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Abstract: Cu3N/MoS2 heterojunction was prepared through magnetron sputtering, and its optical
band gap was investigated. Results showed that the prepared Cu3N/MoS2 heterojunction had a clear
surface heterojunction structure, uniform surface grains, and no evident cracks. The optical band gap
(1.98 eV) of Cu3N/MoS2 heterojunction was obtained by analyzing the ultraviolet-visible transmission
spectrum. The valence and conduction band offsets of Cu3N/MoS2 heterojunction were 1.42 and
0.82 eV, respectively. The Cu3N film and multilayer MoS2 formed a type-II heterojunction. After the
two materials adhered to form the heterojunction, the interface electrons flowed from MoS2 to Cu3N
because the latter had higher Fermi level than the former. This behavior caused the formation of
additional electrons in the Cu3N and MoS2 layers and the change in optical band gap, which was
conducive to the charge separation of electrons in MoS2 or MoS2 holes. The prepared Cu3N/MoS2

heterojunction has potential application in various high-performance photoelectric devices, such as
photocatalysts and photodetectors.
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1. Introduction

Environmental problems have worsened due to the rapid consumption of fossil fuels. Thus,
efficient, energy-saving, and environmentally friendly methods must be developed to solve various
pollution problems [1]. Among them, photocatalysis is a widely used technology in solar energy
conversion and shows good potential [2,3]. Other available methods are sewage treatment [4,5]
and dye degradation [6,7]. Heterojunctions formed with 2D materials and other semiconductors
have recently attracted attention from researchers due to their various potential applications.
Many heterojunction materials, including semiconductors/semiconductors, metals/semiconductors,
molecules/semiconductors [8,9], and multiple heterojunctions [10], have been used in photocatalysis and
achieved considerable success. Heterojunction photocatalysts typically have the following advantages:
strong light absorption [11], efficient charge separation and transport [12], cocatalyst effect, and strong
light absorption stability [13].

Among these heterojunctions, Cu3N/MoS2 shows promise as a photocatalyst because Cu3N is
an outstanding semiconductor material that can substantially enhance the photoelectric performance
of MoS2 or introduce new functions into such heterojunctions. As a typical transition metal sulfide,
MoS2 has a S–Mo–S sandwich structure combined by the van der Waals force [14,15]. Given
its unique structure and photoelectric properties, MoS2 has attracted considerable attention from
scholars [16,17] and has been widely investigated for thin film transistors [18,19], photodetectors [20,21],
and solid lubrication [22,23]. Owing to its adjustable band gap, MoS2 can be combined with
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many types of semiconductors to enhance light absorption from the ultraviolet to visible light
regions [7,24], increase the separation and lifetime of charge carriers, and provide potential applications
in visible-light catalysis [25,26]. Cu3N is a widely used material because of its metal-to-semiconductor
properties [27,28]. Cu3N has been proposed for battery materials [2,29], catalyst additives [30], spin
tunnel junction [31], memory [32], and electric transport materials [33] due to its wide range of optical
band gap, low temperature of thermal decomposition, and excellent chemical activity.

Heterojunctions, such as MoS2/ZnO [13], MoS2/TiO2 [11], and TiO2/WO3 [34], remarkably
improve the electrical conductivity and optical properties of materials. However, to the best of
our knowledge, Cu3N/MoS2 heterojunction materials have not been investigated. In addition, the
complicated and limited preparation of most heterogeneous structures usually involves many steps
and thus is not conducive to large-scale operations. Therefore, a simple and effective preparation
method for Cu3N/MoS2 heterojunction is needed. Magnetron sputtering has become a popular
technique due to its advantages of fast deposition speed, wide target range, good sample quality, and
controllable parameters.

Our previous work investigated the photocatalytic properties of Cu3N/MoS2 composite films.
In contrast, in this study, we made a more detailed and accurate study of the Cu3N/MoS2 heterojunction,
and explained in more depth the reasons for the change in the band gap of the Cu3N/MoS2 heterojunction.
Through the corresponding calculation, we found that the Cu3N/MoS2 heterojunction has better
optical performance. In this study, Cu3N/MoS2 heterojunction was fabricated through magnetron
sputtering, and its crystal structure, chemical composition, surface morphology, and band gap structure
were explored.

