopy-energy dispersive 
spectrometer), LOM (light optical microscopy), and XRD (X-ray diffraction) methods lead to the 
conclusion that the employed heat treatment schemes cause the initial ferritic-pearlitic 
microstructure to develop granular and semi-lamellar precipitation of cementite enriched with Mo 
and Cr in the ferrite matrix. In addition, the annealing process affects the growth of α-Fe grains. The 
highest cold hardening rate, and thus formability, is obtained for the annealing scheme producing 
the lowest hardness. The results of FEM simulations are positively validated by experimental 
results. The obtained results are crucial for further numerical simulations and experimental research 
connected with developing new cold metal forming methods for producing parts made of 42CrMo4 
steel. 
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1. Introduction 

Low-alloy structural steels are widely used in mechanical, automotive, mining, and machine 
building industries and undergo shaping by metal forming, machining, welding, surfacing, and 
many other techniques [1–5]. Particularly, the structural steel grade 42CrMo4 (AISI 4140) offers the 
most versatile applications and is one of the most universal grades dedicated to heat treatment and 
plastic deformation [1,2,6–8]. However, to facilitate its deformability in cold metal forming processes, 
this steel requires a special heat treatment—annealing. Although the general definition of the process 
is well-known and describes “any heating and cooling operation that is usually applied to induce 
softening” [9], accurate selection of the process parameters for treating a specific steel grade seems to 
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be a complex procedure. Annealing refers to altering mechanical or physical proprieties of a material 
by producing a definite microstructure. Unfortunately, annealing time–temperature parameters, like 
in other heat treatments, are not only affected by the chemical composition of steel, but they also 
depend on the combination of metal treatment history (primary microstructure), initial plastic 
deformation, part dimensions, and many other factors affecting the properties of heat-treated 
42CrMo4 steel [1,8–12]. Moreover, specific time–temperature conditions of the annealing process 
should be selected individually depending on the part being treated. Despite the fact that the 
literature of the subject [8,9] reports general parameters of annealing, still, the best solution for 
obtaining superior deformability of specific steels is to conduct an experimental investigation of 
time–temperature parameters of this heat treatment. 

It is generally believed that the examination of hardness and microstructure is the best method 
for evaluating the quality of a conducted heat treatment. Nevertheless, in industrial conditions, the 
particularly time-effective measurement of hardness is employed to examine the softening of steel 
before subjecting the treated steel to metal forming processes. Although, in many cases, light optical 
microscopy (LOM) and scanning electron microscopy (SEM) give accurate results of metallographic 
examination [7,13–15], electron back-scattered diffraction (EBSD) [16,17], transmission electron 
microscopy (TEM) [1,18], and X-ray diffraction (XRD) [19–21] seem to be much more powerful tools 
for evaluating microstructure development owing to plastic deformation or heat treatment. In [20], 
the authors employ XRD to study the hardening and tempering behaviour of the En24 steel (ISO 
equivalent 34CrNiMo6) via X-ray peak profile analysis. In addition, Bouras et al. [21] claim that the 
XRD peak broadening is in a direct relation with the structural anisotropy and heterogeneity in the 
rolling plane during deformation by deep drawing of mild soft steel. 

Additionally, many researchers have stressed the importance of calculating strain-hardening 
coefficients such as a strength coefficient, c, and a strain-hardening exponent, n. They are particularly 
essential when selecting heat treatment technological parameters or elaborating metal forming 
technology for steel [22,23], aluminium alloys [24,25], magnesium alloys [26,27], pure copper [28], 
powder metallurgy materials [29,30], or plasticine [31,32], or even MMC (metal matrix composite) 
materials [33,34]. Therefore, this paper investigates the effect of annealing on the strain-hardening 
parameters, and the c and n coefficients are determined and can be used in numerical simulations 
and experimental tests of 42CrMo4 steel components dedicated for metal forming [35,36]. 

