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Abstract: Time and temperature, besides pressure in a lesser extent, represent the most significant
variables influencing the rheological behavior of viscoelastic materials. These magnitudes are each
other related through the well-known Time–Temperature Superposition (TTS) principle, which allows
the master curve referred to relaxation (or creep) behavior to be derived as a material characteristic.
In this work, a novel conversion law to interrelate relaxation curves at different temperatures is
proposed by assuming they to be represented by statistical cumulative distribution functions of
the normal or Gumbel family. The first alternative responds to physical considerations while the
latter implies the fulfillment of extreme value conditions. Both distributions are used to illustrate the
suitability of the model when applied to reliable derivation of the master curve of Polyvinil–Butyral
(PVB) from data of experimental programs. The new approach allows not only the TTS shift factors
to be estimated by a unique step, but the whole family of viscoelastic master curves to be determined
for the material at any temperature. This represents a significant advance in the characterization of
viscoelastic materials and, consequently, in the application of the TTS principle to practical design of
viscoelastic components.

Keywords: viscoelastic behavior; relaxation curves; master curve; shift factors;
time–temperature superposition principle

1. Introduction

The characterization of viscoelastic materials represents a usual task in the current practical
engineering to provide the basis of components design in a wide range of fields encompassing
different materials such as polymers, biological materials and tissues, cementitious materials and
woods. The mechanical behavior of these materials depends not only on time and frequency
(see Findley et al. [1], Ferry [2], Tschoegl [3] and Lakes [4]), but is also influenced by multiple
external effects, such as temperature, pressure and humidity. Among the different types of viscoelastic
characterization (see Lakes [4]), the relaxation test allows the relaxation master curves of the material to
be derived and becomes one of the favorite candidates due to its easy performance. Since the behavior
of viscoelastic materials is time-dependent, their experimental tests would imply, in principle, long
spaces of time to achieve the complete mechanical characterization over all their possible working time
range, i.e., along several time decades (see Figure 1). This inconvenience can be overcome by resorting
to the Time–Temperature Superposition (TTS) principle to characterize such thermo-rheologically
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simple viscoelastic materials (see Ferry [2] and Tschoegl [3]). Based on this principle, it is possible to
compose the so-called master curve referred to a certain reference temperature from short-duration
test records performed at different temperatures between two pre-established limiting lower and
upper times t1 and t2, respectively, which determine the time interval during which test data are
registered (see Figure 1). For example, the relaxation modulus of a material observed over a short-time
test performed at a high temperature, say T6 in Figure 1, would coincide with the corresponding
relaxation modulus obtained over a long-time test at a reference temperature T0. In this example,
the short-time curve at T6 must be conveniently shifted rightwards to match the master curve at
T0. The same procedure would be applied to the rest of the short-time relaxation curves in order to
get the whole master curve of the relaxation modulus, which characterizes the viscoelastic behavior
of the material at T0. In this way, the TTS principle can be applied to derive the relaxation modulus
of the material for any temperature and for any other time limits than those used in the tests. As a
result, the viscoelastic behavior of the material can be determined from a series of short-duration
tests performed at distinct temperatures, without requiring an aprioristic definition of the relaxation
functions over the time.
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Figure 1. Scheme of the Time–Temperature Superposition (TTS) principle for the building master curve
from short-time tests at different temperatures.

In mathematical terms, the TTS principle has been traditionally defined as follows
(see Findley et al. [1], Ferry [2] and Lakes [4]):

E(t; T) = E(aT(T, T0)t; T0), (1)

where aT is the so-called shift factor. This equation allows the relaxation modulus E of a material
at any time t, for any temperature T, to be obtained from the relaxation modulus at the reference
temperature T0. In the logarithmic scale, as commonly used, Equation (1) represents a transformation
law for the time as given by:

log tT = log tT0 + log aT(T, T0). (2)

In the assessment of the short-time tests, where the reference temperature is intended to be
determined from distinct test temperatures Ti, Equation (1) can be reformulated as:

E(t; T0) = E(aT(T0; Ti)t; Ti), (3)

with Ti representing the temperature at which the particular i-th test is conducted (see Figure 1).
In this paper, the probabilistic basis presumably underlying the relaxation phenomenon will be

illustrated and exploited by identifying the relaxation curves at different temperatures with cumulative
distribution functions (cdfs) of particular statistical families, such as the normal and the generalized
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extreme value (GEV) ones. Different origin could be argued for the possible statistical candidate family
underlying the viscoelastic phenomenon being studied: the normal distribution could be justified
based on the material property derived from the central limit theorem while GEV distributions could
be related to the limit behavior of the material for time going to zero and to infinity.

