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Mostafa Habibi 6 and Maryam Safa 7,*

1 Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc
Thang University, Ho Chi Minh City 758307, Vietnam; alishariati@tdtu.edu.vn

2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
3 School of Mechanical Engineering, Jeju National University, Jeju, Jeju-do 690-756, Korea
4 Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz,

Ahvaz 61357-43337, Iran; h.msedighi@scu.ac.ir
5 Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
6 Center of Excellence in Design, Robotics and Automation, Department of Mechanical Engineering,

Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9567, Tehran, Iran; Habibi_mech@yahoo.com
7 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
* Correspondence: jdwcheju@jejunu.ac.kr (D.w.J.); k.zur@pb.edu.pl (K.K.Ż.);
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Abstract: In this article, size-dependent vibrations and the stability of moving viscoelastic axially
functionally graded (AFG) nanobeams were investigated numerically and analytically, aiming at
the stability enhancement of translating nanosystems. Additionally, a parametric investigation is
presented to elucidate the influence of various key factors such as axial gradation of the material,
viscosity coefficient, and nonlocal parameter on the stability boundaries of the system. Material
characteristics of the system vary smoothly along the axial direction based on a power-law distribution
function. Laplace transformation in conjunction with the Galerkin discretization scheme was
implemented to obtain the natural frequencies, dynamical configuration, divergence, and flutter
instability thresholds of the system. Furthermore, the critical velocity of the system was evaluated
analytically. Stability maps of the system were examined, and it can be concluded that the nonlocal
effect in the system can be significantly dampened by fine-tuning of axial material distribution. It was
demonstrated that AFG materials can profoundly enhance the stability and dynamical response of
axially moving nanosystems in comparison to homogeneous materials. The results indicate that
for low and high values of the nonlocal parameter, the power index plays an opposite role in the
dynamical behavior of the system. Meanwhile, it was shown that the qualitative stability of axially
moving nanobeams depends on the effect of viscoelastic properties in the system, while axial grading
of material has a significant role in determining the critical velocity and natural frequencies of
the system.

Keywords: axially graded materials; viscoelastic materials; axially moving nanobeams; stability map;
divergence and flutter analysis

1. Introduction

Axially moving systems have a broad spectrum of applications in various engineering fields,
especially in nanoscience and nanotechnology such as subminiature belts, silicon acceleration sensors,
and nanowires [1,2]. Accordingly, mathematical modeling and vibrational analysis of these applicable
structures have attracted much attention in recent decades [3–5]. In this field, a limited number of
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experimental studies have been performed and compared with the theoretical analyses [6,7]. These
investigations revealed that engineers could appropriately trust the results of computer simulations
and mathematical modeling techniques [8–10]. For instance, Tan and Ying [11] theoretically and
experimentally investigated the active control of the axially moving strings with various boundary
conditions. They presented the closed-form expression for the lateral vibration of the system.
Additionally, they validated the stability and effectiveness of the proposed controller through both
experiments and computer simulations. Duan et al. [12] studied the dynamics of an axially moving
nested cantilevered beam with a tip mass. Utilizing the modified Galerkin approach, they solved the
partial differential equation of motion of the structure. They calculated the acceleration responses
of the system during both extension and retraction. Additionally, they observed that the proposed
theoretical model could be validated by experimental data. Hayes and Bhushan [13] developed a
vibration model for a doubly clamped Euler–Bernoulli beam with axial velocity. They probed the effect
of length, thickness, tension, and axial velocity on the vibration characteristics of the system.

In the determination of dynamical response and the stability of axially moving continua, system
velocity is a crucial parameter, so at different velocities, various instability mechanisms such as
divergence and flutter occur [14]. Preventing instability and eliminating excessive vibrations are
necessary engineering requirements in axially moving nanosystems. To this end, numerous studies
have been conducted to explore the influences of different parameters on the stability and vibrational
behavior of these structures. For instance, Dehrouye-Semnani et al. [15] examined the stability and
vibration of axially moving Euler–Bernoulli and Timoshenko microbeams with constant velocity.
Their results illustrated that when the length scale parameter of the system is relatively equal to
the thickness of the microbeam, the natural frequency, stability, and critical velocity of the system
dramatically enhanced. Liu et al. [16] surveyed the dynamical response and instability thresholds of
axially moving nanobeams with time-dependent velocity. They concluded that the natural frequency
of the system first decreases slightly, and then increases rapidly with an increase in the system velocity.
Wang et al. [17] utilized complex modal analysis to evaluate the role of modal truncation order on
the transverse free vibration response of axially moving nanobeams by considering von Karman
geometric nonlinearity. They declared that the natural frequencies of the nanobeam have a significant
dependency on the size effect of the mechanical properties of the system. Wang et al. [18] analyzed
the nonlinear dynamical behavior of axially moving nanobeam using Eringen’s nonlocal two-phase
integral model. Their outcomes demonstrated that the vibrational frequency and critical velocity of the
system ascend by increasing the geometric parameter for various boundary conditions. Stability and
nonlinear vibration of axially moving viscoelastic Rayleigh nanobeams with time-dependent velocity
based on higher-order nonlocal elasticity theory were carried out by Rezaee and Lotfan [19]. They
revealed that the instability boundaries could be greatly affected by the nonlocal parameter, so the
second bifurcation point occurs before the first one. Kiani [20] explored the shear and surface effects on
the stability regions and dynamics of axially moving nanobeams and presented an explicit expression
for the critical velocity of the system through an analytical approach. According to the nonlocal
strain gradient theory, Gou et al. [21] investigated the Vibro-buckling and vibration characteristics of
nanobeams by considering the axial motion or rotational motion. They showed that the critical velocity
of the structure promotes by ascending the strain gradient parameter. In a majority of available reports
in the literature, the axially moving nanostructure materials are considered to be homogeneous and
uniform. Recently, engineers have promoted the performance of dynamical systems by improving the
material properties obtained through technological progress [22–24]. Recently, a few studies have been
conducted to find possible ways to enhance the performance of axially moving systems by designing
nonuniformity in the physical and geometrical properties of the system [25].