Although 42CrMo4 steel (AISI 4140) is a popular machine-building material, the literature 
recommends different annealing procedures for softening the material and facilitating its cold 
working, not to mention the fact that the literature of the subject gives various annealing parameters 
[6,8,9,15,37]. In addition, a very important factor in industrial conditions is to obtain the highest steel 
deformability in an optimal time of the annealing process. From this point of view, it is worth 
determining the accurate annealing time and temperature parameters of 4140 steel. Moreover, FEM 
simulations of the cold forming process effectively shorten the time consumed by the design of a 
metal forming process. However, to obtain accurate simulation results of the annealed steel, the pre-
calculation of strain-hardening coefficients is required. 

This research focuses on studying the effect of 42CrMo4 steel annealing parameters on the 
microstructure development as well as the hardness and strain-hardening coefficients of the material. 
Thus, in this work, seven annealing schemes with different times and temperatures were studied to 
identify the optimum cold formability of 42CrMo4 steel. The treatments were selected for the lowest 
hardness and superior microstructural deformability, and subsequently verified by cold upsetting 
tests. The obtained findings are essential for future research on the design of new cold metal forming 
techniques for producing 42CrMo4 steel parts. 

2. Materials and Methods 

2.1. Investigated Steel and Heat Treatment 

The study was performed on low-alloy structural steel grade 42CrMo4 (AISI 4140); its chemical 
composition and mechanical properties given in Table 1. Cylindrical samples with the dimensions 
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ø15 mm × 18 mm were heat-treated according to seven different annealing schemes. The employed 
annealing schemes are shown in Figure 1, and they were designed according to the literature data 
[6,8,9,15,37] and engineering practice. Schemes consist of treating the steel using different time and 
temperature parameters around the A1 temperature with different cooling rates. Generally, the 
practical goal of the experiment was to select the most time-effective annealing process, while the 
scientific aim was to study how the different time and temperature parameters of annealing affect 
the microstructure, hardness, and strain-hardening coefficients. Overall, the main objective of the 
annealing treatment was to obtain the highest deformability (steel softening) in the shortest time-
consuming process. The sample in as-received conditions was denoted as 0, while other heat-treated 
samples were denoted in compliance with the scheme numbers from 1 to 7; see Figure 1. The 
treatment schemes consisted in first heating the material to a temperature above Ac1, and then either 
cooling it very slowly in a furnace (schemes no. 1 and 5) or maintaining it at a temperature just below 
Ar1 (schemes no. 4 and 7), or prolonged holding of the material at the Ac1 temperature (schemes no. 2 
and 3) followed by alternate heating and cooling of the material at temperatures that are just below 
Ar1 and just above Ac1. After that, hardness and microstructure were comparatively analysed and 
examined in relation to the findings obtained in upsetting (compression test). 

Table 1. Nominal properties of 42CrMo4 steel. 

Mechanical 
Properties, MPa Chemical Composition1, wt.%  

Rm Re C Mn Si P S Cr Mo 
1030 880 0.38–0.45 0.4–0.7 0.17–0.37 max 0.035 max 0.035 0.9–1.2 0.15–0.25 

1 Ni max 0.3%; W max 0.2%; V max 0.05%; and Cu max 0.25%. 

 
Figure 1. Time vs. temperature schemes of the annealing process. 
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2.2. Characterization of the Annealed and Deformed Samples—Microstructure and Hardness 

The samples were examined as received and after annealing, before and after the upsetting test. 
The structure was investigated on the polished and etched transverse section of the samples by light 
optical microscopy (LOM, Nikon Eclipse MA200) (Tokyo, Japan) and scanning electron microscopy 
(SEM, Phenom ProX Desktop SEM, Phenom World (Waltham, MA, USA)) equipped with energy 
dispersive spectrometer (EDS). Moreover, the phase structure was evaluated qualitatively and 
quantitatively by X-ray dispersive diffraction (XRD) using the XTRa ARL X-ray diffractometer 
(manufactured by Thermo Fisher Scientific, Massachusetts, Waltham, MA, USA) and the parameters 
described in [38,39]. Vickers hardness was measured before and after the heat treatment and 
compared with the hardness results of the upset samples. To determine the load effect, both Vickers 
HV 10 macro-hardness and Vickers HV 0.3 micro-hardness indentations were made on the flat 
surface of the cylindrical samples. Moreover, after upsetting, the HV 0.3 hardness was measured on 
the transverse section of the samples, and, to ensure statistical accuracy, at least 16 indentations were 
made. Finally, the cold hardening ratio of every sample was calculated as a ratio of the upset sample 
hardness to the initial (annealed) sample hardness. The effects of hardness on the strain hardening 
coefficients were analysed. 

