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Abstract: In order to study the influence of scratch direction on the deformation characteristics and
material removal mechanism of optical glass BK7, nanoscratching experiments were conducted on a
Nano indenter using Vickers indenter. Results indicate that the face-forward scratch is more likely to
induce the initiation and propagation of lateral cracks, which is found to be more beneficial to material
removal processes; in contrast, small chips and debris are released from the machined grooves without
introducing lateral cracks in the edge-forward condition, leading to poor material removal efficiency.
In addition, the choice of scratch direction can make differences to the elastic recovery rate of optical
glass BK7. The results revealed that both the elastic recovery rate and the residual stresses of the
material under the face-forward scratching are greater than those of the edge-forward scratching.
A theoretical model for coefficient of friction (COF) under different scratch directions was established.
It is found that the COF between indenter and workpiece in the edge-forward scratching is larger
than the face-forward scratching under otherwise identical conditions, this finding is consistent with
experimental results. A stress field analysis using finite element method (FEM) was conducted to
understand the different crack initiation and propagation behaviors from different scratch directions.
The current study discusses the significance of scratch direction on material removal behavior of
optical glass BK7, and the results would encourage further research on investigating the connections
between tool geometry and material removal mechanism.
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Highlights

• Nanoscratching characteristics of optical glass BK7 using Vickers indenter under different scratch
directions were experimentally investigated.

• Both the elastic recovery rate and surface deformation behavior of optical glass BK7 were greatly
affected by the scratch direction.

• Lateral cracks were found to be more likely to initiate under face-forward scratch direction.
• A novel theoretical model incorporating the effect of scratch direction was developed to predict

the coefficient of friction during scratching.
• Stress field analysis after scratching was conducted by finite element method to understand the

different crack initiation and propagation behaviors from different scratch directions.
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1. Introduction

Optical glass BK7 has been a promising material widely applied in aeronautics, laser technology,
photoelectric communicational, and medical fields because of its stable mechanochemical properties
and excellent optical uniformity [1–4]. For precision and high value-added applications, the material is
required to provide accuracy and surface roughness at micro/nano scale. However, optical glass BK7 is
a typical hard-brittle material which is difficult to machine for precision because of its high hardness
and low fracture toughness [5]. Extensive studies investigating the material removal mechanism
of hard-brittle materials have been conducted through scratching experiments at micro/nano scale,
which provided in-depth understanding of the processing mechanism between abrasive grains and
workpiece such as grinding and polishing.

Many efforts have been devoted to research the machining characteristics of brittle materials by
single-point diamond scratching test. Researches have revealed that nanoscratching of hard-brittle
materials is a complex process with multiple influencing factors, including scratch speed [6–8], shape
and geometric parameters of tool [9,10], environment [11], and so on. In addition, many scholars have
conducted studies to explore the effect of scratch directions in the processing of materials [12–16].
Yan investigated the material removal state under different scratch directions employing AFM on single
crystal copper, it is found that the height of pile-up is greatly influenced by scratch directions [17].
Guo also found that the scratch depth is significantly affected by the normal load in different scratch
directions of the tip-based micro/nano machining. Their findings suggested that three-dimensional
micro/nano structures can be machined on the silicon base with the proper selection of the scratch
direction. However, the scratch experiments using AFM probe-based nanoscratching method is limited
to scratch depth to nanometer scale [18,19]. In addition to the scratching experiments by means
of AFM probe tip, some scholars have also used Berkovich indenter for scratching investigation,
but they rarely took scratch direction into account [20–22]. Zhang carried out the varied-cutting-depth
nanoscratching experiments on 6H-SiC using the Berkovich indenter, in which the material removal
behavior during scratching was found to be affected by scratch directions. The author also found that
the ductile-removal mode takes place during the nanoscratching process [16]. Only a few studies have
considered the effect of scratch direction on scratching characteristics [16], but the understanding is
still limited.

