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Abstract: In the current research, a porous silicon/zinc oxide (PSi/ZnO) nanocomposite produced
by a combination of metal-assisted chemical etching (MACE) and atomic layer deposition (ALD)
methods is presented. The applicability of the composite for biophotonics (optical biosensing)
was investigated. To characterize the structural and optical properties of the produced PSi/ZnO
nanocomposites, several studies were performed: scanning and transmission electron microscopy
(SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance,
and photoluminescence (PL). It was found that the ALD ZnO layer fully covers the PSi, and it
possesses a polycrystalline wurtzite structure. The effect of the number of ALD cycles and the type of
Si doping on the optical properties of nanocomposites was determined. PL measurements showed a
“shoulder-shape” emission in the visible range. The mechanisms of the observed PL were discussed.
It was demonstrated that the improved PL performance of the PSi/ZnO nanocomposites could be
used for implementation in optical biosensor applications. Furthermore, the produced PSi/ZnO
nanocomposite was tested for optical/PL biosensing towards mycotoxins (Aflatoxin B1) detection,
confirming the applicability of the nanocomposites.
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1. Introduction

It is well known that porous silicon (PSi), due to its high surface-to-volume ratio and superior
photoluminescence (PL) properties, is an attractive material for optical (bio)sensing applications [1,2].
However, the instability of PSi properties in solutions due to the degradation process needs to be
solved in order to obtain a stable response and repeatable results [3]. There are numerous approaches
able to reduce the degradation; among them, the deposition of metal oxide onto the PSi is considered
to be the most promising one [4–8]. Zinc oxide (ZnO) is one of the possible candidates that could be
combined with PSi because of its excellent optical properties (e.g., stable PL signal in the wide optical
range), and which may be used in biophotonic applications, particularly biosensors [9–11].

Nanocomposites based on PSi/ZnO have attracted more and more attention over the years [12–16].
The underlying reasons behind their popularity are attributed to the synergistic effects on physical
and, particularly, optical properties of the PSi/ZnO, which are derived from the combination of
individual features of both semiconductors [17–22]. The improved catalytic activity, high charge carrier
mobility and relatively high biocompatibility make the PSi/ZnO nanocomposite a perfect material for a
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reliable long-term multipurpose (bio)sensor [23–26]. Moreover, the outstanding properties of PSi/ZnO
nanocomposites related to electroluminescence (EL) [27,28] and photoluminescence (PL) [29–32] can
be tuned through morphology control, such as crystal size, porosity of PSi, and Si to ZnO ratio.

The successive deposition of ZnO on PSi results in the formation of PSi/ZnO nanocomposites, whose
properties are strictly affected by the specific deposition method used, such as sol-gel, chemical vapor
deposition (CVD), and sputtering methods [33–36]. These methods have substantial drawbacks related
to integration with CMOS technology for commercial sensors production. Moreover, these methods do
not allow for the production of a conformal layer of ZnO over the whole surface of PSi or the penetration
of ZnO inside the PSi matrix, features that should enhance the active area at the Si-ZnO interface.

One of the most well developed and facile techniques for the deposition of thin metal oxide
films on porous materials is atomic layer deposition (ALD) [16,37,38]. This technique allows for
the fabrication of highly conformal films of ZnO and other metal oxides over the PSi surface and
the production of high-quality nanocomposites in comparison to other methods [4,5,39]. Therefore,
ALD is well suited for the synthesis of PSi/ZnO nanocomposites, owing to its precise control of the
morphological properties of ZnO. As a consequence, it enables to tune the electronic and optical
properties of produced nanocomposites.

A promising approach in the application of PSi/ZnO nanocomposites lies in photonics, particularly
in biophotonics. It has been reported that PSi/ZnO nanocomposites demonstrate an intense white light
emission that could be used for the development of effective light-emitting diodes [40]. The authors
successively achieved a Gaussian-shape emission in the visible range through the tuning of PSi
morphology in combination with the ZnO coverage. The influence of oxygen antisites, oxygen
vacancies, and quantum confinement effects on the photoluminescence of PSi/ZnO has been discussed
in [41], where authors also demonstrated the effect of a SiO2 layer grown between ZnO and PSi
on the conductivity of PSi/ZnO nanocomposites. Moreover, the improvement and stabilization of
photoluminescence emission have been previously shown in [42], via the passivation of n-type PSi by
the deposition of a ZnO layer.