2.3. Comparison of the Experimental and FEM Results of Upsetting  

The FEM (finite element method) simulation of the upsetting process was followed by 
experimental tests. Prior to modelling, it was necessary to experimentally determine the strain 
hardening coefficients c and n (c denotes the strength coefficient and n denotes the strain hardening 
exponent). The determined c and n values are crucial for accurate modelling of annealed 42CrMo4 
steel. These parameters were determined during the upsetting test. For that reason, the flow cures of 
the as-received and annealed samples were estimated by upsetting testing. The samples made of 
42CrMo4 steel with the dimensions ø15 mm × 18 mm (d0 × ho) were compressed with a strain rate of 
0.2 s−1, using the static testing machine Instron 1000HDX (Instron, Norwood, MA, Canada). The tests 
were carried out in ambient temperature until the upsetting force limit of 800 kN was reached. Three 
upsetting tests, one for each annealing scheme, were performed. The instantaneous strain (εi) and 
flow stress (σpi) were determined using Relationship (1). 

⎩⎪⎨
⎪⎧ ε୧ = ln h଴h୧σ୮୧ = 4 × F୧ × h୧π × d଴ଶ × h଴ (1) 

where h0 and d0 are the initial height and diameter of the samples, respectively; and hi and Fi are the 
instantaneous height of the sample and its corresponding instantaneous upsetting force, respectively. 

The flow curves were described by constitutive equations expressed with Relationship (2). To 
determine the coefficients c and n in the equation, the objective function Fσ (described by Equation 
(3)) was determined, and then the values of c and n for which this function would reach the minimum 
value were determined. σ୮ = c × ε୬ (2) 

F஢ =෍ቂ൫σ୮୧ିଵ − σ୮൯ଶ + ൫σ୮୧ିଶ − σ୮൯ଶ + ൫σ୮୧ିଷ − σ୮൯ଶቃ୬
୧ୀଵ ⇒ min (3) 

where σpi-1, σpi-2, σpi-3 are the flow stresses at i-th measuring point determined by means of 
Relationship (1) for individual samples in the same heat treatment condition; and σp is the flow stress 
described by constitutive Equation (2). 

The upsetting process was modelled under the axisymmetric state of strain using the DEFORM 
2D/3D commercial software (Scientific Forming Technologies Corporation, Columbus, OH 43235, 
USA; version 11.0). It was performed on a 42CrMo4 steel rod, the material model of which was 
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obtained from the material database library of the simulation software, while the stress hardening 
coefficients were applied based on the upsetting experimental results determined in the present 
study. Forging shape and force parameters, as well as stress and strain distributions, among others, 
are shown in the results. The metal forming simulation parameters are described in detail in [35,36] 
in relation to the cold metal forming of 42CrMo4 steel parts. Finally, the effects of computer modelling 
were validated by experimental upsetting of samples. 

3. Results and Discussion 

3.1. Heat Treatment Effect on 42CrMo4 Steel Properties  

3.1.1. Microstructures’ Development Owing to Heat Treatment 

Microstructures of the steel before and after heat treatment are presented in Figure 2. The initial 
as-received 42CrMo4 coupon has a pearlite-ferrite microstructure (Figure 2) that is typical of 
hypoeutectoid steel [8,40,41]. Specifically, it can easily be observed in the dark-field image of the 
metallographic sample (Figure 2d) that the cementite (component of the pearlite phase) is visualised 
as a bright phase, while the ferrite areas are darker. Owing to the heat treatment, the alloy phase 
composition evolves, as shown in Figure 3. Moreover, the employed annealing scheme has a crucial 
effect on the 42CrMo4 microstructural development.  