To facilitate the understanding of nanoscratching process on hard-brittle materials,
a comprehensive analysis of the stress field becomes important in providing insights into the
fundamentals of material removal and surface characteristics [23–26]. Previous studies have indicated
that the principle stresses and shear stress would rise with the increase of COF during processing [27].
However, the COF between the tool surface and workpiece is usually considered as constant in
previous research which is different from the actual machining processes [28]. As a result, COF should
be considered as a dominating factor that affects the deformation of the hard-brittle samples [29,30].
The aforementioned combination of multiple factors including the shape of tool and scratch direction
combined together and collectively contributed to the stress field change, which eventually led to the
deformation to different levels. Therefore, it is necessary to study the influence of scratch direction on
the scratching characteristics of hard-brittle materials, including the elastic recovery rate of the material,
the material removal mechanism, and the friction characteristics between the tool and the workpiece.
In the current study, the elastic-plastic stress field analysis was conducted using finite element method
(FEM) to support experimental results and provide guiding significance to experiments.

This paper aims to reveal the effect of scratch directions (face-forward and edge-forward) on the
surface characteristics and material removal mechanism of optical glass BK7 material in the single-grit
nanoscratch test. A theoretical COF model considering the effects of scratch direction, material elastic
recovery rate, and geometry of the pyramid tip for nanoscratching was established and compared with
the experimental results. The micro/nanoscale scratching characteristics of optical glass BK7 by using
the quadrangular pyramid indenter were studied systematically. The effect of scratch direction on
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deformation characteristics and material removal behavior of optical glass BK7 was explained and
verified through finite element analysis (FEA) by comparing with experimental results.

2. Experimental Details

2.1. Experimental Setup

In the present study, all scratching experiments were conducted on a G200 Nano Indenter (Keysight
Technologies, Inc., Santa Rosa, USA) (shown in Figure 1) by Vickers indenter with average tip radius of
200 nm, face angle of 136◦, and edge angle of 148◦. By changing the orientation of the Vickers indenter as
shown in Figure 2, the face-forward direction and edge-forward direction nanoscratching were realized,
respectively. The material removal mechanism, as well as the initiation and propagation of microcracks
of optical glass BK7 were investigated. The polished specimen was mounted on the workbench of
G200 Nano Indenter for scratching experiments as shown in Figure 1. The nanoscratching experiments
were conducted under constant load mode ranging from 10 mN to 50 mN (10 mN increment) as well
as ramp load mode up to 50 mN with 100 um scratch length and 2 um/s scratch speed, the conditions
were equivalent to the conditions of a quasi-static scratching. Each experimental set was repeated for
five times with the same Vickers indenter to ensure repeatability. The experiments were all conducted
under 24 ◦C room temperature and 60% relative humidity. As shown in Figure 2, all scratch tests were
conducted with a quadrangular-based pyramid indenter with different directions (edge-forward and
face-forward). For the purpose of illustration, the assumed elastic recoveries of the material under
different scratch directions (edge-forward and face-forward) were highlighted in orange in Figure 2.
The elastic recovery rate may significantly affect the actual contact area between the workpiece and the
indenter. This is discussed in the later sections.
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2.2. Specimen Characterization and Measurement

The specimen used in nanoscratching experiment was optical glass BK7 (7 mm × 7 mm × 3 mm)
and the chemical composition is outlined in Table 1. All the samples were subjected to fine grinding
before scratching to ensure the initial roughness (Ra) being below 2 nm. The morphology of the
specimen after edge-forward and face-forward scratching was observed by confocal laser scanning
microscopy (Model: KEYENCE VK-X Series KEYENCE, Japan) and scanning electron microscopy
(SEM, Merlin, Zeiss, Jena, Germany). The cross-sectional morphology, scratch depth, and residual
depth of the scratch grooves were obtained by confocal laser scanning microscopy and atomic force
microscopy (AFM, Dimension Icom, Bruker, Company, Gernamy).

Table 1. Composition of the optical glass BK7 used in the experiments.

