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Abstract: The paper presents the preparation of new adsorbents based on silica gel (SiO2) impregnated
with deep eutectic solvents (DESs) to increase benzene, toluene, ethylbenzene, and p-xylene (BTEX)
adsorption efficiency from gas streams. The DESs were synthesized by means of choline chloride,
tetrapropylammonium bromide, levulinic acid, lactic acid, and phenol. The physico-chemical
properties of new sorbent materials, including surface morphology and structures, as well as porosity,
were studied by means of thermogravimetric analysis, Fourier transform infrared spectroscopy,
scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller analysis. The effect of
DESs type, flow rate, and initial concentration of BTEX were also investigated followed by regeneration
and reusability of adsorbents. The results indicate that SiO2 impregnated with tetrapropylammonium
bromide and lactic acid in a 1:2 molar ratio have great potential for the removal of BTEX from gas
streams. Its adsorption capacity was higher than the pure SiO2 and other developed SiO2-DES
adsorbents. This result can be explained by the specific interaction between DESs and BTEX,
i.e., hydrogen bonds interaction.
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1. Introduction

Benzene homologs are widely used as raw materials, intermediates and organic solvents in many
industrial processes; among which are benzene, toluene, ethylbenzene, and xylene (BTEX). They are
commonly found in many waste streams, i.e., industrial wastewater [1] or waste gases [2]. They also
occur on a large scale in natural gas [3] and biogas [4], from which they have to be removed before
further processing due to their toxic nature and carcinogen character—shortening the lifetime of the
catalysts, and having potential emission to the atmosphere during combustion processes [5,6].

The main technologies used for removal of BTEX from gas streams include absorption, conventional
adsorption, pressure swing adsorption, membrane separation, cryogenic separation, and biological
separation [2]. Chemical and physical absorption methods have several disadvantages i.e., foaming
possibility, inefficiency for numerous groups of chemical compounds due to their limited solubility, and
the high amount of chemical solvents (sometimes toxic and corrosive compounds) that they require.
Pressure swing adsorption and cryogenic separation ensures the high efficiency of removing contaminants
from gas streams. However, high electricity consumption, expensive investment and operation often
prevent practical use. In addition, pre-treatment is required. Membrane separation is an expensive
process and not suitable for high polluted gasses. In turn, biological separation is characterized by low
impurities removal efficiency and longtime operation process. Among the available technologies, one
of the most popular is adsorption, due to its high efficiency without use of toxic chemicals, with the
possibility of adsorbents regeneration. In the industrial process, silica gel [5], activated carbon [7], carbon
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molecular sieves, zeolites [8], activated carbon impregnated with polymers, and polymeric adsorbents are
the main adsorbents used for the removal of BTEX from the industrial gas streams [2]. Ideal adsorbents
should be characterized by high selectivity and sorption capacity for BTEX as well as high stability after
many adsorption-desorption cycles. However, as observed in several works, the sorption capacity and
selectivity of popular adsorbents are often insufficient. One of the possible solutions is coating solid
sorbents with high sorption capacity compounds i.e., 2,2′-(pentane-1,5-diylbis(oxy))dibenzaldehyde [9],
monolithic polydimethylsiloxane [10], or 2,2′-(hexane-1,6-diylbis(oxy)) dibenzaldehyde [11]. In recent
years, most of the work on the adsorbent surface modification has been focused on the use of ionic liquids
(ILs) [12–14], due to their unique properties i.e., thermal and chemical stability, high adsorption capacity,
low vapor pressure, non-flammable, non-volatile, and non-corrosive character, which can be changed by
the selection of a cation and anion. Despite being ideal compounds for impregnating adsorbents, ILs have
a few limitations, such as high price, tedious preparation process, toxic character, and problems with their
recyclability and biodegradability.