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Figure 2. Microstructure of as-received 42CrMo4 steel (S0): (a–c) overview of the microstructure 
observed with different magnifications by bright field technique; (d) area from (c) photo observed by 
dark field technique (dark areas—ferrite, bright—cementite). Light optical microscopy (LOM), etched 
with Nital. 

The metallographic examination confirms the phase development of the as-received steel 
microstructure (S0) (Figure 2) into a heat-treated microstructure; see Figure 3. The employed 
annealing schemes have a crucial effect on the microstructure’s morphology. The microstructure 
strongly develops owing to annealing and results in the evolution of cementite from lamellar to 
granular and semi-lamellar morphology. This process is less advanced for annealing schemes no. 2 
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and 3. Therefore, in the samples no. 1 and 4–7, the carbides are presented as semi-globular carbides 
in the ferritic matrix. The metallographic examination confirms that, in the as-received sample no. 0, 
the lamellar cementite has sharp edges, but after treatment, it undergoes rounding. The density of 
cementite decreases after annealing and so does the ferret diameter of the heat-treated cementite, that 
is, the mean ferret is 0.5 ± 0.25 µm, while the max ferret is 4.5 µm. A spheroidized microstructure is 
desirable for cold forming because it reduces the flow stress of the material [8]. In addition, in the 
bright-field image, one can easily identify the spheroid-like morphology of cementite (in comparison 
with the initial lamellar cementite in Figure 2). Moreover, it is clearly visible that the semi-globular 
cementite phase is enriched with alloying elements (such as Cr and Mo), which can result in the 
softening of a ferritic solid solution, as shown in Figure 4. This pearlite structure decomposition has 
a positive effect on the hardness decrease and deformability of steel, as discussed in further sections. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Microstructure of annealed 42CrMo4 steel with selected heat treatment schemes: (a–e) bright 
field technique; (f) area from (e) image captured by dark field technique (dark areas—ferrite, bright—
cementite). LOM, 500× and 1000×, etched with Nital agent. 

no.4 

no.2 

no.1

no.2 

no.1 

no.4 
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(a)  (b) 

Figure 4. Microstructure of 42CrMo4 steel annealed according to scheme no. 4 (a), (b) molybdenum 
and chromium content in the line-scanned area from (a), scanning electron microscopy-energy 
dispersive spectrometer (SEM-EDS). 

3.1.2. Effects of Annealing Schemes on the Macro- and Microstructure of Upset Samples 

The employed annealing scheme affects the deformability of 42CrMo4 steel. Therefore, 
peripheral cracking occurs around the barrelled side surface of the upset (compressed) cylinders of 
the untreated sample, but no cracking occurs during compression of the annealed samples. Figure 5 
shows the examples of the transverse macrostructure obtained by upsetting of the as-received sample 
(0) and the sample annealed according to scheme no. 6. The as-received sample exhibits a much 
wavier macroscale grain flow than the annealed cross section; see Figure 5. Therefore, the complex 
flow line arrangement confirms that the as-received steel has lower deformability than the annealed 
steel sample presented in Figure 5b. It is clear that annealing makes upsetting easier. Figure 6 
compares the microstructural development owing to upsetting of the as-received and heat-treated 
steel. The annealed samples have less lamellar morphology of the cementite and the coarsening of 
granular tough-carbide phases and ferrite grains. Moreover, in relation to the as-received sample no. 
0, they exhibit a higher rate of microstructure development. Contrary to the initial pearlite-ferrite 
microstructure of the 0 sample (Figure 6a), the granular cementite in the ferritic matrix of the heat-
treated samples is beneficial for cold forming; see Figure 6b–d. As a result, there occurs a linear 
arrangement of the compressed annealed microstructure perpendicular to a direction of the 
compression force. The plastic flow of the material is facilitated by the lamellar to granular cementite 
development. 

 
(a) 

 

 
 

(b) 

Figure 5. Transverse macrostructure of a half-view of the upset sample: (a) sample no. 0 and (b) 
annealed sample no. 6. 