Material
Chemical Composition (wt %)

SiO2 B2O3 K2O BaO Na2O As2O3

BK7 Glass 69.13 10.75 6.29 3.07 10.40 0.36

3. Results and Discussion

Herein, the effects of scratch direction on elastic recovery rate, friction characteristics, surface
deformation, material removal mechanism, and stress field distribution are discussed. Scratch
experiments were conducted to verify the scratch simulation results by looking into the elastic recovery
rate and friction characteristics under different scratch directions. The analysis procedure is shown in
Figure 3.
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3.1. The Effect of Scratch Direction on Elastic Recovery Rate

In the nanoscratch process of optical glass BK7, the scratch depth is different from the residual
depth after scratching, a certain elastic recovery would occur [31]. The scratch elastic recovery has
a significant influence on the material removal volume and the machining accuracy, and should be
considered in the determination of scratching parameters [32]. In order to analyze the elastic recovery
behavior of the optical glass BK7 under different scratch directions, we here define the ratio between
the residual depth after the scratch process (residual depth) and the scratch depth during scratching as
the scratch depth ratio [33].

λ =
hr

hs
(1)

where the scratch depth ratio of the material is λ, the residual depth is hr, and the scratch depth is hs.
Thus, the elastic recovery rate η of the optical glass BK7 can be expressed as [34]:

η = (1− λ) × 100% (2)

As shown in Figure 2, the projected area of the interface for Vickers indenter tip at face-forward
or edge-forward direction resulted in a difference between the hardness and elastic recovery rate
of BK7. The variation between the scratch depth and the residual depth during scratching under
different constant loads is shown in Figure 4. The error bars are two standard deviations in depth and
they are estimated within 2%. It is shown that the scratch depth of the edge-forward direction was
slightly larger than the scratch depth in face-forward direction. Under the same loading conditions,
the residual depth from the edge-forward direction was also larger than the scratch residual depth in
face-forward direction. Therefore, the two factors above should be incorporated into the analysis of
the elastic recovery rate of BK7. By comparing the scratch depth ratio and the elastic recovery rate
of the material, the obtained scratch depth ratio was around 0.413 (standard deviation is 0.0151) for
face-forward direction and around 0.483 (standard deviation is 0.0165) for edge-forward direction.
It should be noted that the smaller the residual depth, the bigger the residual stress after scratching
and the higher the elastic recovery rate of the material [32]. Therefore, both the elastic recovery rate
and the residual stress under the material under face-forward scratching were greater than those of the
edge-forward condition. According to Figure 4 and Equation (2), the elastic recovery rate of BK7 in
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face-forward scratching was 58.7%, while it was 51.7% in edge-forward scratching, a 6% difference
was observed.
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3.2. The Effect of Scratch Direction on Friction Characteristics

Studies have shown that the friction characteristic in the scratching process is related to the stress
state of the material, and the principle stress and shear stress in all directions increase as the COF
increases [29]. It indicates that the feature of the COF in scratching is a major factor affecting the
deformation of hard-brittle materials [35,36]. The change of COF also changes material deformation
and mechanisms, which further affects the critical cutting depth of ductile to brittle transition for
hard-brittle materials. Therefore, it is necessary to incorporate the friction characteristic between the
tool and the workpiece into the current study. By referring to the traditional calculation method,
the equivalent COF is composed of the ploughing COF and the interfacial COF [37–39]. In this paper,
a theoretical model for calculating COF was developed to investigate the friction characteristic of
optical glass BK7 in nanoscratching for both edge-forward and face-forward directions.

3.2.1. Theoretical COF Model for Edge-Forward and Face-Forward Nanoscratching

In general, the friction force between indenter and groove surface is equal to the sum of the
adhesion force and the ploughing force in the nanoscratching test [40,41], namely

Ft = FA + FP (3)

where FA and FP are the adhesion force and ploughing force, respectively. Furthermore, Williams [40]
pointed out that the corresponding hardness value HP of the ploughing force FP, the ratio of the
ploughing force FP to the projected area At along the scratch direction, is considered to be the
energy used to replace the unit volume of material. According to Williams, the material resistance to
penetration can be considered as a material constant, which is assumed to be the value of the ploughing
hardness HP, and is equal to the scratch hardness HS. So the equation can be rewritten as [40]:

Ft = FA + HP ×At (4)
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Therefore, the overall COF can be expressed as:

µ =
FA
P

+
HPAt

HSAn
(5)

where An represents the projected area of the contact between the indenter and the material along the
vertical direction, At represents the projected area of the contact area between the indenter and the
material along the scratch direction (the area highlighted in orange in Figure 2), and P is the normal
load applied during the scratching process.