The proposed distributions allow the master curve to be derived by applying the scale
transformation property among the cdfs of the mentioned statistical families irrespective of the
reference temperature from short-term tests.

The suitability of the proposed approach using normal and GEV cumulative distributions is
confirmed when applied to an experimental program consisting in experimental results of relaxation
tests on a Polyvinil–Butyral material, commonly referred to as Polyvinil–Butyral (PVB). Fitting of
the master relaxation curve and the TTS model is achieved by considering the above-mentioned
cdfs directly without the necessity of resorting to classical viscoelastic models, such as the Maxwell
generalized by means of Prony series fitting and the WLF-TTS model (see Williams et al. [5]). In this way,
the number of parameters chosen is reduced and, consequently, the model, simplified. Furthermore,
the identification of the relaxation curves with cdfs implies to take advantage of the experience gained
in the transformation of statistical functions both in the analysis and meaning of the model parameters
and the transformation law.

2. The Current Methodology

As previously mentioned, the TTS principle is widely used in the viscoelastic characterization
of materials. However, some of the steps to achieve this goal may influence the results obtained
depending on the user’s available experience and criteria applied to the TTS model fitting process
(see Knauss [6] and Gergesova et al. [7]). A brief review of the current procedure can be described by
next four steps:

1. Derivation of the master curve. The first step consists in deriving the master curve from the
experimental data (see Figure 1) by shifting the relaxation curves in the horizontal direction
according to the law briefly described in the previous section.

2. Estimation of the experimental shift factors aT(Ti). In the second step, a first approximation of
the master curve is achieved, traditionally using manual estimative shifting of the relaxation
curves. Thereby, shift factors aT are chosen, which because their arbitrary selection may lead
to notably different solutions of the final master curve or even of the TTS model as a whole.
Fortunately, in recent years, some new algorithms, such as the CFS algorithm developed by
Gergesova et al. [7], allow such a manual shifting to be overcome thus enhancing considerably
the accuracy in the derivation of the master curve. The method requires a minimum overlapping
among the registered fragments of the relaxation curves to be applied.

This step 2 implies the analysis of the experimental shift factors aT before fitting the TTS model.
One of the main problems is that in general, different trends for the shift factors are noticed
depending on them being determined below or above the glass transition temperature Tg

(see Tanaka [8] and Ferry [2]). Therefore, more than one TTS model is sometimes required
to fit adequately the shift factor, as for instance, the Arrhenius model below the Tg besides the
WLF model (Williams et al. [5]) for the denominated glass transition region (see Ferry [2]). Often,
the break-down in the trend of the glass shift factors in the transition region is not clear so that
the user has to decide about the limits of the observed trends influencing the accuracy of the TTS
fitted models.
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3. Fitting the TTS model. The third step implies fitting of the TTS model to be used to predict the
viscoelastic behavior at different temperatures. In the case of the WLF model, widely used in the
glass transition region (see Williams et al. [5]) and defined as follows:

log aT(T, T0) = −
C0

1(T − T0)

C0
2 + T − T0

, (4)

the constants C0
1 and C0

2 , being functions of the reference temperature T0, must be included in the
fitting process with the aim of improving the prediction accuracy (see Ferry [2]). As mentioned
previously, most of the times, a second TTS model is usually necessary, i.e., to fit the different
shift factor aT , either above or below Tg. This procedure requires a threshold temperature was
established to discriminate which one of the two candidate models should be applied. This task
is not always straightforward (see Pelayo et al. [9]).

4. Fitting of a viscoelastic model. Finally, the master curve for the relaxation modulus is fitted using
a viscoelastic model, such as the generalized Maxwell one. Note that when the classical approach
is applied to derive the TTS model, both viscoelastic and TTS model types are implied in the four
steps to complete the material characterization.

