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Abstract: Polybutylene succinate (PBS)/rice starch (RS) blends were prepared via the
hot-melt extrusion technique through the usage of a twin-screw extruder without
and containing ionic liquid-based surfactants (ILbS). Two types of ILbS were used,
specifically, 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf] and
1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C12mim][NTf2] were mixed
into the PBS/RS blends at the different contents (0–8 wt.%). The tensile and flexural results showed
that the blends containing ILbS have a high tensile extension and tensile energy compared to the blend
without ILbS. The blends containing ILbS also have a high flexural extension compared with the blend
without ILbS. The blends containing [C12mim][NTf2] have a significant improvement in the tensile
energy (up to 239%) and flexural extension (up to 17%) in comparison with the blends containing
[C12mim][OTf]. The FTIR spectra demonstrated that the presence of ILbS in the blends generated the
intermolecular interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between PBS
and RS. The DSC results exhibited that the melting points of the prepared blends are decreased with
the addition of ILbS. However, the TGA results showed that the thermal decomposition of the blends
containing ILbS are higher than the blend without ILbS. The values of decomposition temperature
were 387.4 ◦C, 381.8 ◦C, and 378.6 ◦C of PBS/RS-[C12mim][NTf2], PBS/RS-[C12mim][OTf], and PBS/RS,
respectively. In conclusion, the ILbS could significantly improve the physicochemical properties of
the PBS/RS blends by acting as a compatibilizer.
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1. Introduction

At present, bioplastics such as polylactic acid (PLA), polybutylene succinate (PBS) and
polyhydroxybutyrate (PHB) are gaining attention due to their excellent biodegradability,
biocompatibility, and non-toxicity [1]. Blends between bioplastics and biopolymers (for instance,
cellulose, starch, and zein) have attracted the interest of numerous researchers as they are easy to
prepare, have a low production cost, and can reduce non-biodegradable polymers dependence. In this
initial study, a bioplastic like PBS has been used as a polymer blend component. This is due to the fact
that PBS has mechanical properties that are comparable to polypropylene in terms of being tough,
flexible, and having fatigue resistance. In addition, the usage of PBS is exceptionally encouraging
because it has low processing temperature, is easy to process, and non-hazardous [2]. On top of
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that, biopolymer as starch from rice (RS) has been chosen in this study due to it’s being renewable,
environmentally friendly, low-cost, and non-toxic as well [3]. In addition, the production of the PBS/RS
blends may also probably be utilized in the fabrication of sundry products with biodegradable and
biocompatible features.

Nevertheless, the incompatibility between the bioplastic and the biopolymer has resulted in poor
physicochemical properties of the final blend products, predominantly in the mechanical and thermal
characteristics, and other related properties. This incompatibility problem exists due to the non-polar
(hydrophobic) character of bioplastics is not entirely compatible with the polar (hydrophilic) nature of
biopolymers, which lead to the reduction of the blends performance. One of the latest approaches
to enhance the compatibility between the two polymers phase that possessed dissimilar polarity
and hydrophobicity is by utilizing a surface-active agent (surfactant) in the preparation of polymer
blends [4]. The surfactants have an amphiphilic character which comprised of both non-polar and polar
groups that can function as interaction link between hydrophobic and hydrophilic polymers [5]. This
contributes to the improvement of interfacial adhesion between them. Additionally, the surfactants
can be applied through the surface treatment of biopolymers or it can be added to the polymer blend
system directly [6,7]. On the other hand, the unwanted by-products or residues that are commonly
produced after acid and alkali treatments could be avoided as well [6].

This initial study has involved the use of ionic liquid-based surfactants (ILbS) as a compatibilizer
for the PBS/RS blends. ILbS are organic salts that typically possessed low melting temperature
(below 100 ◦C), non-volatile and stable. They are also low toxic, non-flammable, and customizable [8].
The major difference between ILbS and typical ionic liquids is that ILbS have an amphiphilic character
which make them capable to compatibilize between non-polar polymers and polar polymers. The usage
of ILbS for compatibilization also appears to be significant due to having a very low melting point
compared to the ordinary surfactants [9]. This can increase the compatibilization efficacy. Two types of
ILbS utilized, particularly, 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf]
(hydrophilic ionic liquid) and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide,
[C12mim][NTf2] (hydrophobic ionic liquid). Both ILbS have the same single long alkyl chain which
can effectively interact with bioplastics. They are also thermally stable [10], which does not thermally
decompose during the melt processing of the PBS/RS blends. So far, there is a study reported
elsewhere in relation to the preparation and characterization of PBS/modified starch blends mixed
with an ionic liquid (1-butyl-3-methylimidazolium chloride) [11]. However, the study only focused
on the plasticization effect of the ionic liquid on starch. Therefore, this study concentrated on the
compatibilization effect of [C12mim][OTf] and [C12mim][NTf2] on the physicochemical properties of
the PBS/RS blends.