Granular 
cementite 

Semi-lamellar 
cementite 

Ferritic 
matrix 
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(a) 

  
(b) 

`   
(c) 

  
(d) 

Figure 6. Effect of upsetting on the microstructure of 42CrMo4 steel samples: (a) as-received, (b) 
annealed according to scheme no. 1; (c) annealed according to scheme no. 2; (d) annealed according 
to scheme no. 6; P—pearlite, F—ferrite, C—cementite, SEM. 

3.1.3. Effect of Annealing on Phase Composition (XRD) 

X-ray diffraction phase analysis makes it possible to determine the phase composition of the 
investigated steel (Figure 7a) and the effects of heat treatment and upsetting on the microstructure 
composition of the samples (Figure 7b). An analysis of the diffractograms given in Figure 7a confirms 
that the steel has an α-Fe (ferritic) matrix. However, neither the cementite nor other carbides were 
identified by XRD, which can be explained by the dispersion of the cementite and carbides in the Fe-
matrix, as well as the limited use of a Cu-lamp for XRD low-alloy steel carbide-phases detection. 
Nevertheless, the 44° peak broadening (Figure 7b) in the XRD analysis indicates that the heat 
treatment successfully affects the growth of ferrite grain size and relief of internal stresses. Compared 
with the 0 sample, the annealed samples no. 1_a and 2_a have a coarser microstructure; see Figure 
7b. Usually, an increased grain size contributes to easier deformation. It is known that, especially for 
steels, the coarser grain size decreases mechanical properties such as hardness and yield strength, 
and can facilitate steel deformation [6,18,41,42]. Summing up, annealing scheme 1 is recommended 
for manufacturing cold-metal formed parts in the future [35,36]. 

In addition, the upsetting-induced grain size refinement was confirmed by the LOM and SEM-
EDS results (presented in the previous section). The refinement by flattening of the ferritic grain 
matrix is identified in the deformed metallographic cross sections. This is in agreement with the 
obtained XRD quantitative data. Thus, the microstructural grain-size effects were confirmed by the 

1; undeformed  after upsetting 

2; undeformed  after upsetting 6; undeformed  after upsetting 

F 

F 

P P 

F 

F 

C C 

0; undeformed  after upsetting 
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XRD peak broadening, as shown in Figure 7b. The X-ray diffractogram results indicate that the 
calculated full width at half maximum (FWHM) for the upset samples presents wider peaks, which 
can be interpreted as refining of the grain size and increase of the internal stresses owing to cold-
metal forming. This is in agreement with the fact that deformation usually provides a refined steel 
structure [40,43]. Thus, it can be seen that the SEM quantitative results are in agreement with the 
above observations, and it is clear that the upsetting process results in refinement of the 
microstructure. 

 
(a) 
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(b) 
Figure 7. X-ray diffraction phase analysis of 42CrMo4 steel; (a) phase composition after annealing and 
upsetting; (b) quantitative microstructure phase analysis of an approximately 44° peak in the [110] 
plane; samples: 0—as-received; 1_a and 2_a—annealed; and 0_u, 1_u, and 2_u—upsetting; XRD. 

3.2. Effect of Heat Treatment on Hardness 

Hardness is the main indicator in quality assessment in a heat treatment. Figure 8 shows the 
effect of the employed annealing schemes on hardness. Specific hardness results and hardening rates 
are given in Figure 9. One can observe a visible linear correlation between the micro- and macro-
hardness of the annealed samples. Every heat treatment scheme decreases the hardness of the as-
received steel 4140 from approximately 350 HV to below 216 HV, which strongly facilitates 
deformability of the material. The annealing schemes no. 2 and 3 result in the hardness exceeding 200 
HV and are considered as less effective. On the other hand, other investigated treatment schemes 
result in twofold lower hardness than that of the untreated steel sample no. 0. These results are in the 
range of hardness expected by the literature of the subject [8,9,15]. Summing up, the hardness results 
indicate that annealing scheme no. 1 has a more significant effect on increasing steel deformability 
than schemes no. 2 and 3 (see Figure 9b). These hardness results are in agreement with the FWHM 
findings and the results obtained by Bouras et al. [21], who observed a good correlation between the 
peak broadening parameter and the Vickers microhardness HV. Moreover, the above-mentioned 
development of lamellar cementite into a granular structure and the formation of a uniform α-Fe 
matrix are responsible for the decreased hardness and increased cold hardening rate, both of which 
are beneficial for increasing the formability of 42CrMo4 steel. 
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Figure 8. Hardness of as-received (S0) and annealed (S1–S7) samples. 
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(a) (b) 

Figure 9. Hardness results of S0–S7 samples: (a) microhardness before and after upsetting (marked as 
“a” and “u”); (b) rate of cold hardening due to upsetting. 