Nowadays, ILs are replaced by a new type of green solvents named deep eutectic solvents (DESs).
DESs are liquids compounds that are formed upon mixing two or more components that are involved in
hydrogen bond or electrostatic interactions with each other to obtain a eutectic solution [15,16]. DESs are
characterized by similar unique physicochemical properties to ILs, however their low price, low toxicity,
and biodegradability make them potentially more beneficial compounds compared to ILs. Currently,
DESs are widely used in analytical chemistry [17–19], desulfurization of diesel [20], lignocellulosic
biomass treatment and detoxification [21,22], water [23], air [24] and biogas streams [25,26] treatment,
and in catalysis [27]. In addition, DESs were successfully used for dearomatization of fuel using an
extraction process. Based on the review of the scientific papers, it can be concluded that the most
effective removal of BTEX from fuels is demonstrated by DES composed of quaternary ammonium salts
and carboxylic acids or glycols, due to the possibility of COOH-π or OH-π bonds formation [28–33].
Although DESs have attracted large attention, the investigations concerning the impregnation of solid
sorbents using DES for adsorptive purification of gas streams are limited. In several works the authors
described the impregnation of activated carbon with the use of choline chloride:urea (1:2 molar ratio),
silica gel with choline chloride:glycerol (1:2) [34], and choline chloride:urea (1:2 molar ratio) [35] and
using them to remove carbon dioxide from the gas streams.

In this paper, new adsorbents were prepared using silica gel impregnated with DESs composed of
choline chloride (ChCl), tetrapropylammonium bromide (TPABr) as hydrogen bond acceptors (HBAs),
and levulinic acid (Lev), lactic acid (LA), phenol (Ph) as hydrogen bond donors (HBDs) to increase
the BTEX adsorption efficiency from gas streams. Adsorbents based on SiO2 supported DES were
characterized in terms of functional group content using Fourier transform infrared spectroscopy
(FT-IR), stability and degradation by means of thermal gravimetric analysis (TGA), surface morphology
using scanning electron microscopy (SEM), crystallinity using X-ray diffraction (XRD), and surface
properties based on Brunauer–Emmett–Teller method (BET). The effect of several properties including
the type of DES, flow rate, and initial concentration of BTEX on adsorption efficiency was studied,
followed by an investigation of the regeneration and recycling of SiO2-DES. The BTEX adsorption
capacity was compared with commercial silica gel.

2. Materials and Methods

2.1. Materials

For the synthesis of deep eutectic solvents and gas mixture preparations, reagents with high
purity (purity ≥98%), i.e., choline chloride, tetrapropylammonium bromide, levulinic acid, lactic acid,
phenol, benzene, ethylbenzene, toluene, and o-xylene, were purchased from Sigma-Aldrich (St. Louis,
MO, USA). For the synthesis of adsorbents, commercial silica gel (particle size 7 µm) and methanol
were purchased from POCH (Gliwice, Poland). Gases, i.e., nitrogen, hydrogen and air were with high
purity N 5.0 or N 5.0 were purchased from Linde-Gas (Łódź, Poland).
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2.2. Apparatus

In the studies, a gas chromatograph with flame ionization detector (GC-FID) Autosystem XL
(PerkinElmer, Waltham, MA, USA) and capillary column HP-5 (30 m × 0.25 mm × 0.25 µm) was used to
study BTEX adsorption processes. To study the structure of new adsorbents FT-IR-ATR Bruker Tensor 27
spectrometer (Bruker, Billerica, MA, USA) were used. The thermal analysis of samples was performed
using the simultaneous thermal gravimetric (TG) and differential thermal gravimetric (TG/DTG) analyzer
model TG 209 F3 Tarsus (company Netzsch, Selb, Germany). The morphological properties of the samples,
topography were carried out using a scanning electron microscope FEI Quanta 250 FEG (Thermo Fisher
Scientific, Waltham, MA, USA). The XRD analysis were done using the Rigaku Intelligent SmartLab X-ray
diffraction device (Austin, TX, USA), equipped with a sealed x-ray generator, a copper shield operating at
30 mA and 40 kV. The Micromeritics Gemini instrument (model 2365) (Micromeritics, Norcross, GA, USA)
was used for the analysis of surface area and total pore volume.

2.3. Methods

2.3.1. Synthesis of Deep Eutectic Solvents

Deep eutectic solvents were synthesized by mixing ChCl or TPABr with Lev, LA, or Ph in 1:2 or
1:3 mole ratio at 70 ◦C until homogeneous liquids were obtained.