2. Materials and Methods

2.1. Materials

The bioplastic used is polybutylene succinate, PBS (industrial grade), acquired from PTT MCC
Biochem Co., Ltd. (Chatuchak Bangkok, Thailand). The biopolymer utilized is starch from rice (RS)
which obtained from Sigma Aldrich (Bornem, Belgium). The ionic liquid-based surfactants (ILbS)
used are 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf] (99% purity) and
1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C12mim][NTf2] (100% purity)
were procured from Wuhan Golden Wing Industry & Trade Co., Ltd. (Wuhan, China). The materials
were used as obtained without further refinement.

2.2. Preparation of PBS/RS Blends

The polymer blends were prepared via a hot-melt extrusion technique by using a twin-screw
extruder machine. First of all, the PBS (2.33 kg) was pre-mixed with [C12mim][OTf] or [C12mim][NTf2]
by using a vertical mixer for 5 min, and the blade speed was 120 rpm. Then, 1 kg of RS was added to
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the pre-mixture before mixing for another 5 min. After that, the mixture was inserted into the main
feeder of the twin-screw extruder. The extrusion process was carried out at a temperature of 140 ◦C,
and the screw speed was fixed at 5.0 Hz. The blend pellets acquired from the extruder were converted
into dumbbell (ASTM D638, type I) and rectangular (3.4 × 12.5 × 125 mm) shapes by using an injection
molding machine at a temperature of 140 ◦C. The weight ratio between PBS and RS was fixed at 70/30,
whilst the contents of ILbS were varied from 2 to 8 wt.% relative to the blends content. The blend
containing only the PBS/RS was also prepared for comparison purpose. The resultant blends were
conditioned at a temperature range of 21–25 ◦C and relative humidity from 40–60% for at least 48 h
(ASTM D618-13) [12] prior to physicochemical characterizations.

2.3. Characterization of PBS/RS Blends

2.3.1. Mechanical Characterization

Tensile extension, tensile energy, tensile stress, and tensile modulus properties of the prepared
blends were determined by using a universal testing machine (Instron, model 5567, Norwood, MA,
USA) equipped with a 30 kN load cell. The crosshead speed was 5 mm/min with a 10-cm gauge length.
The test was conducted according to the ASTM D638-10 [13] at a temperature range of 21–25 ◦C and
relative humidity from 40–60%. The mean values taken from 10 samples for each content were reported
with the standard deviation bars to show the error range.

Flexural extension, flexural load, flexural stress, and flexural modulus properties were also
quantified by using a universal testing machine (Instron, model 5567) equipped with a 30 kN load cell.
The test was conducted according to the ASTM D790-10 (procedure B) [14], at a temperature range
of 21–25 ◦C and relative humidity from 40% to 60%. The test rate was 14.5 mm/min with a 54 mm
support span length. The mean values taken from 10 samples for each content were reported with the
standard deviation bars to show the error range.

2.3.2. Chemical Characterization

Chemical characterization was done by using a Fourier transform infrared (FTIR) spectrometer
(Thermo Scientific, model Nicolet iS10, Waltham, MA, USA) to determine the presence of functional
groups in the blends and also to reveal the interactions between PBS and RS without and with the
addition of ILbS (8 wt.%). The FTIR characterization was operated by using a universal attenuated
total reflectance (UATR) equipped with a ZnSe-diamond composite crystal accessory. Each sample
was scanned for 16 times, in the wavenumber range of 4000 to 525 cm−1 and resolution of 4 cm−1.

2.3.3. Thermal Characterization

The melting point temperatures of the prepared blends were measured by using a differential
scanning calorimeter, DSC (TA Instruments, model DSC Q20, New Castle, DE, USA). All samples
(8 wt.% of ILbS) were tightly sealed in the aluminum sample pans and were subjected to the following
procedure: the samples were first heated to 100 ◦C and held at this temperature for 7 min to eliminate
thermal history; after that, the samples were slowly cooled to 30 ◦C at a rate of 10 ◦C/min before they
were subsequently heated to 140 ◦C at the same heating rate.