An analysis of the relationship between annealing and hardness (Figure 9) leads to the 
conclusion that scheme no. 1 has the best effect on steel formability. In addition, annealing schemes 
no. 1 and no. 2 (see Figure 1), which involve heating the material to the temperature of 750 °C 
followed by low-rate cooling in the furnace, yield lower hardness than schemes no. 4 and 5, which 
consist in heating the material to 750 °C and maintaining it at the temperature of 680 °C; furthermore, 
extension of the soaking time at 750 °C slightly affects the lowering of the hardness. What is more, 
the annealing scheme no. 6, that is, alternate heating and cooling, provides, in a shorter treatment 
time, hardness results that are comparable to those obtained with schemes no. 4 and 5. On the other 
hand, the prolonged holding of the material at the temperature just below A1 (schemes no. 2 and 3) 
does not provide satisfying results with regard to deformability of 42CrMo4 steel (Figure 9), which 
is why these parameters are not recommended. In addition, prolonging the cooling rate from 6 °C to 
3 °C per hour (scheme no. 1 and no. 5, respectively) does not have any considerable effect on hardness, 
in spite of doubling the treatment time. 

3.3. Analysis of Upsetting Test Results 

The upsetting tests led to the determination of the c and n coefficients (given in Table 2) as well 
as the flow curves (plotted in Figure 10) for every heat treatment scheme. The results demonstrate 
that the flow stresses of the as-received samples are approximately 50% higher than those of the 
material in the annealed state. It can be seen that scheme no. 2 yields the highest stresses. Other 
annealing treatments result in decreasing the flow stresses required in cold forming. Thus, the 
microstructure of globular cementite in the ferritic matrix causes a reduction in the flow stresses in 
the upset samples. The lowest and the highest stresses are obtained for the annealing schemes 1 and 
2, respectively. The difference between the stresses for the strain equal to, for example, 1, is about 80 
MPa. Intermediate stress was obtained for scheme no. 3, where the difference between the stresses 
generated by the annealing schemes 1 and 2 is similar. The annealing process performed according 
to scheme no. 1 facilitates cold forming of the tested steel as it produces a structure of semi-globular 
carbides in the ferritic matrix that significantly affects the formability of this material. 

Table 2. Strain-hardening coefficients estimated for tested heat treatment schemes. 

Strain 
Hardening 
Coefficient 

Sample Code 

0 1 2 3 4 5 6 7 

c 1559.4 981.4 1062.7 1023.6 1045.8 1006.5 1009.9 1039.2 
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n 0.187 0.232 0.200 0.208 0.227 0.267 0.237 0.224 

The effect of hardness of the samples on the strength coefficient c and the strain-hardening 
exponent n determined in the upsetting tests is presented in Figure 11. The annealed steel strength 
coefficient seems to increase with increasing hardness, while the strain hardening exponent 
decreases. However, there is no strong correlation between the hardness and the strength coefficient 
or the strain-hardening exponent. Summing up, it can be claimed that the treatment according to 
scheme no. 1 provides the most promising values of the c and n coefficients. Thus, this annealing 
scheme seems the most beneficial for cold metal forming of 42CrMo4 steel. 

  
Figure 10. Upsetting flow curves of as-received (0) and annealed (schemes no. 1–7) 42CrMo4 steel. 
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Figure 11. Effect of hardness on strain-hardening coefficients. 