2. Experimental

Cu3N/MoS2 heterojunctions were prepared on single-crystal silicon (100) and quartz substrates by
using RF magnetron sputtering (JGP-450a, SKY Technology Development Co., Ltd, Shenyang, China).
First, the silicon and quartz wafer substrates were separately sonicated in an acetone and ethanol
solution for 15 min, rinsed with deionized water, and dried for further use. Second, the processed
monocrystalline silicon and quartz wafers were placed in the substrate support, the target was installed,
and the sputtering chamber was closed. Third, the sputtering chamber was evacuated to 2.5 Pa with
a mechanical pump and the vacuum was driven to 1 × 10−4 Pa by using a turbomolecular pump.
Before the experiment, the target was presputtered in Ar atmosphere for 10 min and the surface of the
target was cleaned to remove the oxide. Fourth, the MoS2 layer was deposited on the substrate using
high-purity molybdenum disulfide target (99.99%, Beijing Jingmai Zhongke Material Technology Co.,
Ltd., Beijing, China) in Ar atmosphere at room temperature. Total gas flow rate, vacuum chamber
pressure, power, and sputtering time were set to 40 sccm, 1.0 Pa, 150 w, and 2 and 3.5 min, respectively.
Fifth, a Cu3N layer was deposited on the MoS2 layer with a sputtering time of 2 min using a copper
target (99.99%, Beijing Jingmai Zhongke Material Technology Co., Ltd., Beijing, China). Total gas
flow rate, flow ratio of N2 and Ar, vacuum chamber pressure, power, and sputtering time were set to
40 sccm, 3:1, 1 Pa, 150 W, and 1.5 min, respectively. Under the same experimental conditions, a pure
Cu3N layer was deposited on the blank substrate for 3.5 min. The deposition rates of MoS2 and Cu3N
layers are 12 and 13.3 nm/min, respectively. The diameter of molybdenum disulfide target and copper
target are both 60 mm. The sputtering time for the heterojunction in the scanning electron microscopy
(SEM, Hitachi, Tokyo, Japan) was enlarged 10 times, and the rest of the conditions remained unchanged
to easily observe the heterojunction structure.

The surface morphology of heterojunction was characterized with a field emission scanning
electron microscope (S-4800, Hitachi, Tokyo, Japan). The crystal structure of heterojunction was
characterized using X-ray diffractometry (XRD, X’Pert PRO, PANalytical, Holland). Elemental
characterization was conducted via X-ray photoelectron spectroscopy (XPS, Escalab, Thermo Fisher
Scientific, MA, USA). The optical band gap of heterojunction was investigated with an ultraviolet-visible
(UV-vis) spectrometer (UV-2600/2700, Shimadzu, Kyoto, Japan).
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3. Results and Discussion

The XRD test patterns of MoS2 layer, Cu3N layer, and Cu3N/MoS2 heterojunction are shown in
Figure 1. The 2θ in the MoS2 (002), (100), (101), and (110) crystal planes was found at 14.55◦, 32.3◦,
36.5◦, and 49.4◦, respectively [22,35]. The absence of other impurity peaks in the spectrum indicated
the high purity of the obtained MoS2. Moreover, the sharp diffraction peak of MoS2 revealed the good
crystallinity of MoS2. The average grain size of the heterojunction was 14.9 nm, which was smaller
than the grain size observed in the SEM image. This may have been because the size of the grain
aggregate observed by the SEM was not the size of the single grain; therefore, the particle size value
observed by SEM was often larger than the calculated value. When the Cu3N layer was deposited
on the MoS2 layer to form the Cu3N/MoS2 heterojunction, the sample still showed reflection on the
(100), (101), and (110) crystal planes of MoS2. However, the intensity of the (100), (101), and (110)
crystal planes of MoS2 in the Cu3N/MoS2heterojunction was weaker than that in the pure MoS2 layer,
indicating the reduced crystal quality of the MoS2 layer after Cu3N deposition. Compared with that
of the pure Cu3N layer, the strength of the (100) and (200) crystal planes of Cu3N in the Cu3N/MoS2

heterojunction decreased, possibly due to the interdiffusion of atoms that occurred at the interface
between MoS2 and Cu3N and led to the reduced quality of heterogeneous crystals.
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Figure 1. XRD patterns of the MoS2 layer, Cu3N layer, and Cu3N/MoS2 heterojunction.