The thermal decomposition temperatures of the blends were determined by using a
thermogravimetric analyzer, TGA (TA Instruments, model TGA Q500, New Castle, DE, USA).
The analyses were conducted with a heating rate of 10 ◦C/min and the temperature ranged from 30 to
600 ◦C. A sample of 10–20 mg of the blend (8 wt.% of ILbS) was heated in the platinum sample pan in
an atmosphere of nitrogen at a flow rate of 50 mL/min.
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3. Results and Discussion

3.1. Tensile and Flexural Results

Figure 1a,b shows the tensile extension and tensile energy at maximum load of the PBS/RS blends
without and with different contents and types of ILbS. Consequently, it can be seen that the tensile
extension of the blend without ILbS (0 wt.%) is lower compared to the blends containing ILbS. This
is because of the incompatibility between PBS and RS in the blend caused low tensile extension.
The increase of the tensile extension of the blends containing ILbS is probably due to the ability of
ILbS to interact with both non-polar (hydrophobic) PBS and polar (hydrophilic) RS since they have
amphiphilic character [5]. In addition, the tensile extension property of the blends considerably
increased as the ILbS content slightly increased. Nevertheless, the highest tensile extension of the blend
containing [C12mim][OTf] was found at content of 4 wt.% with the increase up to 103%. More than
4 wt.% of [C12mim][OTf] could not extensively increase the tensile extension property of the blends
possibly due to the limitation of [C12mim][OTf]. On the other hand, the significant increase of the
tensile extension could be observed at the blends containing [C12mim][NTf2], the tensile extension of
the blend has increased up to 233% with the addition of 8 wt.%. The tensile energy also demonstrated
the similar trend as the tensile extension whereby the increase is up to 97% with the addition of
[C12mim][OTf] (4 wt.%), whereas for [C12mim][NTf2] the increase is up to 239% with 8 wt.% addition.

Figure 1c,d displays the tensile stress and tensile modulus at maximum load of the PBS/RS blends.
The results reveal that the tensile stress and tensile modulus properties of the blends decreased with the
addition of ILbS. The significant decrease could be perceived for the blends containing [C12mim][OTf].
However, the decrease of tensile stress of the blends containing [C12mim][NTf2] is not significant
compared to the blends containing [C12mim][OTf]. Additionally, the tensile modulus of the blends
containing [C12mim][NTf2] is higher than the blends containing [C12mim][OTf]. The obtained results
demonstrated that the different types of ILbS anion could influence the tensile stress and tensile
modulus of the blends. From the tensile test results, it was discovered that the addition of ILbS could
increase some tensile properties of the PBS/RS blends. Therefore, it was proven that the presence
of ILbS could compatibilize between PBS and RS in the polymer blend system with the significant
improvement could be noticed for the blends containing [C12mim][NTf2].

Statistical analysis was conducted by using one-way analysis of variance (ANOVA) to discover a
statistically significant difference between the maximum tensile extension and tensile energy of the
different PBS/RS blend samples (0 wt.%, [C12mim][OTf] and [C12mim][NTf2]). Tables 1 and 2 exhibit
the ANOVA results of the tensile extension and tensile energy of the PBS/RS blends without and with
containing ILbS. The total numbers of the blend samples are three, ten replicates were tested for each
sample. The source of variation of the tensile extension and tensile energy has been divided into two
categories, namely, between groups (BG) and within groups (WG). F-value is the ratio of the mean
square of BG to the mean square of WG. The P-value is less than 0.05 in Tables 1 and 2, which rejects
the zero hypothesis. Therefore, it can be concluded that there is a statistically significant difference
between the maximum tensile extension and tensile energy among the PBS/RS blend samples (0 wt.%,
[C12mim][OTf] and [C12mim][NTf2]) at a 95% confidence level.
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Figure 1. Cont.



Materials 2020, 13, 1885 6 of 13
Materials 2020, 13, x FOR PEER REVIEW 6 of 13 

 

 

Figure 1. (a) Tensile extension, (b) tensile energy, (c) tensile stress and (d) tensile modulus at 
maximum load of the PBS/RS blends without and with different contents and types of ILbS. 

Table 1. ANOVA result of the tensile extension of the PBS/RS blends without and with containing 
ILbS. 

Source of Variation SS df MS F P-Value 
BG 1409.10003 2 704.5500152 285.5294322 6.8765 × 10−19 
WG 66.62308072 27 2.467521508 - - 

SS = sum of square, df = degree of freedom, MS = mean square, F = F-value, Number of samples = 3, 
Number of observations = 30. 