Now, assume HS = HP mentioned in the hypothesis, the overall COF becomes:

µ = µA +
At

An
(6)

According to Figure 2b, it is evident that for edge-forward scratching, the values of At and An have
a strong correlation with the indenter geometry because of the size effect and the elastic recovery rate
of the material. Since the ploughing action plays a dominant role in ductile removal regime, the value
of the ploughing part of the COF mainly depends on the plastic deformation in the scratch test. Thus,
investigation was conducted to reveal the effect of face-forward and edge-forward directions on the
COF under plastic deformation regime.

For face-forward scratching, the contact area between the Vickers indenter and the workpiece
is shown in Figure 2a. The angle between the rake face and the flank face is 136◦, i.e., the half tool
apex angle is 68◦. The half width of the rake face and the flank face of the indenter in contact with the
workpiece are b1, b2 respectively, and they can be derived as:

b1 = hs tanα (7)

b2 = (1− λ)hs tanα (8)

where α is the half apex angle of the indenter in face-forward scratching. Considering the elastic
recovery of the material, the projection of the contact area between the indenter and the material along
the vertical direction, namely An− f f , should be rewritten as:

An− f f = 2b1
2 + b1b2 + b2

2 =
(
4− 3λ+ λ2

)
h2

s tan2 α (9)

Similarly, the projection of the contact area between the indenter and the material along the scratch
direction, namely At− f f , should be rewritten as:

At− f f = h2
s tanα (10)

Then, the ploughing COF in face-forward scratching can be derived as:

µp− f f =
At− f f

An− f f
=

1
(4− 3λ+ λ2) tanα

(11)

As for the edge-forward scratching, the projections of the contact area in vertical direction An−e f
and in scratch direction At−e f should be rewritten as:

An−e f = (b1 + b2)b1 = (2−λ)h2
s tan2 β (12)

At−e f = h2
s tan β (13)
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where β is the half apex angle of the indenter in edge-forward scratching. Thus, the ploughing COF in
edge-forward scratching can be expressed as:

µp−e f =
At−e f

An−e f
=

1
(2−λ) tan β

(14)

3.2.2. Comparison of the Theoretical and Experimental Results

In addition to the constant loading conditions, an exploratory study was conducted on the nano
indenter utilizing the lateral force module (LFM) function. In the LFM function, the applied load (in
the normal direction) varied following a ramp path, and the tangential force was measured by the
equipment and reported after the test. Thus, the COFs of face-forward and edge-forward directions
under ramp loading conditions can be obtained. Figure 5a shows the normal force, tangential force,
and COF of the Vickers indenter from different scratch directions under ramp loading condition and
Figure 5b shows the COF of the Vickers indenter from different scratch directions under constant
normal loading condition.
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It is evident that the tangential force of the edge-forward scratching is greater than that of the
face-forward condition; more specifically, the COF of the edge-forward scratching is greater than that
of the face-forward condition. As mentioned above in Equations (11) and (14), assuming the same
elastic recovery rate of the material, the COF under the edge-forward scratching is larger than that of
the face-forward, which is consistent with the experimental results.