2.3.2. Preparation of Silica Gel Modified by Deep Eutectic Solvents

Silica gel coated by deep eutectic solvents were prepared using incipient impregnation method
at 25 ◦C, based on previous studies [36]. To prepare new adsorbents, silica gel was washed three
times with methanol and dried in a vacuum oven at 110 ◦C for 12 h to remove impurities and water.
Then, 6 g of DES was mixed with 1 g of methanol in a 50-mL vial followed by the addition of 10 g of
silica gel. The adsorbents were agitated 2 h at 25 ◦C and dried at 90 ◦C for 6 h. Dried adsorbents were
stored in a desiccator. The amount of DES loaded on the silica gel was determined using Equation (1):

mDES = mSiO2−DES −mSiO2 (1)

where: mSiO2-DES—mass of silica gel before DES impregnation (g); mSiO2—mass of silica gel after
impregnation by DES.

2.3.3. Adsorbents Characterization

FT-IR-ATR spectra of new adsorbents and pure compounds were taken using following parameters:
4000–550 cm−1 of spectral range; 4 cm−1 of resolution; 256 of sample and background scans number
and 0.5 cm of slit width.

For thermogravimetric analysis, 6 mg of samples were placed in a corundum dish. The study was
conducted in N2 with a 100 mL/min flow rate in the temperature range of 35–700 ◦C with a temperature
increase rate of 10 ◦C/min.

The morphological properties of the adsorbents were carried out using a SEM equipped with
an ET detector (Everhart-Thornley Detector, Davis, CA, USA)—a secondary electron detector, that
provided a high spatial resolution of about 1.2 nm at 30 kV. The apparatus allowed of obtaining
high-quality images with the resolution of up to about 1 nm, which allowed the identification of
materials and observation of the correlation between the components of the sample.

Samples of pure and modified silica gel were tested in the range of 5◦ to 80◦ in steps of 0.01◦ using
XRD instrument. The sample scanning speed was 1◦/min [37]. The crystal forms were determined in
the vertical direction to the corresponding lattice plane based on the Scherrer’s equation [38]. The most
intense peak achieved for each sample was used to determine the quantitative analysis using the RIR
(Reference Intensity Ratio) method [37].
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For the characterization of surface area and total pore, Brunauer–Emmet–Teller (BET) method
was used, based on previous studies [37–39]. At first, the preparation procedure included weighing
each sample in the amount of more than 0.1 g, pretreating by degassing with nitrogen at 200 ◦C for 2 h.
Then, all of the samples were allowed to cool and weighed. The next step was testing at the liquid
nitrogen temperature (77 K, −196.15 ◦C). For surface area determination, an adsorptive (N2) was dosed
to the sorbent in controlled increments, the pressure was allowed to equilibrate and after each dose,
and then the quantity adsorbed was calculated. Samples were tested, with 10 measurement points
taken for each in about 1h 10 min. With the area covered by each adsorbed gas molecule and creating
an average monolayer, the surface area was calculated. By extending the process and allowing the gas
to condense in the pores, the sample’s pore volume was calculated.

2.3.4. Adsorption and Regeneration Process

In the studies, the dynamic adsorption/desorption experimental set-up was used. Installation was
equipped with a nitrogen bottle to create a model gas stream matrix. Nitrogen was split into two streams,
one was directed to the column with BTEX to produce impurities gaseous by bubbling. The second
stream was used to dilute polluted biogas to the expected concentration of BTEX. Then, the contaminated
gas stream was directed to an adsorption column containing new adsorbents. The effectiveness of the
adsorption process was controlled using gas chromatography. For this purpose, gas samples were taken
before and after the adsorption column. BTEX concentration was measured by considering that adsorption
equilibrium was attained when the BTEX concentration at the outlet of the adsorption column before and
after adsorption process was almost equal to the BTEX concentration at the inlet. The breakthrough curves
were expressed as the ratio (CIN/COUT) of the initial concentration of BTEX (CIN) to the concentration of
BTEX after the adsorption process (COUT) according to the adsorption time (t).