Since ZnO emits light in the visible and UV regions, combining it with PSi leads to the formation
of a nanostructure with noticeable white emission [43], which is suitable for sensors application in the
visible range. Whereas the PSi/ZnO optical properties can be tuned through morphology parameters,
the correlation between PL yield and the structural properties should be thoroughly investigated,
especially in the context of sensor applications. D. Gallach-Pérez et al. [41] have reported on the
determination of the band diagram of PSi/ZnO nanocomposites by analyzing electroluminescence (EL)
spectra and I-V characteristics. It was found that PSi/ZnO broadband emission could be attributed to
zinc interstitials (blue emission), oxygen vacancies (green light), and quantum confinement in Si-based
quantum dots within PSi, respectively [44,45].

In this paper, we report on the investigation of the structural and optical properties of PSi/ZnO
nanocomposites produced from p-type and n-type Si. The ZnO layer was deposited and introduced
into the PSi matrix by ALD. The structural properties and chemical composition of the produced
nanocomposites were characterized by scanning and transmission electron microscopy (SEM, TEM)
combined with an energy dispersive X-Ray spectroscopy (EDX) analysis, an X-Ray diffraction analysis
(XRD), and X-Ray photoelectron spectroscopy (XPS). The optical properties of PSi/ZnO nanocomposites
were investigated by diffuse reflectance and photoluminescence (PL). The effect of the Si doping-type
on the PL properties of PSi/ZnO nanocomposites was analyzed as well. A possible biophotonic
application (biosensing towards mycotoxins) is also demonstrated.

2. Materials and Methods

In this study, PSi/ZnO nanocomposites were produced by ALD and metal-assisted chemical
etching (MACE). Samples of PSi were produced by MACE on highly doped p-type and n-type Si with
(100) orientation and resistivity Ω = 0.01 ohm·cm. As it happens in a typical MACE process, silver
nanoparticles were deposited on Si substrates by immersion in the metallization aqueous solution
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containing 0.2 M HF and 10−3 M AgNO3 for 60 s. The etching process was conducted in an aqueous
solution of HF and H2O2 at ratio concentration HF/H2O2/H2O = 80/80/20. Then, the silver nanoparticles
were removed by immersion into the HNO3 solution for 60 min.

A commercially available Picosun ALD reactor (Masala, Finland) was used for the deposition
of ZnO. The deposition process used diethyl zinc (DEZ) and deionized water as precursors, which
reacted at 200 ◦C and yielded a thickness of 2.1 Å per one ALD cycle (corresponding to a flat surface).
The number of ALD cycles was varied as 50, 100, and 250, corresponding to a layer thickness of 10 nm,
20 nm, and 50 nm, respectively. After every cycle, the reactor chamber was purged by an intense N2

flow in order to remove the byproducts of chemical reactions.
The structural properties of PSi/ZnO nanocomposites were analyzed by SEM JEOL JSM 7001F

and TEM JEOL ARM 200F (Tokyo, Japan). The XRD measurements were performed by X’pert3 MRD
(XL) from PANalytical (Cu Kα radiation source (wavelength of 1.54 Å) and operating at 45 kV and
40 mA (Almelo, The Netherlands).

XPS spectra were recorded with a KRATOS Axis DLD Ultra instrument (Kratos–Manchester,
UK) equipped with a hemispherical analyzer and a monochromatic Al Kα (1486.6 eV) X-ray source.
The broad spectra (survey) were acquired at 160 eV pass energy, while a higher resolution was used
for the acquisition of the core lines, which was performed by setting the pass energy at 20 eV. This
allowed to reach an energy resolution of ~0.4 eV. The analyses were acquired at 90◦ of samples tilted
with respect to the analyzer. The spectra were fitted using a freely available software (R-XPS) based on
an R-platform (G.Speranza/RxpsG software, RxpsG-2.1 version) [46].

The diffuse reflectance measurements of PSi/ZnO nanocomposites were performed by Ocean
Optics QE PRO fiber optic spectrometer (Ostfildern, Germany) combined with an integrating sphere
and a Xe light source. Acquisition of PL data was performed at room temperature using a He-Cd
laser from Kimmon Koha (Tokyo, Japan) with a wavelength of 325 nm and an output of 5 mW as an
excitation source in the range of 400–1000 nm.