As noted by Gu et al. [42], no matter the test was under constant load or varying scratch depth,
the average scratch depth ratio of BK7 under certain load (P < 130 mN) was 0.359 with a standard
deviation of 0.0045. Taking λ = 0.359 into Equations (11) and (14) above, the ploughing term of the
overall COF under face-forward scratching became 0.132 and 0.152 under edge-forward scratching.
Substituting scratch depth ratios λff = 0.413 and λef = 0.483 from Section 3.1 into Equations (11) and (14),
the overall COF became µff = 0.138 and µef = 0.189 respectively. It should be noted that the theoretical
value was smaller than the experimental one since the influence of the COF adhesion term was not taken

into consideration. As for the adhesion term µA, it can be expressed as µA ∝ (2/π)(s/
3
√
(v/h)4m/E),

where s is the shear strength of the interfacial, v is scratch velocity, h is scratch depth [43]. It can be
obtained that µA is related to the scratching speed, and can be assumed to be a constant under different
scratch directions. To a certain extent, the theoretical model reveals that the coefficient of friction is
greater under edge-forward scratching.
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3.3. The Effect of Scratch Direction on Surface Deformation, Lateral Cracks Development, and Material
Removal Behavior

The specimen was ultrasonically cleaned in ethanol-acetone solution for ten minutes after the
scratch test. The morphologies of the scratch groove were observed by confocal laser scanning
microscopy and SEM. The results of face-forward and edge-forward scratching with different scratch
depths were discussed in the following sections.

3.3.1. Surface Deformation and Material Removal Behavior in Face-Forward Scratching

Optical micrographs of BK7 samples (face-forward scratching) from different scratch depths are
shown in Figure 6 (h stands for scratch depth here). The results indicate that the initiation of lateral
cracks during scratching has a strong dependence on the scratch direction. It can be clearly observed
that bright-flaky regions were formed on both sides of the groove, which were lateral cracks nucleating
near the plastic deformation zone and expanding laterally on a plane parallel to the specimen surface.
The onset position of lateral cracks was identified by observing the groove under confocal laser scanning
microscopy. As the scratch depth increased, the lateral cracks further propagated. The initiation depth
of lateral crack was determined by the brightness of the spot in optical micrographs. In this study,
the damage zone size, which is defined as the average width of the bright areas on both sides of the
scratch groove, increased as the scratch depth increased (Figure 6). Therefore, the material removal
volume during precision and ultra-precision processing can be better evaluated and estimated based
on the learning between the damage zone size and the scratch depth (i.e., 0~900 nm) from single
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When BK7 was scratched at a small depth (i.e., 0–500 nm), the force was insufficient to cause
lateral cracks to propagate in the specimen surface. Therefore, no obvious chipping was observed
around the scratch groove. When the scratch depth was deep (i.e., h > 500 nm), it can be observed that
lateral cracks propagated upwards to the specimen surface, and eventually led to material removal.
It should be noted that at smaller scratch depths, only lateral crack is observed. It can be seen from
Figure 7 that when the scratch depth increases, radial cracks can be observed on the scratched. surface.
Meanwhile, the material removal process results not only from the expansion of lateral cracks, but also
from the interaction between lateral and radial cracks at this stage.
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3.3.2. Surface Deformation and Material Removal Behavior in Edge-Forward Scratching