The adsorption capacity (q) of new adsorbents was calculated using Equation (2):

q =
F
m
·(CIN·t−

∫ t

0
COUTdt) [mg/g] (2)

where: F—total flowrate of gas mixture (m3/h); m—the adsorbent amount (g), t—time at which the
adsorbent reaches saturation (h).

The desorption of BTEX was carried out by heating the adsorbent to 80 ◦C and introducing a
nitrogen stream (5 L/h) to the column with the adsorbent.

2.3.5. Chromatographic Analysis

The isotherm temperature oven in the gas chromatograph was 110 ◦C; injection port temperature
was 250 ◦C, flow rate of carrier gas (N2) was 2 mL/min; injection mode was split 20:1; FID temperature
was 250 ◦C; flow rates of detector gases were H2: 40 mL/min, air: 400 mL/min. The gas sample in
volume of 0.5 mL was analyzed by gas chromatography.

3. Results and Discussion

3.1. Characterization of Adsorbents

The silica gel used in these studies is characterized by a high surface area and high thermal
stability [40,41]. The high porosity of SiO2 supports the impregnation process due to the fact that the
silica gel can bond with DES physically through the formation of hydrogen bonds or electrostatics
interactions [42]. Studied DESs are characterized by high viscosity (>250 mPas), and a melting point
below 25◦C. The high viscosity of DESs is unfavorable in many applications, i.e., extraction, absorption.
While in the process of impregnation, high viscosity enables permanent deposition of DES on the SiO2

surface. The list and characteristics of new adsorbents is presented in Table 1.



Materials 2020, 13, 1894 5 of 17

Table 1. Characteristics of deep eutectic solvents (DES) loaded silica gel.

No. Type of Adsorbent Type of DES (HBA:HBD mol ratio) Melting Points of DES (◦C) Viscosity of DES at 25 ◦C (mPas) Abbreviation of New Adsorbent Impregnation Solution
DES/MeOH (wt.% DES)

mDES
(g)

1 SiO2 − − − SiO2 85% −

2 SiO2 ChCl:Lev (1:2) Liquid at RT 1) 255.8 1 SiO2-ChCl:Lev 85% 0.58
3 SiO2 TPABr:LA (1:2) −11 >600 SiO2-TPABr:LA 85% 0.57
4 SiO2 TPABr:Lev (1:3) −7 >600 SiO2-TPABr:Lev 85% 0.61
5 SiO2 TPABr:Ph (1:2) 24 >600 SiO2-TPABr:Ph 85% 0.60