3. The Proposed Methodology

In this section, an alternative approach to the classical one introduced in Section 2 is presented
that enables time–temperature conversion among relaxation curves of viscoelastic materials to be
accomplished. Some previous considerations concerning dimensional analysis, location and scale
transformations and functional equation theory are introduced as necessary concepts for the derivation
of the proposed model.

3.1. Derivation of the Model

3.1.1. Dimensional Analysis

The use of dimensionless variables, as suggested by the Buckingham theorem
(see Buckingham [10]) is recommended as good-practice in the derivation of scientific laws
(see Aczél [11], Castillo and Ruiz-Cobo [12] and Castillo et al. [13]). In the present case, in which a
derivation of the relaxation function in viscoelastic analysis is envisaged, some previous redefinitions,
such as normalization, of the intervening variables are introduced to proceed to the identification with
statistical functions.

One the one hand, the relaxation modulus at time t is defined as the normalized variable E∗(t; T),
by the expression

E∗(t; T) =
log E(t; T)− log E∞

log E0 − log E∞
=

log (E(t; T)/E∞)

log (E0/E∞)
∈ [0, 1], (5)

where E(t; T) is the relaxation modulus at the time t and temperature T, E0 is defined as the initial or
elastic modulus, while E∞ corresponds with the relaxed viscoelastic modulus for infinite time so that
E∞ ≤ E(t; T) ≤ E0. Unlike to some other authors such as McCrum and Morris [14] and Stouffer and
Wineman [15], the initial and relaxed viscoelastic modulus are assumed to be temperature-independent.
Note also that the normalization is performed at the logarithmic scale. Because F(t) = 1− E∗(t) is
a monotonically increasing function bounded in the interval [0,1], it can be identified, by definition
and without loss of generality, as a cumulative distribution function (cdf) and thus handled as
such. The same as a cdf, F(t) verifies that F(tA) = Pr(t ≤ tA) so that the normalized relaxation
modulus E∗(t; T), as defined in (5), represents a survival function of time that satisfy the conditions
limt→0 E(t; T) = 1 and limt→∞ E(t; T) = 0, and can be related to probability. In this sense, the fact that
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at a certain instant tA the relaxation modulus E(tA; T) is equal or greater than a certain value EA, such
that E∞ ≤ EA ≤ E0, is represented by the normalized relaxation modulus E∗(tA; T).

On the other hand, the temperature redefinition requires it to be stable both against location and
scale changes (see Castillo and Ruiz-Cobo [12] and Castillo et al. [13]), as happens in the transformation
between the conventional temperature systems such as in the Celsius and Fahrenheit. Accordingly,
the new dimensionless temperature variable is defined as follows:

T∗ =
T − Tg

Tr − Tg
, Tg < Tr, (6)

where Tr can be conveniently defined as the rubbery temperature and Tg as the glassy temperature
of the material, although any other two reference values could be considered as well. Note that this
definition of dimensionless temperature variable avoids the location problem, since it is defined as a
quotient of differences.

Finally, since the variable time in viscoelasticity is usually represented in logarithmic scale,
its dimensionless redefinition is performed in logarithmic scale as well, which may be easily achieved
by considering a suitable constant t0, usually measured in seconds, such as t∗ = log(t/t0), with t0 6= 0.

3.1.2. Temperature as Scale-Effect

In this model, the effect of temperature on the relaxation modulus is supposed to be represented
by a change of the scale parameter of the relaxation curves defined as cumulative distribution functions,
according to the stability property of the normal and GEV statistical families. This assumption has
been already proposed, in a certain viscoelastic domain, by Gross [16] and successfully applied and
confirmed in modeling different parametric effects in materials, such as the length influence in fatigue
lifetime prediction of longitudinal elements (see Bogdanoff and Kozin [17], Castillo et al. [18] and
Castillo and Fernández-Canteli [19]) and the effect of the test configuration in the failure prediction
of laminated glass elements (see Castori and Speranzini [20] and Muñiz-Calvente et al. [21]). Hence,
if the relaxation curves are assumed to arise from a minimum principle, then the transformation of the
viscoelastic modulus from one temperature to another is defined as follows:

E∗(t∗; T∗) = E∗(t∗; T∗0 )
Q(T∗ ,T∗0 ), (7)

which is a functional equation the solution of which is provided by Castillo and Ruíz-Cobo [12] and
Castillo et al. [13] (Functional equations are equations in which the unknowns are not variables
but functions, and these functions appear as such, i.e., without implying any of their derivatives
or integrals):

E∗(t∗; T∗) = p(t∗)q(T∗),

p(t∗) = exp {− exp [ f (t∗)]},
q(T∗) = exp [− f (T∗)],

Q(T∗, T∗0 ) = q(T∗)/q(T∗0 ),

(8)

where p(t∗) is a survival function and q(T∗) is a positive monotonic decreasing function. As previously
mentioned, the powerfulness of functional equations is emphasized, since once the model is defined,
as for example in Equation (7), all the possible solutions implied are given by solving the functional
equation without any additional assumptions related to their functional form.
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3.2. Proposed Models

3.2.1. The Approach Based on Normal Distribution

Let us consider a specimen of length L supposedly divided into n sub-elements of the same
length, which are subject to a constant stress σ (see Figure 2). The total length variation occurring in
the specimen results as the summation of the local random elongations of each of the n sub-elements
in which the specimen is virtually subdivided, such that,

δ(t) = εT(t)L =
σL
n

(
1

E1(t)
+

1
E2(t)

+ · · ·+ 1
En(t)

)
=

σL
n

n

∑
i=1

1
Ei(t)

=
σL

ET(t)
. (9)

Δl

σ σEi (t)

L

Figure 2. Schematic illustration of a specimen of length L subject to a constant stress σ, subdivided in n
elements of equal length ∆l.

According to the central limit theorem, it can be stated that the summation of the inverses of
the equivalent viscoelastic moduli in Equation (9) for increasing number of elements, i.e., for n→ ∞
tends asymptotically to a normal distribution irrespective of the random distribution assigned to the
equivalent viscoelastic modulus, or reciprocally, the inverse summation of the equivalent viscoelastic
moduli must tend to a normal distribution.

Consequently, denoting H∗(t∗; T∗) = [E∗(t∗; T∗)]−1 as the inverse of the viscoelastic modulus
(The inverse of the relaxation modulus, denoted H in this work, must not be confused with the
corresponding creep compliance D), the normalization of the viscoelastic modulus is conveniently
achieved for H∗(t∗; T∗) in an equivalent way to Equation (5). Thereafter, assuming that the inverse of
the viscoelastic modulus in time follows a normal distribution and the influence of temperature can be
assigned to a scale-effect, then the application of the extended normal cumulative distribution function
is justified (see Castillo et al. [18] and Castillo and Fernández-Canteli [19]). In this way, the normal
model is applied to fit the viscoelastic modulus over time at any temperature:

E∗(t∗, T∗; µ, σ, α)−1 ∼
[
1− N(µ− σ log Q(T∗), σ2)

]α
, (10)

with −∞ < t∗ < ∞ and µ, σ and α being the parameters of the extended normal distribution,
respectively. From Equation (10) the horizontal shift over time corresponding with the normal model
is calculated as:

log aT∗(T∗2 , T∗1 ) = σ[log Q(T∗2 )− log Q(T∗1 )], (11)

providing an alternative procedure as that implying the classical shift factor aT .

3.2.2. The Approach Based on Extreme Value Distributions

The above considerations justify the theoretical fitting of the E(t) curve using the cumulative
distribution function of the normal distribution for this being the most suitable one to describe the
evolution of the relaxation modulus as a function of time. Furthermore, the factual existence of the
lower bound of time, t = 0, points out the convenience of time being measured in a logarithmic scale
in order to adapt to the normal distribution. Due to the way data are collected, fitting of both the lower
and upper tails of the cdf implies some uncertainty. Results at the lower tail of the fitting function E(t),
i.e., for t→ 0, are not available due to the difficulty of collecting data at very low measurement times,
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t < t1 (see Section 1). In turn, the absence of data at the upper tail of the fitting function E(t), i.e.,
for t > t2 (see Section 1), is assigned to the renouncement to extend the data registration beyond the
pre-established upper time limit, t2, for the sake of test brevity and program cost reduction. Note that
the advantage represented by limiting the tests’ measurement duration of the tests between t1 < t < t2