The surface morphologies of edge-forward scratching under different scratch depths from 200 nm
to 1 µm are illustrated in Figure 8, which were measured by AFM. It is evident that, in the edge-forward
scratching process, continuous lateral cracks were not observed and chips were easily generated at
both ends of the scratched groove. Moreover, the amount and morphologies of the chips varied with
varying scratch depths. When BK7 was scratched by edge-forward direction at a small depth of 200 nm,
there were hardly any cracks and burrs on the scratched surface. As shown in Figure 8a, material
built up on both sides of scratched groove and plastic flow appeared. It is worth noting that the angle
between the plastic flow lines and scratch direction was approximately 42◦ which showed a certain
regularity. This angle was approximately equal to the angle between the edge of the Vickers indenter
and scratch direction under edge-forward scratching. When the scratch depth was 400 nm as shown
in Figure 8b, not only plastic flow, but also typical ductile-removal including scattered chips and
strip chips occurred on the scratched surface. Moreover, from Figure 8b–f, it can be observed that as
the scratch depth increased, the contact between the indenter and the material became more severe,
and an increased amount of scattered chips were created on both sides of the scratched groove owing
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to the shearing flow. The chips were evenly distributed and the length of the strip chips were longer.
When the scratch depth increased up to 1 µm, the length of the strip chip was about 3.95 µm.Materials 2020, 13, x FOR PEER REVIEW 12 of 18 
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As shown in Figure 8c, when BK7 was scratched up to 500 nm, serrated burrs were found on the
side of the scratched groove. Furthermore, scattered chips agglomerated into block chips. With the
increase of the scratch depth as show in Figure 8c–f, the formation of the sharp angle of the burrs
became much more conspicuous and was densely distributed at the edge of the scratch grooves with
larger area, especially when the scratch depth reached 800 nm to 1 um. As shown in Figure 8e,f,
the generated chips were continuous, elongated, and curled, which were mainly observed on the edge
side of the scratch groove without separation. In addition, some small chips aggregated together and
formed into block chips because of their high-surface-energies as shown in Figure 8f. During the
edge-forward scratching process, friction force grew up because of the fact that the extrusion between
the diamond indenter and the specimen would enlarge along the direction of perpendicular scratching
with the increase of scratch depth. Furthermore, greater friction force would result in an increasing
number of chips, which was more likely to cause chip breakage.
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The results indicate that the difference in scratch direction has a significant influence on the
surface deformation characteristic and material removal mode at the same scratch depth. Under the
same scratching conditions (including scratch depth, scratch speed, and scratch length), lateral
crack-induced subsurface damage was not observed in edge-forward scratching, and the chips were
mostly discontinuous and small in size which can be expelled from the scratch groove easily. In contrast,
face-forward scratching was more prone to the initiation and continuous propagation of lateral cracks
than edge-forward scratching. With the increase of scratch depth, the lateral cracks propagated forward
and bulged to the sides of the scratched groove more obviously, leading to more material removal.

3.4. Numerical Simulation by FEM

In micro/nano scratching of hard-brittle materials, the surface and subsurface morphologies
of the specimen are closely related to its stress state. In the following section, FEM was utilized
to study the stress distribution of BK7 during single grit scratching. The relationship between the
stress distribution and the initiation of the lateral crack in different direction scratching was analyzed,
which could provide further explanation and certain guiding significance to the experimental results.
The model mainly investigated the influence of the scratch direction on the sequence and initiation
of lateral cracks, without considering the position and propagation of cracks during scratching
process. Therefore, the isotropical bilinear elastic-plastic constitutive equation for BK7 was adopted
to investigate the relationship between the stress field change and the lateral cracks initiation under
different scratching conditions.

In order to obtain the stress state under different scratch depths, the simulation used a gradually
increasing depth method and the parameters related to scratching simulation are shown in Figure 9.
The Vickers indenter was assumed to be a rigid body, the geometric parameters of the indenter,
the scratching length, and other conditions were kept unchanged. Given the very low scratch speed,
a quasi-static approach was used in the simulation. The tool-workpiece engagement is shown in
Figure 10a, and the cross sectional view in simulation is shown in Figures 10b,c, with the X direction
being perpendicular to the scratch direction, the Y direction being the depth of the scratch along the
normal-load direction, and the Z direction being along the scratch direction. To ensure the accuracy
and efficiency of this simulation, the seeds of the edges in the X axis were set to be much dense when it
approached the center, with a minimum mesh size of 50 nm at the center, as shown in Figure 10b,c.
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According to the literature survey on the hard-brittle materials scratching, it is believed that
the sequence of crack generation is: median crack, lateral crack, and radial crack [44]. The initiation
and development of different cracks depend on the stress state. Previous studies illustrated that
principle stress σxx is responsible for median cracking, σyy for lateral cracking, and σzz for radial
cracking [29,45,46]. In the highly nonlinear analysis of commercial software ABAQUS, the normal
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stress S11 along the scratch direction, the normal stress S22 in the vertical direction, and the normal
stress S33 perpendicular to the scratch direction are the main driving forces for the initiation of the
median crack, the lateral crack, and the radial crack, respectively.Materials 2020, 13, x FOR PEER REVIEW 14 of 18 
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According to the principle of Weibull’s fracture stress distribution, the Weibull fracture probability
of the ith Gaussian point in the model can be expressed as [36]:

Gi= 1− exp

−Vi

(
σ1i
σ0

)t
 (15)

where Vi is the volume of the ith Gaussian point, σ1i is the maximum normal stress, σ0 and t are the
Weibull constant of the material. It can be obtained from Equation (15) that the greater the probability
of brittle fracture in the region, the larger the principle normal stress. Therefore, the initiation of lateral
crack can be predicted by analyzing the maximum normal stress in the vertical direction during the
scratching process.