The surface and cross-sectional morphology of the Cu3N/MoS2 heterojunction are shown in
Figure 2. This surface of the MoS2 layer was generally smooth and flat with block particles of uniform
size and no evident cracks. These characteristics were beneficial to the growth of the Cu3N layer on
the surface of the MoS2 layer. Figure 2b shows the thickness of the heterojunction. The MoS2 and
Cu3N layers had a thicknesses of approximately 300 and 200 nm, respectively. The boundary between
the layers clearly showed the heterojunction structure. The relationship between the film deposition
thickness and deposition time suggested that the Cu3N/MoS2 heterojunction was approximately
50 nm-thick.
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The distribution of elements in the Cu3N/MoS2 heterojunction and the atomic percentage of each
element are shown in Figure 3. EDS data revealed that the ratio of Cu to N atoms in the heterojunction
was around 1. Moreover, its chemical ratio differed from the standard ratio of Cu3N, possibly because
of the free Cu atoms in the heterojunction. These free atoms did not combine with the N atoms to form
Cu3N. However, fewer Mo and S atoms were detected on the surface of the heterojunction. The ratio
of Mo and S atoms was about 1.87. This phenomenon occurred because MoS2 can be found in the
lower layer, and some Mo atoms in the lower layer had moved to the surface. Meanwhile, the S atoms
had difficulty in reaching the surface. The atomic ratio of Cu and N in the film Cu3N was 1:1, which
does not meet the standard atomic ratio of Cu3N, in which the N element was significantly more than
the Cu element. This is because during the deposition process, the ratio of N2 to Ar was high, and a
part of the free N atoms were adsorbed between the crystal grains. However, when Mo: S = 3.11:1.66 =

1:0.53 ≈ 1.87:1, there were fewer S atoms. This may have beeen because when MoS2 is deposited, a
part of S becomes a single substance to escape, resulting in fewer S atoms. Mo atoms that were not
combined into MoS2 combined with MoO3 to oxygen (as shown in Figure 4e,f). In addition, the XPS
spectrum also proved that there were a large number of Cu+, N− (as shown in Figure 4c,d), and Mo-S
bonds (as shown in Figure 4e,f) in the film. It showed that the heterojunction is mainly composed of
Cu3N and MoS2, and contains only a small amount of MoO3 and N atoms, which does not affect the
formation of Cu3N/MoS2 heterojunction. In addition, the Si atoms detected via EDS originated from
the monocrystalline silicon substrate.
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(c) Cu 2p peak fitting in the Cu3N/MoS2 heterojunction, (d) Cu 2p peak fitting in the Cu3N layer, (e) Mo
3d peak fitting in the Cu3N/MoS2 heterojunction, and (f) Mo 3d peak fitting in the MoS2 layer.

The chemical composition of the Cu3N/MoS2 heterojunction was characterized using XPS, and
the test results are shown in Figure 4. Figure 4a,b illustrates the total spectrum of the Cu3N/MoS2

heterojunction and MoS2 thin film, respectively. Figure 4a depicts that the binding energies of the
S2p, Mo 3d, N1s, O1s, and Cu2p peaks were 162.6, 227.8, 397.4, 530.5, and 931.3 eV, respectively [15].
Figure 4b shows that the S2p and Mo 3d peaks appeared at the binding energies of 161.5 and 229.5 eV,
respectively. The O1s peak appearing in the spectrogram might be due to the inevitable atmospheric
pollution in the heterojunction during transfer and testing. However, a weak S2p peak appeared
at 162.6 eV possibly due to the trace S atoms sputtered out during the deposition of the remaining
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MoS2 layer in the vacuum chamber, thus causing pollution in the Cu3N layer. The high intensity
peaks with binding energies of 931.1 and 952.1 eV corresponded to the Cu2p3/2 and Cu2p1/2 orbital
peaks, respectively, as shown in Figure 4c. Figure 4d illustrates the fitting of Cu2p peaks in the Cu3N
layer with the Cu2p3/2 and Cu2p1/2 orbital peaks at the binding energies of 932.81 and 952.76 eV,
respectively [27]. In Figure 4c,d, weaker peaks appeared at the binding energies of 933.9, 952.6 eV
and 934.5, 954.4 eV, which belong to Cu2+, which is caused by the slight oxidation of Cu+. Figure 4e,f
depicts the Mo3d spectra in the Cu3N/MoS2 heterojunction and pure MoS2 layers, respectively. After
the XPS spectrum of Mo3d was fitted, four peaks appeared with different intensities. The two main
peaks located at 232.0 and 228.5 eV could be inferred as the Mo3d3/2 orbital peak in the Mo–S hybrid
bond structure in MoS2 that characterized Mo4+ in MoS2. The two weak peaks at 223.46 and 232.95 eV
could be attributed to the S2s orbital and Mo–O hybrid bond structure that indicated the formation of
sulfide and partial oxidation on the film surface [23]. However, the Mo–S hybrid bond of the Mo3d
orbital peak of pure MoS2 was located at the binding energies of 228.4 and 231.5 eV. The XPS spectra
were consistent with the XRD and EDS results and indicated a large number of MoS2 and Cu3N in
the heterojunction.