Table 2. ANOVA result of the tensile energy of the PBS/RS blends without and with containing ILbS. 

Source of Variation SS df MS F P-Value 
BG 738.9567255 2 369.4783628 247.2332543 4.37375 × 10−18 
WG 40.35021835 27 1.494452532 - - 

SS = sum of square, df = degree of freedom, MS = mean square, F = F-value, Number of samples = 3, 
Number of observations = 30. 

Figure 2a,d indicates the flexural extension, flexural load, flexural stress, and flexural modulus 
at maximum load of the PBS/RS blends without and with different contents and types of ILbS. From 
these results, it is apparent that the blends containing ILbS have higher flexural extension compared 
to the blend without ILbS (0 wt.%). This also attested that the addition of ILbS in the polymer blend 
system improved the compatibility between PBS and RS. The presence of 8 wt.% of [C12mim][OTf] 
increased the flexural extension of the blend up to 11%. Furthermore, the addition of 8 wt.% of 
[C12mim][NTf2] in the blend also significantly increased the flexural extension up to 17%. 
Nevertheless, the flexural load of the blends has decreased with the addition of ILbS. This is possibly 
due to the fact that the easier the blends are to bend, the less load required. In addition, the decrease 
in the flexural load is directly proportional to the increase of ILbS content. Moreover, it was found 
that the flexural stress and flexural modulus of the PBS/RS blends have the same trend as the flexural 
load result, hence the cause for this occurrence was also similar. Further, FTIR characterization was 
performed to determine the existence of interactions between PBS and RS in the blend system. 

Statistical analysis was also conducted using one-way analysis of variance (ANOVA) to 
discover a statistically significant difference between the maximum flexural extension of the 
different PBS/RS blend samples (0 wt.%, [C12mim][OTf] and [C12mim][NTf2]). Table 3 displays the 

93
5.

60

75
2.

25

63
7.

20

57
1.

05

40
0.

69

84
8.

45

70
0.

12

61
9.

59

58
1.

85

400

600

800

1000

0 2 4 6 8

Te
ns

ile
 m

od
ul

us
 (M

Pa
)

ILbS (wt.%) [C12mim][OTf]
[C12mim][NTf2]

(d)

Figure 1. (a) Tensile extension, (b) tensile energy, (c) tensile stress and (d) tensile modulus at maximum
load of the PBS/RS blends without and with different contents and types of ILbS.

Table 1. ANOVA result of the tensile extension of the PBS/RS blends without and with containing ILbS.

Source of Variation SS df MS F P-Value

BG 1409.10003 2 704.5500152 285.5294322 6.8765 × 10−19

WG 66.62308072 27 2.467521508 - -

SS = sum of square, df = degree of freedom, MS = mean square, F = F-value, Number of samples = 3, Number of
observations = 30.

Table 2. ANOVA result of the tensile energy of the PBS/RS blends without and with containing ILbS.

Source of Variation SS df MS F P-Value

BG 738.9567255 2 369.4783628 247.2332543 4.37375 × 10−18

WG 40.35021835 27 1.494452532 - -

SS = sum of square, df = degree of freedom, MS = mean square, F = F-value, Number of samples = 3, Number of
observations = 30.

Figure 2a,d indicates the flexural extension, flexural load, flexural stress, and flexural modulus at
maximum load of the PBS/RS blends without and with different contents and types of ILbS. From these
results, it is apparent that the blends containing ILbS have higher flexural extension compared to the
blend without ILbS (0 wt.%). This also attested that the addition of ILbS in the polymer blend system
improved the compatibility between PBS and RS. The presence of 8 wt.% of [C12mim][OTf] increased
the flexural extension of the blend up to 11%. Furthermore, the addition of 8 wt.% of [C12mim][NTf2]
in the blend also significantly increased the flexural extension up to 17%. Nevertheless, the flexural
load of the blends has decreased with the addition of ILbS. This is possibly due to the fact that the
easier the blends are to bend, the less load required. In addition, the decrease in the flexural load is
directly proportional to the increase of ILbS content. Moreover, it was found that the flexural stress
and flexural modulus of the PBS/RS blends have the same trend as the flexural load result, hence the
cause for this occurrence was also similar. Further, FTIR characterization was performed to determine
the existence of interactions between PBS and RS in the blend system.