1. [43,44]; RT—room temperature.
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The experimental research on the mechanism of the impregnation of silica gel was done by
FT-IR-ATR analysis. Obtained spectra of pure silica gel and pure DESs were compared with the spectra
of impregnated silica gel (Figure 1a–d). All identified bands that can be attributed to phenol, levulinic
acid, lactic acid, and quaternary ammonium salt are visible in the spectrum of the impregnated silica
gel [45]. Characteristic bands corresponding to Si–O–Si symmetric and asymmetric vibration can be
observed in the 1100 and 802 cm−1 wavenumbers in pure SiO2 and SiO2-DESs spectra. Additional
peaks in the impregnated silica gel spectra can be observed in the range of 2973–2880, 2973–2917,
2973–2884, and 2976–2877 cm−1 (Figure 1a–d, respectively) that can be attributed to the stretching
vibrations of C–H bonds from alkylammonium cations, phenol, and organic acids. The characteristic
shifts of the carbon–carbon double bonds (C=C) towards the higher wavenumber can be observed in
the Figure 1a at around 1635 cm−1, while the shifts of the carbonyl group (C=O) towards the higher
wavenumber can be observed at around 1725, 1716, and 1735 cm−1 (Figure 1b,c,d, respectively), and
the extra peaks in the ranges of 1605–1355, 1614–1371, 1720–1366, and 1628–1377 cm−1 (Figure 1a,b,c,d,
respectively) were attributed to asymmetric and symmetric CH2 vibrations, C–O stretching bond, and
C–H bonding vibration in the alkaline chain. Whereas, the peaks at 1605–1355 cm-1 were assigned
to the C–O stretching bond and aromatic C–C stretching bond of the phenol ring, while peaks at
755–696 cm−1 can be assigned to aromatic C–H bending vibrations. This indicates that DESs have been
successfully bonded on the surface of silica gel.
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All adsorbents were submitted to thermogravimetric analysis and the obtained TG/DTG curves
are presented in Figure 2. All new adsorbents showed thermal stablility in the range of 273–365 K.
SiO2-TPABr:Lev had the highest thermal stability in the range of 273–296 K (Figure 2a), which indicates
a large application potential because industrial adsorption/desorption processes are carried out in
the range of 20 to 120 ◦C. Slightly lower thermal stability were observed for SiO2-ChCl: Lev and
SiO2-TPABr: Lev (Figure 2a,b). In all TG curves, a slight weight loss can be observed between room
temperature and 373.15 K. This is because of the evaporation of the residue physically absorbed
methanol or/and water which was used for the impregnation process. After exceeding the upper
value of thermal stability, sorbents began to degrade. In the first stage, the weight loss was caused
by the loss of the HBD (Ph, Lev, LA) in DES structures. TG/DTG curves of impregnated SiO2 with
use ChCl:Lev (1:2) showed the weight loss at the level of 13.82% in the range temperature between
380.65–518.53 K (Figure 2a), with use TPABr:Lev (1:3) the weight loss was at the level of 17.94% in
the range temperature between 381.52–542.69 K (Figure 2b), with use TPABr:LA (1:2) showed the
weight loss at the level of 12.20% in the range temperature between 395.85–542.69 K (Figure 2c) and
with use TPABr:Ph (1:2) showed the weight loss at the level of 14.94% in the range temperature
between 385.03–532.80 K (Figure 2d). The second degradation stage for SiO2-ChCl:Lev was observed
in the temperature range between 518.53–735.05 K. The weight loss (3.55%) indicated the complete
degradation of ChCl (Figure 2a). The weight loss of 1.99%, 3.18%, and 2.13% is observed in the
temperature range 542.69–735.15, 542.69–735.15, and 532.80–735.15 K, respectively for SiO2-TPABr:Lev,
SiO2-TPABr:LA, and SiO2-TPABr:Ph. The weight loss in the second step indicates the complete
degradation of TPABr. Additionally, the peaks obtained on the DTG curve reflect the maximum
reactive speed temperature associated with the change in adsorbent mass. The thermal decomposition
temperatures of the modified silica gel are exothermic peaks. In all modified adsorbents was observed
higher degradation temperature compared to pure DESs. The observed increases the thermal stability
of which results from the bond between the silicon atom and the structure DES was formed.
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The wide-angle XRD patterns of the SiO2 before and after modification by DESs are shown in
Figure 3. The results indicate that the patterns of all the adsorbents have comparable broadband
centered at around 22 which confirms the topological structure and amorphous nature of the silica
gel [46–48]. In comparison to the silica gel before modification (black line), the intensity of peak in
XRD patterns of all modified SiO2 is found to decrease along with line broadening. The decrease in
intensity is probably caused by the filling of pores of the silica gel surface by DES structure. This filled
a reduction in X-ray scattering contrast with maintaining the amorphous nature of silica is maintained
even after modification.
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Figure 3. XRD analysis of SiO2 and SiO2 impregnated with DESs.

SEM was used to explain the change in morphological features after the impregnation of silica gel
with DESs. The SEM images captured at high magnification (Figure 4a) showed that the surface of
the skeletal SiO2 was smooth before modification and after impregnation, the surface of SiO2 turned
out to be rough (Figure 4b–e). In addition, on the surfaces of silica gel after all DESs impregnation,
the agglomerations are witnessed. DESs agglomerations on the SiO2 surface are responsible for high
sorption efficiency. The larger agglomeration area, provide to the greater the adsorption capacity [49].
The largest DES agglomerations were observed on the SiO2-TPABr-LA (Figure 4c) surface and slightly
lower on the SiO2-TPABr-Lev (Figure 4d). Furthermore, the particle size of the impregnated phases
was close to the backbone before impregnation process, which indicates that the silica gel has good
mechanical strength.

