
Novel Graphene/In₂O₃ Nanocubes Preparation and Selective Electrochemical Detection for L-Lysine of *Camellia nitidissima* Chi

Jinsheng Cheng ^{1,*,+}, Sheng Zhong ^{2,+}, Weihong Wan ^{1,3}, Xiaoyuan Chen ¹, Ali Chen ⁴ and Ying Cheng ³

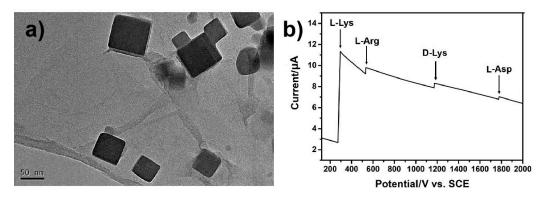

- ¹ Henry-Fork School of Food Sciences, Shaoguan University, Shaoguan 512005, China; weihongsgu@163.com (W.W.); xychensgu@126.com (X.C.)
- ² Shipai Branch, Dongguan Environmental Protection Bureau, Dongguan 523330, China; jasonwow@163.com
- ³ Foshan Qionglu Health Tech. Ltd., Foshan 528000, China; yingchenggd@163.com
- ⁴ School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; chenali2004@163.com
- * Correspondence: chengjins@gmail.com
- ⁺ These authors contributed equally to this work.

Figure S1. (**a**) SEM images of GR/In₂O₃ nanocubes, (**b**) Particles size distribution image of the prepared GR/In₂O₃ nanocubes.

Figure S2. Response curves for the currents of L-Lys and D-Lys by the prepared GR/In₂O₃ nanocubes based electrochemical sensor.

Figure S3. (a) Non-uniformity size distributed GR/In₂O₃ nanocubes; (b) Current responses obtained at GR/In₂O₃ nanocubes (with non-uniformity size range of 20–100 nm) based electrochemical sensor of amino acids extraction in Camellia Nitidissima Chi (extra addition D-Lys with a concentration of 0.45%), applied potential: 0.85 V.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).