3. Results and Discussion

3.1. Structural Properties of PSi/ZnO Nanocomposites

SEM and EDX were performed in order to study the morphology and elemental composition of
the produced nanocomposites. The SEM images of PSi and PSi/ZnO nanocomposites derived from p-
and n-types Si are represented in Figure 1. Both types of produced PSi samples (Figure 1a,b) show a
mesoporous structure (the average size of pores ranged from 10 to 50 nm) with a uniform distribution
of the pores. The slightly different roughness of PSi is clearly visible, depending on the type of Si used
as a substrate. This might be explained by the different hole concentration during the MACE process,
which strongly affects the etching process and as a consequence, defines the surface roughness [47].
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Figure 1. SEM images of porous silicon (PSi) surface before and after 100 cycles of zinc oxide ALD: 
(a) n-type PSi; (b) p-type PSi; (c), (d) n-and p-types PSi after zinc oxide (ZnO) deposition, respectively 
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Figure 1. SEM images of porous silicon (PSi) surface before and after 100 cycles of zinc oxide ALD:
(a) n-type PSi; (b) p-type PSi; (c,d) n-and p-types PSi after zinc oxide (ZnO) deposition, respectively
(insets: an EDX analysis).
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After the ALD process, we can observe that the ZnO layer fully covers the PSi (Figure 1c,d). One
may also note that the ZnO layer consists of uniformly distributed grains. In addition, the analyses
demonstrate that ZnO infiltrates into the PSi matrix. EDX confirms the presence of silicon, oxygen,
and zinc atoms after ALD (see Figure 1 insets). EDX mapping indicates the homogeneous distribution
of Zn over the whole PSi surface (not shown here).

Figure 2a shows a TEM image of PSi after 100 ALD cycles of ZnO, which correspond to 20 nm of
layer thickness. In the TEM image, the presence of ZnO nanocrystallites can be observed. The average
size of ZnO nanocrystallites is about 9–11 nm. This result is similar to the value obtained previously
for PSi/metal oxide nanocomposites [16,48], once again proving the reproducibility of the method.
The Fast Fourier Transform analysis (FFT) shows the highly polycrystalline nature of the deposited
ZnO layer, where the wurtzite phase with prevailing (101) and (100) orientations can be indexed.
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Figure 2. (a) TEM imaging of ZnO nanocrystallites on PSi obtained after 100 ALD cycles; (b) FFT of the
PSi/ZnO TEM image; (c) GIXRD spectra of PSi/ZnO nanocomposites with 250, 100, and 50 ALD cycles
of ZnO in comparison to GIXRD spectrum of PSi. Standard diffraction peaks of wurtzite (pdf card
#36-1451) are presented for reference.

To determine the structural properties of the PSi/ZnO nanocomposites, XRD measurements were
performed. Figure 2c shows the XRD spectra collected from PSi/ZnO with different numbers of ALD
cycles: 50, 100, and 250. A clear wurtzite phase pattern can be identified for all samples, represented
by (100), (002), (101), (102), (110), and (103) peaks. Some of these peaks are barely detectable for
50 ALD cycles. However, upon increasing the number of ALD cycles, the intensity of wurtzite peaks
increases, and the full half maximum (FWHM) is reduced. This confirms the improvement of the ZnO
layer crystallinity. Average crystalline sizes were calculated using the Scherrer equation [16,48] and
estimated as 6.4 ± 1.5 nm, 7.8 ± 1.2 nm, and 8 ± 1.5 nm for samples deposited with 50, 100, and 250 ALD
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cycles, respectively. The obtained values corroborate with the experimental data provided by the
TEM micrographs.

3.2. XPS Studies

The chemical composition of the produced PSi/ZnO nanocomposites was analyzed by XPS.
The survey spectra of PSi and PSi/ZnO samples deposited with different number of ALD cycles are
presented in Figure 3a. The surface composition of PSi is primarily dominated by the signals of silicon
and oxygen elements. The PSi sample surface displays an abundant contamination of carbon, which
originates from the MACE process. All PSi/ZnO samples’ wide spectra are characterized, on the
other hand, by the Zn 3p, Zn 3s, O 1s, Zn 2p3/2, and Zn 2p1/2 peaks and the Zn LMM and O KLL
Auger peaks. The pattern of survey spectra is generally common for the measured PSi/ZnO samples,
but the stoichiometry of the ZnO layer is expected to change with the number of ALD cycles. By
considering the XPS high-resolution core lines with their respective experimental sensitivity factors
(RSF), the ZnO layer stoichiometry (ratio O/Zn) was determined (Table 1). There is a clear increment of
the ZnO stoichiometry with the increase of ALD cycles (the layer thickness). The lower values of the
O/Zn for the 50 PSi/ZnO sample could be explained by the high concentration of Zn defects in the
deposited layer.