The results of the BET surface area and total pore volume of SiO2 and SiO2 impregnated with DES
are presented in Table 2. The results indicate that SiO2-DES have lower BET surface area, and pore
volume in comparison to pure SiO2, which confirmed the impregnation occurred. This is because
of the less N2 adsorbed by SiO2 after impregnation since the pores were filled with DESs making it
have a lower amount of pores available for N2 adsorption thus lower the BET surface area. Similar
results were also obtained in previous studies [34,49]. The smallest surface area and pore volume was
observed for SiO2-ChCl:Lev (248.11 m2/g; 0.1196 cm3/g), due to the smallest HBA and HBD structures
in DES, and the ability to fill both smaller and larger pores. Comparison of results obtained for SiO2

impregnated with ChCl: Lev and TPABr: Lev indicates that the type of HBA has a decisive impact on
surface area and pore volume. This allows the formulation of the theory that as the aliphatic chain
length increases in the HBA structure, the surface area and pore volume decreases. On the other hand,
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based on a comparison of the results for DES composed of TPABr and various types of HBD, it can
be concluded that the presence of Ph in the DES structure also makes it difficult to fill smaller pores.
The use of Lev and LA as HBD does not significantly affect the surface area and pore volume.
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Table 2. Brunauer–Emmet–Teller (BET) surface area and pore volume of different types of adsorbents.

No. Adsorbent BET Surface Area (m2/g) Pore Volume (cm3/g)

1 SiO2 299.41 0.1484
2 SiO2-ChCl:Lev 248.11 0.1196
3 SiO2-TPABr:LA 257.71 0.1238
4 SiO2-TPABr:Lev 253.45 0.1228
5 SiO2-TPABr:Ph 281.29 0.1358

3.2. Adsorption Process

3.2.1. Effect of Different DESs on the Sum of BTEX Adsorption by SiO2-DES

In the study, pure SiO2 and four SiO2 impregnated by DESs were used to investigate the adsorption
dynamic behavior. Figure 5 shows the breakthrough curves and saturation adsorption capacity of
the sum of BTEX adsorbed on new sorbents. The results indicate that all breakthrough curves can be
divided into three phases including effective adsorption. In the first stage, effective BTEX adsorption
occurs, in the second stage the breakthrough bed (the adsorbent no longer adsorbed BTEX) occurs
and the third stage when the adsorption capacity of the bed in the adsorber is reached. Only a small
concentration of BTEX was detected in the first stage and COUT/CIN was negligible, which showed
that the adsorption of BTEX by SiO2 and SiO2 impregnated by DESs could be a fast and effective
process. In the adsorption process, the time of breakthrough time was considered to be the point at
which concentration of outlet BTEX was 95% of the inlet concentration. The breakthrough times of all
sorption materials for BTEX adsorption at the first phase match the following order: SiO2-TPABr:LA >

SiO2-TPABr:Lev > SiO2-ChCl:Lev > SiO2-TPABr:Ph > SiO2. The equilibrium adsorption capacities
of SiO2-TPABr:LA, SiO2-TPABr:Lev, SiO2-ChCl:Lev, SiO2-TPABr:Ph, and SiO2 were 43.1, 147.5, 178.2,
218.8, and 254.9 mg/g, respectively.
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The obtained adsorption results indicated that the type of HBA influence on BTEX adsorption
capacity. The comparison of BTEX adsorption capacity using pure silica gel and impregnated silica
gel by DES composed of levulinic acid, indicate that the BTEX solubility is greater using TPA-Br
(218.8 mg/g), than using ChCl (178.2 mg/g). It can be caused by many factors, i.e., quaternary
ammonium salts alkyl chain length, type of counterion in HBA structure (Br− or Cl−), different charge
density on the ammonium, or asymmetry in ChCl ammonium with an −OH in the longest branch.
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However, more studies are needed to determine which of these factors has the greatest impact on
adsorption capacity. Studies on various HBDs show that the main effect on the adsorption capacity
has HBD structure, including the occurrence of the benzene ring, and number of −OH, −COOH
groups. Depending on the HBD structure, there are various possible interactions between BTEX and
new adsorbents. The obtained results indicate that the π–π conjugated bond of the benzene ring in
the phenol structure affects the lower BTEX adsorption capacity. This suggests that π–π conjugated
bonds do not play a relevant role in BTEX adsorption. While, the increased adsorption capacity of
BTEX was observed for SiO2-TPABr:LA (254.9 mg/g) and for SiO2-TPABr:Lev (218.8 mg/g). Higher
adsorption capacity suggests that the additional −OH group in structure HBD increases the affinity of
SiO2-TPABr:LA to BTEX, due to the possibility of hydrogen bond formation [50].