Figure 5 presents the energy band diagram of the Cu3N/MoS2 interface. The valence (VBO or
∆Ev) and conduction (CBO or ∆Ec) band offsets of the interface were calculated on the basis of the XPS
spectra and corresponding band gap data as follows [13]:

∆EV =
(
ECu3N/MoS2

Cu2p3/2
− ECu3N/MoS2

Mo3d5/2

)
+
(
EMoS2

Mo3d5/2
− EMoS2

VBM

)
−

(
ECu3N

Cu2p3/2
− ECu3N

VBM

)
(1)

∆EC = ECu3N
g − EMoS2

g − ∆EV (2)

where Es
m represents the energy of characteristic m in sample s, EMoS2

VBM ; ECu3N
VBM denotes the maximum

valence band values of Mo3d5/2 and Cu2p3/2 in the MoS2 and Cu3N samples, respectively; and EMoS2
g

and ECu3N
g indicate the band gap values of the MoS2 and Cu3N samples, respectively.Materials 2020, 13, x FOR PEER REVIEW 7 of 9 
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According to Equations (1) and (2), the VBO and CBO between the MoS2 and Cu3N samples
were 1.42 and 0.82 eV, respectively. The band gap values of MoS2 and Cu3N at 2.43 and 1.83 eV,
respectively, were consistent with those measured in the US–vis transmission spectrum, and the
maximum valence band values (VBM) of MoS2 and Cu3N were 1.15 and 1.40 eV, respectively [13].
The energy band diagram of the Cu3N/MoS2 heterojunction interface could be deduced on the basis
of the calculated value as shown in Figure 5. The arrangement of II-type staggered band of the
Cu3N/MoS2 heterojunction was conducive to the charge separation of electrons in the heterojunction
because the Fermi level of Cu3N was higher than that of MoS2. After the two materials adhered to
form the heterojunction, the interface electrons flowing into Cu3N from MoS2 increased the number
of electrons in the Cu3N layer and caused additional holes in the MoS2 layer. These conditions
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changed the optical band gap. The formed heterojunction can be applied to various high-performance
photoelectric devices, such as photocatalysts and photodetectors.

The UV-vis transmission spectrum and diagram of band gap calculation of the Cu3N/MoS2

heterojunction are shown in Figure 6. The transmittance of the pure Cu3N layer in the wavelength
range of 350–650 nm was clearly improved after a heterojunction was formed between Cu3N and MoS2.
According to the transmission spectrum curve of the thin film, the Eg of Mo-Cu based compound
region can be calculated using the optical constant law (3) and Tauc Equation (4) as follows [31]:

α = ln(100/T)/d (3)

(αhv)2 = A
(
hv− Eg

)
, (4)

where T represents the transmittance, d denotes the film thickness, α indicates the absorption coefficient,
hv refers to the photon energy, and a signifies the constant. The band gap Eg could be inferred from the
relationship curve between (αhv)2 and hv by linearly fitting the straight part of the curve as shown
in Figure 6b. The optical band gaps of the Cu3N layer, MoS2 layer, and Cu3N/MoS2 Mo-Cu-based
compound region were 1.83, 2.43, and 1.98 eV, respectively.
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4. Conclusions

Cu3N/MoS2 heterojunction was prepared on silicon and quartz substrates through magnetron
sputtering. Microstructure analysis revealed the good crystallinity of MoS2 and Cu3N in the
heterojunction, the uniform distribution of spherical grains on the surface, the thickness of the
heterojunction at approximately 50 nm, and the formation of a heterojunction structure with a clear
interface. This work provided a simple and effective method for preparing heterojunctions. XPS
and UV correlation spectra and data revealed that the prepared Cu3N/MoS2 heterojunction had an
arrangement of II-type staggered band. The VBO and CBO of the Cu3N/MoS2 interface were 1.42
and 0.82 eV, respectively. This condition facilitated the charge separation of electrons in MoS2. The
prepared heterojunction can be applied to various high-performance photoelectric devices, such as
photocatalysts and photodetectors.
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