Table 1. ZnO layer stoichiometry.

Sample Zn (in Zn-O), at. % O (in Zn-O), at % O/Zn

250 PSi/ZnO 17.85 18.21 1.02

100 PSi/ZnO 20.54 20.38 0.99

50 PSi/ZnO 15.48 14.00 0.90

Figure 3b compares the O 1s energy region of the different samples. The O 1s core level peak of
as-prepared PSi was deconvoluted into two distinct components at 532.74 eV and 533.73 eV. The first
component corresponds to the oxidized PSi surface, while the high-energy component is attributed to
absorbed environmental moisture [49]. On the other hand, deconvolution of O 1s peak on samples
covered by ZnO shows three components, which are related to Zn-O (530.45 eV) bounds, Zn-(OH)2

(531.40 eV) species, and OH groups (532.1 eV) adsorbed during the ALD process [50]. The intensities
and positions of the revealed components of O 1s core line spectra change slightly with the number
of ALD cycles. The component responsible for adsorbed water and Si-O bonds is predominant in
the 50 ZnO/PSi samples, and noticeably declined in the other samples. This feature can be explained
by an increase of ZnO moiety in samples with 100 and 250 cycles and resulted in an increment in
Zn-O components.

The detailed spectra of Zn 2p core levels are presented in Figure 3c. The Zn 2p3/2 peak was
fitted with two main components located at 1021.89 eV and 1023.37 eV (corresponding to Zn-O and
Zn-(OH)2) and an extremely weak third component at 1019.79 eV, which may be attributed to some
residuals of unreacted Zn precursor [50]. Attribution of the component at 1023.37 eV to hydroxide
species is corroborated by the O 1s peak at 531.4 eV. The presence of metal oxide-OH species on the
surface has been previously observed for ZnO as well as for TiO2, Al2O3, and RuO2 produced by
ALD [5,39,49,50]. One may conclude that this is a feature of produced ALD metal oxides.

No signal from Si is clearly visible from the survey of PSi/ZnO nanocomposites. Its presence was
checked by acquiring a detailed spectrum in the region of Si 2p core line, in order to verify if a small
signal coming from the surface oxide was still visible, even after the deposition of 250 cycles of ZnO.
In the Si 2p core line (Figure 3d), it is clearly visible in the metallic component with the spin-orbit
doublet, which can be easily resolved into its 2p1/2 and 2p3/2 contributions. The silicon oxide layer
generates a broad peak at higher binding energies, which can be resolved by overlapping at least
3 components, due to the different possible oxidation states of Si (Si1+, Si2+, Si3+ or Si4+). A more
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visible signal coming from the silicon substrate can be detected by decreasing the number of ALD
cycles, and both the metallic doublet and the oxide components can be distinguished.Materials 2020, 13, x FOR PEER REVIEW 6 of 12 
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3.3. Optical and Biosensing Properties

In order to elucidate the optical properties of the produced PSi/ZnO nanocomposites,
the diffuse reflectance and the photoluminescence were measured in the ranges of 300–750 nm
and 400–1000 nm, respectively.

Diffuse reflectance spectra for as-prepared PSi and PSi/ZnO with 50, 100, and 250 ALD cycles
are shown in Figure 4a. All the samples show a significantly low reflectance in the UV region, and a
noticeable increase in the visible region up to 10% for 250 cycles of ZnO. Recalculation of the obtained
data into a representation of a Tauc plot was performed according to the Kubelka-Munk theory via