3.2.2. Effect of BTEX Initial Concentration

The impact of the initial amount of BTEX on adsorption capacity and adsorption rate was also
investigated in a range of 50–300 mg/m3 (Figure 6). The results indicate that the breakthrough time
decreased from 68 to 52 min, 228 to 179 min, 257 to 216 min, 322 to 265 min, and 366 to 309 min for SiO2,
SiO2-TPABr:Ph, SiO2-ChCl:Lev, SiO2-TPABr:Lev, and SiO2-TPABr:LA, respectively, with the increase
in initial BTEX concentration from 50 to 300 mg/m3. However, adsorption capacity increased from
9.3 to 43.1 mg/g, 31.4 to 147.5 mg/g, 35.3 to 178.2 mg/g, 44.3 to 218.8 mg/g, and 50.3 to 254.9 mg/g for
SiO2, SiO2-TPABr:Ph, SiO2-ChCl:Lev, SiO2-TPABr:Lev, and SiO2-TPABr:LA, respectively which was
attributed to the enhanced driving force to diffusion. A detailed list of SiO2 and SiO2-DESs adsorption
capacity values depending on the initial concentration of BTEX is presented in the Table 3.

Table 3. List of SiO2 and SiO2-DESs adsorption capacity values depending on the initial concentration
of BTEX.

Adsorbent
Initial Concentration (mg/m3)

50 100 300

SiO2 9.3 26.1 43.1
SiO2-TPABr:Ph 31.4 91.8 147.5
SiO2-ChCl:Lev 35.3 100.1 178.2
SiO2-TPABr:Lev 44.3 151.4 218.8
SiO2-TPABr:LA 50.3 188.5 254.9

In addition to simultaneous co-adsorption of benzene, toluene, ethylbenzene, and p-xylene
adsorption of the single components was investigated for all SiO2 impregnated by DES and pure SiO2.
The experimental results revealed that the kind of compounds had only a minor effect on adsorption
efficiency. However, the adsorption capacities followed the order of p-xylene > ethylbenzene > toluene>

benzene (Table 4). Similar results were obtained for all adsorbents.

Table 4. List of SiO2 and SiO2-DESs adsorption capacity values depending on the kind of BTEX structure.

Adsorbent
Initial Concentration (mg/m3)

Benzene Toluene Ethylbenzene p-xylene

SiO2 40.1 42.4 44.7 46.2
SiO2-TPABr:Ph 138.2 140.8 150.1 154.2
SiO2-ChCl:Lev 155.9 165.4 174.9 189.9
SiO2-TPABr:Lev 202.7 211.2 215.5 228.4
SiO2-TPABr:LA 222.3 234.1 259.7 271.3
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Figure 6. Effect of BTEX initial concentration on adsorption breakthrough curves of (a) SiO2,
(b) SiO2-TPABr:Ph, (c) SiO2-ChCl:Lev, (d) SiO2-TPABr:Lev, (e) SiO2-TPABr:LA (F = 5 m3/h; m = 30 g;
T = 20 ◦C; p = 1 atm).