implies, as a counterpart, the need of resorting to the time–temperature superposition (TTS) model.
If the characterization of the viscoelastic material points finds subsequently application in a

component design implying mainly short-time load acting durations, a suitable estimation of the
relaxation modulus at the initial domain becomes relevant. In such a case, the Gumbel distribution
for minima, as domain of attraction of the normal or log-normal distribution would be advisable as
providing more reliable extrapolating fit at this distribution tail. On the contrary, if the component
design is involved with long periods of time, fitting of the upper tail of the cdf, i.e., of the long-time
relaxation modulus, can be advantageously achieved by using a Gumbel distribution for maxima
(see Galambos [22], Castillo [23] and Castillo et al. [24]).

Assuming that the viscoelastic modulus, E(t), may be approached by a survival minimal Gumbel
distribution, then the viscoelastic modulus as a function of time for every temperature is defined by
virtue of the stability property, as:

E∗(t∗, T∗; λ, δ) = exp
[
−Q(T∗) exp

(
t∗ − λ

δ

)]
, (12)

or equivalently,

E∗(t∗, T∗; λ, δ) = exp
[
− exp [log Q(T∗)] exp

(
t∗ − λ

δ

)]
, (13)

from where it results:

E∗(t∗, T∗; λ, δ) = exp
[
− exp

(
t∗ − (λ− δ log Q(T∗))

δ

)]
, (14)

with −∞ < t∗ < ∞ and λ and δ as location and scale parameters of the Gumbel distribution,
respectively. In fact, a change in the scale parameter due to temperature, such that δ(T∗), implies a
horizontal translation in time as given by the location parameter, namely:

log aT∗(T∗2 , T∗1 ) = δ[log Q(T∗2 )− log Q(T∗1 )]. (15)

This proves that the Gumbel distribution may be an adequate alternative for modeling
TTS principle.

The scale-effect for the Gumbel and normal models is shown in Figure 3 both within the
experimental window and after extrapolation along the time. In the case of normal distribution,
the scale-effect implies a horizontal translation of the cdf, alike the Gumbel distribution, according to
Equations (11) and (15), respectively.
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Figure 3. Viscoelastic moduli identified as survival functions for different values of the scale parameter
associated with changes of temperature in the Gumbel model, within the experimental window and
extrapolated along the time.

3.3. Parameter Estimation

Since the values of a lifetime are defined in a deterministic way, the use of the maximum likelihood
(ML) estimator is not justified theoretically. For this reason, the probabilistic paper concept lets
transform the expression of the normal and Gumbel cdfs in linear forms allowing the parameter
estimation to be easily handled with the least squares method (LSM) throughout the experimental data
(see Castillo [23] and Castillo et al. [24]). Likewise, the requirements of the validity of LSM technique,
as parameter estimation process (see Hadi and Chatterjee [25]), have been verified. Then, the objective
minimization functions for the three normal and Gumbel models are derived, respectively as:

(a) Normal model

min
(µ,σ,α,E0,E∞ ,a∗Tk

)

{
K

∑
k=1

N

∑
i=1

[
log E0 − log E∞

log Eki − log E∞
−
[
1− N(µ− σ log Qk, σ2)

]α
]2}

, (16)

(b) Gumbel model

min
(δ,λ,E0,E∞ ,a∗Tk

)

{
K
∑

k=1

N
∑

i=1

[
log Eki−log E∞
log E0−log E∞

−
[
− exp

(
log tik−log t0−(λ−δ log Qk)

δ

)]]2}
, (17)

where Eki
and tki

are the vectors of the experimental viscoelastic moduli and discrete times, respectively,
for each k-th temperature, with Qk = Q(T∗k ), such that 1 ≤ k ≤ K. It is worth mentioning that the
constants E0 and E∞ are also considered as objective variables in the estimation process, providing
more robustness to the model. Nevertheless, if only scarce number of experimental data are available
in both tails, i.e., at sufficiently high and low temperatures, the estimates of constants E0 and E∞ could
then been also obtained from the estimation process. Note that the reference value of t0 may be fixed
arbitrary, for instance as unity, since its consideration is suggested only for dimensional purposes.