F(R) function: F(R) = (1−R)2

2R = k
S [5], where R is the absolute reflectance of the PSi/ZnO sample, k is

the absorption coefficient, and s is the scattering coefficient (Figure 4b). The calculated band gap (Eg)
values are 3.37 eV, 3.40 eV, and 3.35 eV for samples with 50, 100, and 250 ALD cycles, respectively.
Such values are close to the bulk ZnO Eg value, thus proving the good crystallinity of the produced
ALD layers.
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PL measurements were conducted to investigate the recombination processes in the Si-ZnO
interface. PL spectra were measured for PSi/ZnO nanocomposites produced from n- and p-type of Si
(Figure 4c,d). The as-prepared PSi demonstrates a strong red PL emission at approximately 670 nm
(1.85 eV) for both types of Si. It is well known that the visible emission of PSi is attributed to the quantum
confinement effect of Si nanocrystallites, which are formed during etching processes [51,52]. After the
ZnO deposition, the PL spectrum changes depending on the type of initial Si. Figure 4c demonstrates the
PL quenching for n-type PSi/ZnO nanocomposites. However, one may observe significant PL changes
for p-type PSi/ZnO nanocomposites (Figure 4d). The p-type PSi/ZnO nanocomposites demonstrate an
intensive white PL emission with a strong “shoulder-shape” contribution in the 400–600 nm region,
and a weak Infra-red (IR) emission in the 800–900 nm region. The “shoulder-shape” PL in the visible
range probably originates from the complex mechanism of the recombination emission through defect
levels of ZnO, which may be attributed to radiative recombination at single and double-charged oxygen
vacancy (Vo+, Vo++) sites [35,53]. However, the full interpretation and explanation of observed PL will
be the aim of future research.

One could propose a simpler explanation of the observed experimental results based on the
analysis of energy band diagrams for the Si-ZnO interface (insets in Figure 4c,d). It is well known that
oxygen vacancies (depicted as Vo+, Vo++ in the energy band diagrams) are the most widely accepted
mechanisms of the visible emission in ZnO. Let us assume that all laser radiation is adsorbed in the top
ZnO layer. In the case of n-type PSi/ZnO, according to the energy band diagrams, it can be seen that the
electrons and holes photogenerated in the ZnO layer should be drifted to the Si. These photogenerated
charge carriers are recombined through non-radiative surface defects, probably associated with SiOx,
the presence of which was confirmed by XPS. In the case of p-type PSi/ZnO, the interface of p- and
n-type semiconductors induces the formation of a potential barrier for photogenerated electrons in
ZnO (see inset Figure 4d). Thus, photogenerated charge carriers tend to recombine through defect
levels of ZnO. An increased intensity of PL around the 400 nm edge probably originates from the
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exciton recombination in ZnO [16]. The presence of red/IR PL may be explained by additional defect
states on the surface of n-PSi/ZnO nanocomposite [34,54].

The PL analysis demonstrates that p-type PSi/ZnO nanocomposites are more favorable for the
development of novel biophotonic (e.g., optical biosensors) devices. This nanocomposite was tested
for optical/PL biosensing applications towards mycotoxins (Aflatoxin B1) detection. We analyzed
the evaluation of the PL spectrum, depending on the concentration of AFB1 probed on the surface.
The formation of the bioselective layer for AFB1 was performed according to the protocol based on
previous works [55,56]. Briefly, the PSi/ZnO was treated with 4% APTES in Ethanol with the following
carboxyl groups activation in a solution of 2% glutaraldehyde in distilled water. In the next step,
50 µg/mL of Anti-AFB1 (in PBS) was added to achieve a selective layer to AFB1. Before the experiment,
the samples were washed with PBS and gently dried using an N2 flow. Then, the probe of the PBS/AFB1
solution (1, 10, and 100 ng/mL) was dropped onto the surface of the PSi/ZnO nanocomposite and
washed with PBS after 20 min.

Figure 5 represents the PL response of PSi/ZnO nanocomposite in comparison to different
concentrations of AFB1. The PL-based detection of AFB1 on the PSi/ZnO nanostructure shows
sequential PL (λ = 565 nm) quenching from the lower to the highest AFB1 concentration, which makes
the PSi/ZnO nanocomposite a suitable material for further usage in real-time (bio)molecule detection.
Furthermore, the inset in Figure 5 indicates a good linearity of sensor response, which is the key
parameter for the development of effective biosensors [57]. Thus, based on the evidence mentioned
above, PSi/ZnO could be used as a significant potential optical biosensing platform for different types
of biomolecules.

Figure 5. PL response of p-type PSi/ZnO toward different AFB1 concentrations. The inset graph
indicates the linearity of PL response to three different concentrations of AFB1 in a half-logarithmic
scale with an error bar.

4. Conclusions

In summary, PSi/ZnO nanocomposites were fabricated using MACE and ALD techniques. Their
structural properties and chemical compositions were determined. The approximate size of ZnO
nanograins was estimated using XRD and TEM analysis. The effect of the number of ALD cycles and
the type of Si used as substrate on the optical properties of nanocomposites were studied. Optical
properties (reflectance and band gap energy) of PSi/ZnO nanocomposites were tailored by their
structural parameters. It was demonstrated that an effective white “shoulder-shape” may be used
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for implantation in optical biosensor applications toward mycotoxins (Aflatoxin B1) detection, as a
model molecule.
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