3.2.3. Effect of Flow Rate

Gas (containing BTEX) flow rate also have a meaningful influence on adsorption process.
(Figure 7). The results indicate that the greater the flow rate of gas, the smaller the breakthrough time.
A breakthrough times reduced from 55 to 52 min, 212 to 179 min, 235 to 216 min, 292 to 265 min,
and 341 to 309 min for SiO2, SiO2-TPABr:Ph, SiO2-ChCl:Lev, SiO2-TPABr:Lev, and SiO2-TPABr:LA,
respectively, with the increase flow rate from 1 to 5 m3/h. On the other hand, adsorption capacity
increased from 9.1 to 43.1 mg/g, 35.0 to 147.5 mg/g, 38.8 to 178.2 mg/g, 40.0 to 218.8 mg/g, and 56.3 to
254.9 mg/g for SiO2, SiO2-TPABr:Ph, SiO2-ChCl:Lev, SiO2-TPABr:Lev, and SiO2-TPABr:LA. The result
indicated that the increasing flow rate of enhanced the BTEX adsorption capacity. A detailed list of
SiO2 and SiO2-DESs adsorption capacity values depending on the flow rate is presented in the Table 5.
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Figure 7. Effect of flow rate on adsorption breakthrough curves of (a) SiO2, (b) SiO2-TPABr:Ph,
(c) SiO2-ChCl:Lev, (d) SiO2-TPABr:Lev, (e) SiO2-TPABr:LA (CIN = 300 mg/m3; m = 30 g; T = 20 ◦C;
p = 1 atm).

Table 5. List of SiO2 and SiO2-DESs adsorption capacity values depending on flow rate.

Adsorbent
Flow Rate (m3/h)

1 2.5 5

SiO2 9.1 36.2 43.1
SiO2-TPABr:Ph 35.0 114.1 147.5
SiO2-ChCl:Lev 38.8 127.4 178.2

SiO2-TPABr:Lev 40.0 181.6 218.8
SiO2-TPABr:LA 56.3 200.1 254.9

3.2.4. Recycling and Regeneration of SiO2-DES

From an economic point of view, the possibility of recycling and regeneration of the adsorbents
is one of the most important parameters. In the studies, the adsorption processes were done after
complete desorption of BTEX, which was carried using an inert gas purge flow (5 L/h), at 80 ◦C,
to flush the BTEX off the adsorbent material for 120 min. From the adsorption breakthrough curves,
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the breakthrough times after the fifth cycle (adsorption/desorption) shifted a maximum of 3 min relative
to values obtained for fresh adsorbents. This suggests nearly no loss of SiO2 and SiO2-DES adsorption
capacity after five repeated adsorption/desorption cycles (Table 6 and Figure 8). The obtained results
indicate that all studied SiO2 and SiO2-DES adsorbents maintain its stability and could be re-used for
many cycles.

Table 6. List of SiO2 and SiO2-DESs adsorption capacity values depending on the number of cycles.

Adsorbent
Number of Cycles

1st 3rd 5th

SiO2 43.1 41.2 39.8
SiO2-TPABr:Ph 147.5 146.0 145.4
SiO2-ChCl:Lev 178.2 177.2 176.4

SiO2-TPABr:Lev 218.8 216.1 215.5
SiO2-TPABr:LA 254.9 252.7 251.4
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4. Conclusions

In the paper, four DES including TPABr:Lev, TPABr:LA, TPABr, and ChCl:Lev were combined
with the porous silica gel to prepare SiO2 supported deep eutectic solvents, by incipient impregnation
method. Structures and properties of new adsorbents were characterized by FTIR-ATR, TG/DTG,
SEM, XRD, and BET. Compared with pure SiO2, the adsorption capacities of SiO2 impregnated by
DES are all increased, indicating that the deep eutectic solvents treatment significantly increased the
adsorption capacity of silica gel. This result can be explained by specific interactions between DESs
and BTEX, i.e., hydrogen bonds interaction. However, further analysis using, e.g., molecular modeling
is necessary to explain all potential interactions affecting the BTEX adsorption process using SiO2-DES.

In addition, the results indicated SiO2-TPABr:LA adsorbent as a potential candidate for BTEX
capture alternative as its adsorption capacities were higher than the pure SiO2 and other developed
SiO2-DES adsorbents. The ability and effectiveness of this adsorbent in capturing BTEX at room
temperature and atmospheric pressure makes it a practical material for industrial processes. In addition,
all adsorbents effectively retain its stability and could be re-used for many cycles.
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