As a result of the estimation process, single values for the parameters of each cdf are obtained
as opposed to the k different values for the Q factors. Note that these factors are reduced to only one
term (without the corresponding term for reference temperature T0) in contrast to their first definition,
without loss of generality. In fact, the proposed model does not require a reference temperature so that
the shift factor can be used directly to particularize the different expression models to any temperature.
This optimization process can be easily codified by an optimization software such as GAMS. As will
be shown in the practical example, the N points of the Q factor resulting from the estimation for each
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of the tested temperatures must be fitted according to Equation (8) proving experimentally that the
shift factors are exponentially distributed, such that:

Q(T∗) = exp (θ1T∗ + θ0), (18)

for any constants θ1 and θ0. Thus, the final expressions for the proposed model are obtained from
substituting Equation (18) into the expressions Equations (10) and (14).

3.4. Comparison of Errors in Models

In order to compare the absolute errors between the experimental short-term relaxation tests E∗ki
and their fittings Ê∗ki for the three models analyzed, the following criterion is suggested:

Error =
N

∑
k=1

n

∑
i=1

∣∣E∗ki − Ê∗ki
∣∣ . (19)

4. Example of Practical Application

In order to illustrate the usefulness and capability of the proposed approach in practical
applications, the methodology is applied to the results from an experimental program on a commercial
polyvinil-butyral (PVB), present in manifold applications of different engineering fields such as solar
modules and structural laminated glass, among others.

In the following, first, the main characteristics of the experimental program are described. Second,
the two proposed models are applied to the assessment of the short-term relaxation test results
at different temperatures, and likewise to the determination of the shift factor. Finally, analytical
descriptions of E− t field are used to predict the master curves at various temperatures based on the
parameter estimation for each model.

4.1. Description of the Experimental Program

The experimental program consists in relaxation tests at 8 different temperatures, namely, −25,
−15, −5, 2, 10, 20, 30 and 40 oC allowing the temperature-dependent behavior of the material to be
reliably captured. Relaxation tests were performed under uniaxial tension with DMA RSA3 equipment
of T. A. Instruments provided with a temperature-controlled chamber allowing us to operate under a
wide range of temperatures, from −60 oC to 150 oC. The specimens are 25 mm long and 5 mm wide
with a thickness of 0.38 mm. The experimental curves for relaxation tests are shown in Figure 4(left).
Further details may be found in Pelayo et al. [9].
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Figure 4. Experimental relaxation curves at different temperatures for the Polyvinil–Butyral (PVB)
(left), and experimental master curve for 20 oC (right).
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In order to compare the results obtained with the proposed models, the corresponding
experimental master curve for a reference temperature of 20 oC was obtained (see Figure 4 (right))
following the steps described in Section 2.

4.2. Short-Term Relaxation Curves Estimation

As described in previous sections, the proposed approach aims at deriving the analytical
expression of the whole E − t relaxation field over the whole range of time and temperatures of
interest. This happens by estimating the model parameters based on the experimental short-term
relaxation curves at different temperatures.

In Figure 5 the approach is exemplified by its application to the normal and Gumbel models.
As expected, the resulting logarithmic values of the Q factor seem to follow a linear trend
with respect to the temperature values at the natural scale. An acceptable agreement among
the experimental short-term curves and the theoretical curves is confirmed for both models.
Certainly, some local discrepancies can be observed in Figure 5, typically at both extreme regions
(i.e., E(t = 0) and E(t→ ∞), which, incidentally, are also usually observed in applications of other
celebrated conventional T − t models. Disregarding possible uncertainties in the recorded data the
assessment of the relaxation modulus in those regions could be improved by proceeding to a local
assessment in those regions using the Gumbel model. This could advisable when specific short- or
long-term design of the component (i.e., for t→ 0 and t→ ∞) is required.
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Figure 5. Theoretical predictions and experimental data for relaxation tests on PVB at different
temperatures (−25 to 40 oC) using the normal model (left) and Q factors with 95% confidence
intervals (right).

The resulting estimates of the models’ parameters, as provided by the estimation process described
in the previous section and the absolute error between the experimental and theoretical results for each
model, according to Equation (21), are shown in Table 1. Note the generic notation used in this table
where λ and δ represent the location and scale parameters in both normal and Gumbel distributions.
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Table 1. Estimates of dimensionless parameters and the absolute errors for the two proposed models
in fitting short-term curves for PVB data.

