

Article Polydopamine-Modified Al₂O₃/Polyurethane Composites with Largely Improved Thermal and Mechanical Properties

Ruikui Du ^{1,2,*}, Li He ^{1,2}, Peng Li ^{1,2}, Guizhe Zhao ^{1,2,*}

- ¹ North University of China, Taiyuan 030051, China; zminggu@163.com (L.H.); lpzbdx@163.com (P.L.)
- ² Shanxi Province Polymer Composite Engineering Technology Research Center, Taiyuan 030051, China
- * Correspondence: dukui1107@163.com (R.D.); zgz@nuc.edu.cn (G.Z.)

Received: 15 February 2020; Accepted: 6 April 2020; Published: date

We can find that unmodified alumina is exposed to the fracture surface, which indicates poor interface adhesion between Al₂O₃ and pure PU. And there are some serious agglomerations. Polydopamine-modified composites have better dispersion. When the particle content is small, alumina is surrounded by PU in the composites, and the particles cannot contact each other well, failing to form a good thermal conduction path. Therefore, when the particle content is low, the thermal conductivity is also poor, which is consistent with the results of the above thermal conductivity.

Figure S1. SEM morphology of Al₂O₃/PUand PDA-Al₂O₃/PU composites filled with (a) 10 wt% Al₂O₃, (c) 10 wt% PDA-Al₂O₃, (e) 20 wt% Al₂O₃, (g) 20 wt% PDA-Al₂O₃, EDS element distribution of yellow spots in (b) 10 wt% Al₂O₃/PU (d) 10 wt% PDA-Al₂O₃/PU (f) 20 wt% Al₂O₃/PU and (h) 20 wt% PDA-Al₂O₃/PU.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).