3.4. Comparison of the Numerical and Experimental Upsetting Results 

The determined flow curves were used in the numerical simulation of the upsetting of 
cylindrical samples, with the simulation conditions reflecting the experimental ones. The quality of 
the numerical results was assessed based on the force parameters. Figure 12 shows the force during 
the upsetting of samples that were annealed according to scheme no. 3, which is, as already 
mentioned, an intermediate scheme between extreme schemes no. 1 and 2. The experimental and 
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FEM results show very high quantitative and qualitative agreement. In effect, the determined 
constitutive equations reflect well the real conditions.  

  

Figure 12. Finite element method (FEM) and experimental results of the upsetting force in scheme 
no. 3. 

Selected numerical results are given in Figure 13. that show the distributions of effective strains 
and stresses as well as temperature. Owing to the fact that the flow curves of the material in the 
annealed state are similar, the distributions of the above-mentioned parameters are similar too. 
Consequently, the figure shows the results obtained for the flow curve determined in the upsetting 
of the samples annealed according to the intermediate scheme (no. 3). An analysis of the distribution 
of the effective strains (Figure 13b) that are presented together with a coordination mesh to show the 
lines of material flow reveals the presence of three typical and characteristic zones located at the end 
face, in the centre, and on the edge of the samples. The highest strains amount to approximately 2.3 
and are located across the edge of the sample, right next to its end face. During the upsetting process, 
the temperature of the workpiece increased from 20 °C to about 270 °C. The highest temperature is 
observed in the central region of the samples (Figure 13c). The lowest temperature is observed on the 
end face of the sample, where the workpiece is in contact with the tools. As for effective strains (Figure 
13d), the highest strains of approximately 980 MPa are located on the end face of the sample, while 
the lowest effective strains amounting to approximately 940 MPa are located in the central region of 
the sample.  

 

Figure 13. Numerical results of the upsetting process (half-view of the axial section): (a) start of the 
process, (b) effective strain, (c) temperature, (d) effective stress. 

Calculated with the determined c and n coefficients, the flow lines and strains are in agreement 
with those reported in the literature of the subject [8,44]. Moreover, the simulation results given in 
Figure 13 were positively validated by the macroscale grain flow and the comparison of the 
experimental and FEM upsetting force-displacement results. This proves that the strain-hardening 
coefficients of the annealed samples can be used in FEM simulations for 42CrMo4 steel. 
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4. Conclusions 

This study investigated the effects of annealing time and temperature on the microstructure, 
hardness, and strain-hardening coefficients of low-alloy structural steel grade 42CrMo4 (AISI 4140). 
In comparison with the as-received sample, all employed annealing processes improved the flow 
lines arrangement and facilitated microstructure softening, effectively decreasing the Vickers 
hardness and, consequently, enabling the formability of 42CrMo4 steel. 

The results confirm that the optimal annealing treatment is scheme no. 1, consisting in 
maintaining the material at 750 °C and then slow-cooling it at the rate of 6 °C per hour. This scheme 
enables the cementite particles to attain the semi-globular morphology, which results in decreasing 
the hardness from 355 HV to 165 HV and obtaining the optimal strain hardening coefficients, that is, 
the strain coefficient and the strain hardening exponent are equal to c = 981 and n = 0.232, respectively. 
Moreover, the steel sample treated according to scheme no. 1 exhibits the highest cold hardening 
ability amounting to 185%, whereas that of the sample annealed according to scheme no. 2 is the 
lowest and amounts to 126%. 

The formability of steel is affected by the adopted annealing scheme. The original strain 
hardening coefficients (c and n) for each of seven annealing schemes were determined.  

The results obtained by SEM-EDS, LOM, and XRD demonstrate that, owing to the employed 
treatment, the initial ferritic-pearlitic microstructure develops into granular and semi-lamellar 
precipitations of cementite enriched with Mo and Cr in the ferritic matrix. In addition, the annealing 
process affects the growth of α-Fe grains. These phenomena cause an almost twofold reduction in the 
hardness of the heat-treated steel and improve its cold-hardening properties. 

The FEM results were positively validated by the experimental results of upsetting displacement 
versus force as well as microstructural investigations. This means that the calculated strain hardening 
coefficients can be used in numerical calculations when developing new metal forming methods for 
producing 42CrMo4 steel parts. 
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