Model log E0 log E∞ λ δ α θ0 θ1 Error

Normal 20.99 13.69 −1.37 10.54 11.54 −1.86 1.52 104.08
Gumbel 21.44 13.69 −1.37 6.97 — −0.77 2.59 159.95

Finally, the expressions of the normal and Gumbel models for the analyzed PVB data, as resulting
from the estimates in Table 1, are herewith summarized:

E∗(t∗; T∗)−1 =

(
1−Φ

[
t∗ + 16.02T∗ − 18.23

10.54

])11.54
, (20)

E∗(t∗; T∗) = exp
[
− exp

(
t∗ + 18.05T∗ − 3.99

6.97

)]
. (21)

4.3. Master Curves Prediction

As shown in the preceding section, the experimental short-time relaxation data allows the
parameters defining the analytical expressions of E− t field to be determined for the temperatures
applied. As an extension, all the master curves can be directly derived from these expressions according
to the two proposed models even for a wider interval time as that used in the experimental program.
This is because the analytical definition of the shift-factor, according to an exponential law, may be
evaluated for any temperature and, subsequently, introduced into the proposed models.

The practical transcendence of this application is emphasized since a unique shift factor definition
(given by an exponential law) allows any master curve to be predicted without the limitations due to
alternate different laws, such as the Williams–Landel–Ferry and Arrhenius models.

Figure 6 illustrates the PVB experimental data for the short-time relaxation tests superposed to
the resulting master curves.
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Figure 6. Experimental data for short-term relaxation curves and corresponding master curves
provided by the normal model or Gumbel model or using the Williams–Landel–Ferry model.

5. Discussion

In summary, this paper attempts at an alternative definition of the TTS principle for building the
master curve of a viscoelastic material. Indeed, current methodologies show significant limitations
such as the lack of an analytical definition of the E− t field or a required combination of at least two
different models for building the master curve. In this way, the proposed model exhibits the following
advantages compared with other currently used TTS models:
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(a) Dimensional consistency. A robust scientific basis is considered for building TTS models
according to good practice in what concerns the dimensional analysis of the involved variables
for viscoelastic characterization. As a consequence, the proposed TTS model and their
parameters are insensitive to the system of units selected for the fundamental physical
magnitudes.

(b) Analytical definition of E− t field. From a practical viewpoint, the analytical definition of the
viscoelastic modulus, E(t), as a cdf, represents the most important contribution of the proposed
approach allowing the E− t field to be fully defined by fitting the experimental short-term
relaxation curves over the whole range of time (i.e., as master curves) and temperatures.

(c) Statistical approach of viscoelastic modulus. The proposed approach contributes to broadening
the theoretical framework in which the TTS principle and their models are developed and
applied. As a matter of fact, a physical and phenomenological conceptualization of the
relaxation phenomenon as statistical cdfs is now available. The already acquired mathematical
knowledge about statistical cdfs favors further development of advanced methods for modeling
and designing components with viscoelastic behavior.

(d) Independence of the reference temperature. Due to the analytical definition of the E− t field
over the whole range of time, the parametric family of master curves are obtained independently
of the reference temperature for the first derived of them, satisfying which may be conveniently
called a certain uniqueness condition.

(e) Analytical definition of the Q shift factor. Classical TTS models are based on discretional
assumptions, which allow analytical definitions of the shift factor, Q, to be derived, such as the
linearity of free-volume concept in the theoretical development of the WLF model. In the new
model proposed, the shift factor is derived analytically, free of gratuitous assumptions, based
on the theory of the functional equations once the TTS model is defined.

(f) Simultaneous definition of the master curves and short-term curves. The proposed model
allows the master curves to be derived directly from the fitting of the experimental short-term
relaxation tests, which avoids the hand-made pre-fittings required in the application of current
TTS models. Likewise, master curves at different temperatures can be predicted based on the
analytical definition of the shift factor, in order to satisfy the uniqueness condition.

(g) Full applicability of the proposed models over all the range of temperatures. The applicability
of the displacement factor in current models is limited as the required combination of two
models for the definition of this factor depending of the range of temperatures analyzed. On the
contrary, the proposed model is applicable over the whole range of temperatures, avoiding
different definitions of Q for each viscoelastic characterization.