Statistical analysis was also conducted using one-way analysis of variance (ANOVA) to discover
a statistically significant difference between the maximum flexural extension of the different PBS/RS
blend samples (0 wt.%, [C12mim][OTf] and [C12mim][NTf2]). Table 3 displays the ANOVA result of
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the flexural extension of the PBS/RS blends without and containing ILbS. The total numbers of the
blend samples are three, ten replicates were tested for each sample. The source of variation of the
flexural extension has been divided into two categories, namely, between groups (BG) and within
groups (WG). F-value is the ratio of the mean square of BG to the mean square of WG. The P-value
is less than 0.05 in Table 3, which rejects the zero hypothesis. Thus, it can be deduced that there is a
statistically significant difference of the maximum flexural extension among the PBS/RS blend samples
(0 wt.%, [C12mim][OTf] and [C12mim][NTf2]) at a 95% confidence level.
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Figure 2. (a) Flexural extension, (b) flexural load, (c) flexural stress and (d) flexural modulus at
maximum load of the PBS/RS blends without and with different contents and types of ILbS.

Table 3. ANOVA result of the flexural extension of the PBS/RS blends without and with containing ILbS.

Source of Variation SS df MS F P-Value

BG 539,313.715 2 269,656.8575 517.6102415 2.9479 × 10−22

WG 14,066.05698 27 520.9650735 - -

SS = sum of square, df = degree of freedom, MS = mean square, F = F-value, Number of samples = 3, Number of
observations = 30.

3.2. FTIR Result

Figure 3 exhibits the FTIR spectra of the PBS, RS, and PBS/RS blends without and containing
ILbS. The FTIR spectra of all samples excluding PBS disclosed strong intensity broad bands in the
range of 3332–3285 cm−1 that could be ascribed to the O–H stretching of the alcohol group. On the
other hand, noticeable bands with weak intensity in the region of 2961–2927 cm−1 that present in all
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samples are related with the C–H stretching of the alkane group [15]. The obvious bands with strong
intensity at 1713 cm−1 are assigned to the C=O stretching of the ester group which presence in all
samples except in RS [16]. The weak intensity band at 1637 cm−1 is caused by the presence of absorbed
water in the RS sample only. It can be found that the FTIR spectrum of RS has the same pattern as the
rice starch powder spectrum, as implied in the earlier study [3]. The observable bands with medium
intensity at 1174 cm−1 and 1153–1149 cm−1 are due to the C–O–C stretching of the ester [17] and
ether [16–18] groups, respectively. On top of that, the bands with weak intensity in the range from
1045 to 1044 cm−1 could be attributed to the O–C–C stretching mode which presence in all samples
except in RS. The bands with weak intensity in the region from 997 to 990 cm−1 corresponded to the
C–O stretching mode of the alcohol group which was discovered in all samples excluding PBS.
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Figure 3. FTIR spectra of the PBS, RS and PBS/RS blends without and with containing ILbS.

Table 4 displays the FTIR bands of the PBS, RS, and PBS/RS blends without and containing ILbS. It
can be perceived that the PBS/RS blends containing ILbS have various wavenumbers in their FTIR bands
that differ significantly compared to the blend without ILbS. The characteristic bands of the blends
containing ILbS changed, probably because of the presence of intermolecular interactions between
PBS and RS. The bands of the O–H stretching and C–O stretching of the alcohol group of the blends
containing ILbS shifted sharply toward lower wavenumbers as compared with the blend without ILbS.
This is due to the formation of the ion-dipole force between the polar hydroxyl group which weakly
negative-charged (δ−) of the RS and the polar quaternary ammonium cation group (+) of the ILbS.
Moreover, the bands of the C–H stretching of the alkane group of the blends containing ILbS also
substantially shifted toward lower wavenumbers as compared to the blend without ILbS. This occurs
as a result of the non-polar alkyl chain of ILbS has more tendency to create hydrophobic-hydrophobic
interaction with the non-polar group of PBS. Thus, ILbS have played a role as mediator for generating
the intermolecular interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between
PBS and RS. Therefore, these results have proved that the presence of the interactions has increased the
compatibility of the PBS/RS blends which contributed to the improvement of their mechanical properties.
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Table 4. FTIR bands of the PBS, RS and PBS/RS blends without and with containing ILbS.