To analyze the effect of normal stress S22 on the lateral crack development during face-forward
and edge-forward scratching, the stress field diagrams after unloading and the maximum S22 value
at the cross-section Z = 40 um (as shown in A-A section of Figure 9.), Z = 60 um (as shown in B-B
section of Figure 9.) corresponding to the scratch depths of 200 nm and 300 nm are shown in Figures 11
and 12. It can be found that stress S22 was zero when the indenter did not reached the scratching
section, no matter what the scratching direction is. When the indenter passed through the studied
cross section, the stress S22 suddenly increased, and the normal stress of the vertical section increased
accordingly as the scratch depth increased. This suggests that the lateral crack initiation was affected by
the residual stress field after scratching. Moreover, when the residual tensile stress became greater than
the tensile strength of the material, the lateral crack initiated and propagated. Furthermore, it is found



Materials 2020, 13, 1842 14 of 17

that for the same cross section of the specimen, the scratch directions (face-forward and edge-forward)
had different effects on the normal stress in the vertical direction. In particular, the normal stress in
the vertical direction of edge-forward scratching is smaller than that of the face-forward. It suggests
that the probability of lateral crack initiation was far lower in edge-forward scratching. In addition,
the lateral cracks were more prone to be initiated in face-forward scratching, which would lead to
material removal during scratching at the same time. We can conclude that experimental results
coincide with simulations.Materials 2020, 13, x FOR PEER REVIEW 15 of 18 
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4. Conclusions

In the current study, nanoscratching experiments were conducted on optical glass BK7, using a
quadrangular pyramid probe-based indenter to investigate the influence of the indenter direction
(face-forward and edge-forward) on the material removal mechanism and the material deformation
characteristics including the elastic recovery rate and the COF. The morphology and initiation of the
lateral cracks in face-forward and edge-forward scratching were investigated by experiments and FEM
simulations. Furthermore, considering the stress distribution of the workpiece, the relationship between
COF and scratch direction was investigated theoretically and numerically. By studying the surface
deformation and material removal mechanism of optical glass BK7 under different scratch directions
via single grit scratching, we can better understand the influence of abrasive grain arrangement on the
quality of the workpiece during grinding process. Based on the results, the following conclusions can
be drawn:

(1) The results showed that both the elastic recovery rate and the residual stress of the material under
the face-forward scratching were greater than that in the edge-forward scratching.

(2) Scratch directions have a significant influence on the lateral crack generation and the material
removal of optical glass BK7. It is found that face-forward scratching was more prone to the
initiation and continuous propagation of lateral cracks than edge-forward scratching, which
would eventually lead to more material removal under the same scratching condition, this is
consistent with the results of the FEM simulation.

(3) A theoretical model for COF incorporating the scratch direction effect was established and
discussed. A more systematic nanoscratching COF model for Vickers indenter was established.
The influences of the indenter including angle and the scratch direction were considered in the
developed theoretical model and discussed analytically and experimentally. The results showed
that COF in face-forward scratching was smaller than the edge-forward scratching.

(4) The scratch direction based on edge-forward or face-forward in this study can be appropriately
selected according to the morphology and surface quality of the machined groove.
The face-forward scratch is more likely to introduce the initiation and propagation of lateral
cracks to the surface because of the larger residual stress, while the edge-forward scratch is more
likely to cause the chip to discharge from both sides of the groove because of the larger COF.
The experimental results matched the theoretical COF model and FEM simulation well. This is
considered to be more beneficial to material removal.
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