(h) Non-overlapping constraint. The current methodologies require a certain overlapping of the
short-time relaxation curves, which must be at least one decade, known as the “rule of thumb”
in literature. In turn, the proposed methodology does not require the overlapping among these
short-time curves which is an important advantage.

(i) The proposed approach proves to be valid over the whole possible range of temperatures,
a question of practical interest, unsatisfactorily accomplished by commonly used TTS methods,
such as the Williams–Landel–Ferry model.

Finally, it is worth adding some comments about the suggested use of the extreme value family
distributions alternative to the normal one. While the former is justified from a sound physical
viewpoint based on strain considerations and application of the limit central theorem, the latter may
not respond to that justification.

Nevertheless, the use of the Gumbel distribution in the fitting approach is found to be advisable
from a phenomenological point of view when the component design is concerned with the relaxation
modulus of the material corresponding to short (maximal value of the relaxation modulus, E0), or large
(minimal values of the relaxation modulus, E∞) time values, depending on the particular design
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problem handled. In such cases an asymptotic fitting of both distribution tails using the Gumbel
distribution, as representing the domain of attraction of the normal distribution, provides a more
reliable prediction of the limiting values E0 and E∞ of the relaxation modulus.

Note that the viscoelastic modulus, E(t), for short and large time periods may be the particular,
but practical, motivation to apply TTS models in the practical viscoelastic design (see Castori and
Speranzini [20] and Muñiz–Calvente et al. [21]), irrespective of the general necessity of characterizing
the material over the full range of time.

The three-parameter Weibull distribution was initially assumed in the proposed approach as a
feasible alternative for the relaxation modulus, but this option was discarded because of the results in
the assessment of the practical example, though acceptable, were less satisfactory than those obtained
with the Gumbel distribution. Finally, the results confirm the theoretical equivalence between the
Gumbel distribution in the logarithmic scale and the bi-parametric Weibull distribution in natural scale.

6. Conclusions

− A previous dimensional analysis of the variables involved in relaxation viscoelastic phenomena
provides a robust basis for building TTS models that satisfy the necessary dimensional consistency.

− The proposed methodology allows the analytical expression of the relaxation viscoelastic modulus,
E(t), from short to long-term time periods to be derived for any temperature while avoiding the
typical hand-made pre-fittings observed by current practical methods.

− Based on a statistical similitude in the evolution of the viscoelastic phenomenon, two suitable
models, namely based on the normal and the Gumbel cumulative distribution functions
(with possible extension to the bi-parametric Weibull) are proposed, as possible candidates
for representing the relaxation function, E(t). In this way the E(t; T) field is analytically
defined whereas the temperature effect is found to act as a change in the scale parameter of
those distributions.

− The use of the normal model is justified from strain considerations and consequent application
of the statistical limit central theorem while the Gumbel model is particularly recommended
when maximal or minimal values of the relaxation modulus of the material are determined, as for
instance, when design is concerned with short or large loading times. In such cases, asymptotic
fitting of the extreme values of the relaxation function based on a Gumbel function provides more
reliable parameter estimation.

− Master curves for any temperature other than those used in the test are easily obtained from
the analytical definition of the shift factors. In this way, short- and long-term prediction of the
relaxation modulus is feasible, irrespective of the temperature history the component is subject to.
The functional expression of the latter is derived from functional equations theory without any
arbitrary assumption.
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Abbreviations

The following abbreviations are used in this manuscript:

E(t; T) Relaxation modulus as a function of time and temperature
E∗(t∗; T∗) Normalized relaxation modulus as a function of normalized time and temperature
E0(T) Initial or elastic relaxation modulus
E∞(T) Initial or elastic relaxation modulus
L Total specimen length
t Time
T Temperature
Tg Transition temperature
Tr Rubbery temperature
T0 Reference temperature
GEV Generalized extreme value
TTS Time–Temperature Superposition
WLF Williams–Landel–Ferry
TTS Time–Temperature Superposition
δ(t) Displacement as a function of time
∆l(t) Length of each of the n subelements in which the specimen of length L is virtually subdivided
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