Combined Optical-Electrical Optimization of Cd_{1-x}Zn_xTe/Silicon Tandem Solar Cells ## Mehmet Koç 1,2, Giray Kartopu 3 and Selcuk Yerci 1,2,4,* - ¹ The Center for Solar Energy Research and Applications (GUNAM), Ankara 06800, Turkey; mehmetkoc.ee@gmail.com - ² Micro and Nanotechnology Department, Middle East Technical University, Ankara 06800, Turkey - ³ Centre for Solar Energy Research, OpTIC, Swansea University, St. Asaph Business Park, LL17 0JD, UK; giray.kartopu@swansea.ac.uk - Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey - * Correspondence: syerci@metu.edu.tr; Tel.: +90 (312) 210-2344 **Figure 1.** Single-pass absorption spectra for 3 μ m thick top cell active absorber (CdTe, C_{0.6}Z_{0.4}T and ZnTe) obeying the Beer-Lambert Law for the incident light as a function of wavelength. Figure 2. Refractive index (n) and extinction coefficient (k) of materials used in this study. **Figure 3.** Schematic of the tandem device with inverted top cell structure. Front and rear TCOs are ITO; ETL is CdS; HTL is MoO_x; and an index matching glue is employed between two cells. EVA is used to protect IBC Si cell contacts; glass is employed as the substrate. **Figure 4.** CdTe/IBC Si tandem efficiency as a function of (a) lifetime for three surface recombination velocities (10, 50 and 500 cm/s) for a 3 μ m CdTe absorber and (b) series resistance for four shunt resistances (Infinite, 5k, 2k and 1k Ω /cm²) for a lifetime of 5 ns and surface recombination velocity of 500 cm/s. CdS is used as the ETL. **Figure 5.** Top cell J-V curves of selected $C_{1-x}Z_xT$ cases (x = 0.4, 0.6) with 50 nm ETL of CdS and MZO. **Table 1.** Simulation parameters of solar cells used in SCAPS 1-D. | | CdTe | C _{0.8} Z _{0.2} T | C _{0.6} Z _{0.4} T | C _{0.4} Z _{0.6} T | C _{0.2} Z _{0.8} T | ZnTe | CdS | MZO | ITO | |------------------------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------|-----------------|-------------------|-----------------| | E _g (eV) | 1.45 | 1.54 | 1.69 | 1.85 | 2.03 | 2.19 | 2.4 | 3.6 | 3.72 | | χ (eV) | 4.28 | 4.23 | 4.03 | 3.87 | 3.69 | 3.53 | 4.3 | 4.2 | 4.5 | | CB eff. DOS | 1.5 × | 1.5 × | 1.5 × | 1.5 × | 1.5 × | 1.5 × | 2.1 × | 2.1 × | 4 × | | (cm ⁻³) | 10^{18} | 10^{18} | 10^{18} | 10^{18} | 10^{18} | 10^{18} | 10^{18} | 10^{18} | 10^{19} | | VB eff. DOS | 1.8 × | 1.8 × | 1.8 × | 1.8 × | 1.8 × | 1.8 × | 1.7 × | 1.7 × | 1 × | | (cm ⁻³) | 10^{19} | 10^{19} | 10^{19} | 10^{19} | 10^{19} | 10^{19} | 10^{19} | 10^{19} | 10^{18} | | V_{te} (cm/V.s) | 1×10^7 10^{7}$ | 1×10^7 | | V_{th} (cm/V.s) | 1×10^7 | M_e (cm ² /V.s) | 700 | 700 | 700 | 700 | 700 | 700 | 70 | 70 | 30 | | M_h (cm ² /V.s) | 60 | 60 | 60 | 60 | 60 | 60 | 20 | 20 | 5 | | N_A (cm ⁻³) | 1×10^{16} | 1×10^{16} | 1×10^{16} | 1×10^{16} | 1×10^{16} | 1×10^{16} | - | - | - | | N- (am-3) | | | | | | | 1.2 × | 1.2 × | 1 × | | N _D (cm ⁻³) | - | - | - | - | - | - | 10^{18} | 10^{18} | 10^{21} | $E_g: \ bandgap; \ \chi: \ electron \ affinity, \ DOS: \ density \ of \ states; \ V_{te}: \ electron \ velocity; \ V_{th}: \ hole \ velocity; \ M_e: \ electron \ mobility; \ M_h: \ hole \ mobility; \ N_A: \ acceptor \ density; \ N_D: \ donor \ density.$