- Wavenumber (cm−1)

Sample O–H
Stretching

C–H
Stretching

C=O
Stretching

C–O–C
Stretching

C–O–C
Stretching

O–C–C
Stretching

C–O
Stretching

PBS - 2961 1713 1174 - 1044 -
RS 3285 2929 - - 1149 - 995

PBS/RS 3332 2946 1713 - 1151 1045 997
PBS/RS-[C12mim][OTf] 3310 2927 1713 - 1153 1044 990
PBS/RS-[C12mim][NTf2] 3295 2927 1713 - 1150 1045 993

3.3. DSC Result

Figure 4 and Table 5 demonstrate the differential scanning calorimetry (DSC) thermograms and
the melting point temperature (Tm) values of the PBS and PBS/RS blends without and with containing
ILbS. The compatibility between the blend components is commonly assured through the changes of
the glass transition temperature (Tg) values [5]. Nevertheless, the Tg values of the PBS/RS blends could
not be detected through a DSC because of the large portion of the crystalline region in the materials [19].
The changes of the Tm values also could indirectly determine the compatibility of the blends [4]. It can
be seen in Table 5 that the Tm values of the PBS/RS blends containing ILbS are lower than the PBS and
PBS/RS blend without ILbS. The Tm of the compatible polymer blend is usually lower than the pristine
polymer and the incompatible polymer blend due to the existence of polymer-polymer interactions [20].
The intermolecular interactions between PBS and RS are attributed to the presence of ILbS in the blends,
which could improve the interfacial adhesion between the blend components [3]. This has enhanced
the compatibility between PBS and RS in the blend system. The thermal decomposition of the blends
were further determined by a thermogravimetric analyzer.
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Figure 4. DSC thermograms of the PBS and PBS/RS blends without and with containing ILbS.

Table 5. Tm of the PBS and PBS/RS blends without and with containing ILbS as obtained from
DSC thermograms.

Sample Tm (◦C)

PBS 114.7
PBS/RS 112.7

PBS/RS-[C12mim][OTf] 111.2
PBS/RS-[C12mim][NTf2] 111.3
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3.4. TGA Result

Figure 5 exhibits the thermogravimetric analysis (TGA) thermograms of the PBS, RS and PBS/RS
blends without and with containing ILbS. Table 6 exposes the values of decomposition temperature (Td)
at 50% of the weight loss of the samples. It can be seen that the blend without ILbS loss about 50% of
its weight at 378.6 ◦C, while the Td values of the blends containing [C12mim][OTf] and [C12mim][NTf2]
were 381.8 ◦C and 387.4 ◦C, respectively. The addition of ILbS into the PBS/RS blends considerably
changed the Td values of the blends, as presented in Table 6. Hence, the presence of ILbS affected the
Td of the PBS/RS blends. This is possibly due to the blend components, specifically ILbS, that possessed
higher Td values in comparison to the other components of the blends (Table 6). This could certainly
increase the Td values of the overall blends. Therefore, it can be found that the thermal decompositions
of the PBS/RS blends relied on the thermal decomposition of their individual components, including
the ILbS [15]. This is because there are interactions between each of the components generated by ILbS,
whereby more energy is needed to break down their interactions during thermal decomposition of the
blends. Thus, the addition of ILbS in the blends not only increased the compatibility between PBS and
RS, but also increased the thermal decompositions of the blends.
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Table 6. Td of the PBS, RS and PBS/RS blends without and with containing ILbS as obtained from
TGA thermograms.

Sample Td (◦C)

PBS 387.4
RS 309.8

PBS/RS 378.6
PBS/RS-[C12mim][OTf] 381.8
PBS/RS-[C12mim][NTf2] 387.4

[C12mim][OTf] 417.3
[C12mim][NTf2] 438.8

4. Conclusions

The PBS/RS blend without ILbS has low tensile extension and tensile energy compared to the
blends containing ILbS. The PBS/RS blend without ILbS also has a low flexural extension compared with
the blends containing ILbS. A significant improvement of the tensile energy (up to 239%) and flexural
extension (up to 17%) could be observed in the blends containing [C12mim][NTf2]. The intermolecular
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interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between PBS and RS in the
blends were generated by ILbS. The presence of ILbS has decreased the melting points of the prepared
blends. Nonetheless, the blends containing ILbS have higher thermal decompositions than the blend
without ILbS. The PBS/RS-[C12mim][NTf2], PBS/RS-[C12mim][OTf] and PBS/RS have decomposition
temperature values of 387.4 ◦C, 381.8 ◦C, and 378.6 ◦C, respectively. It could be concluded that the
physicochemical properties of the PBS/RS blends could substantially be improved with the addition of
ILbS as a compatibilizer.
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