Functionally graded (FG) materials are a class of composite materials that provide desirable
characteristics for special and complicated applications by smooth and continuous gradation of
mechanical characteristics along a specific direction [26]. Compared with isotropic and conventional
laminated composites, FG materials are used in industrial areas due to their valuable advantages such
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as better corrosion resistance, higher fracture stiffness, and lower stress concentration [27]. Hence,
employing FG materials in axially moving macro/nanosystems offers several advantages. For instance,
Piovan and Sampaio [28] inspected the dynamical response of axially moving FG Euler–Bernoulli
beams made of ceramic and metal by employing the finite element method. Their simulation results
demonstrated that the vibrational frequencies of the structure were higher when the structure is
mainly composed of a ceramic substrate. Sui et al. [29] addressed the influence of different grading
functions on the transverse free vibration of axially moving FG Timoshenko beams. Additionally,
they focused on the differences between the vibrational behavior of Timoshenko and Euler–Bernoulli
beams through numerical examples. Utilizing the Galerkin method in conjunction with Eringen’s
nonlocal theory, Kiani [30] analyzed the longitudinal and transverse free vibration of axially moving
FG Rayleigh nanobeam and determined the flutter and divergence instability thresholds of the system
for various parameters such as length of the nanobeam and nonlocal parameter. Recently, Yan et
al. [31] accomplished the nonlinear vibration of axially moving FG beams by considering the influence
of geometric nonlinearity and axial force. They reported the conditions of occurrence of subharmonic
resonance in the system by applying the direct multiscale method.

To the best of the authors’ knowledge, in all of the investigations that focused on the dynamics of
axially moving FG nanobeams, it is supposed that the system materials are graded in the thickness
direction. While despite the importance of the gradation of material properties along the axial direction,
the vibrations and stability of axially moving AFG nanobeams have not been reported in the literature
yet. Hence, in this article, the dynamic analysis and stability improvement of axially moving AFG
pinned–pinned nanobeams are investigated. It was assumed that the material characteristics of the
system varied along the axial direction according to a power-law function. The dynamical equation of
the system was obtained by utilizing Hamilton’s principle. The reduced-order equation of motion
was acquired by the Laplace transformation in conjunction with the Galerkin technique. The natural
frequencies and stability thresholds of the system were determined numerically. Additionally,
an analytical expression is presented for the critical velocity of the structure. Finally, the influence
of the gradation of material properties, nonlocal parameter, and system velocity on the dynamical
response and stability regions of the system are illuminated.

2. Problem Formulation

Figure 1 shows the schematic of an axially moving AFG nanobeam. The supported nanobeam
is moving with constant velocity (v) in the axial direction and subjected to an axial tension load (P).
Length, surface area, and inertia moment of the nanobeam are indicated by L, A, and I, respectively.
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It is assumed that density (ρ(x)) and elastic modulus (E(x)) of the system are graded in the
longitudinal direction as follows

ρ(x) = ρ0g(x) (1)

E(x) = E0 f (x) (2)
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where

g(x) = 1 +
(
αρ − 1

)(x
L

)k
(3)

f (x) = 1 + (αE − 1)
(x

L

)k
(4)

where k is the power index. Additionally, αE and αρ represent the elastic modulus and density gradient
parameters, respectively, which are defined as the ratio of the material properties at the end of the
nanobeam (x = L) to those of the first of the nanobeam (x = 0):

αρ =
ρL

ρ0
(5)

αE =
EL

E0
(6)

As reported in the literature [32–34], the obtained results of the modeling of ultra-small scale
structures based on classical theories do not have acceptable accuracy. Additionally, experimental
studies have proven that classical continuum theories are incapable of predicting the mechanical
behavior of the small-scale structures [35]. As a result, to capture the size effects of the material
of nanosized structures, employing higher-order elasticity theories is essential in the mathematical
modeling of these structures [36,37]. The nonlocal elasticity theory is one of the applicable non-classical
theories that incorporate nanostructure-dependent size effects [38]. The impact of the nonlocal
parameter on the dynamical characteristics of nano-mechanical systems has been extensively elaborated
by numerous researchers [39]. To capture the small-scale effects, the nonlocal elasticity beam model is
considered. To this end, by considering the constitutive equation of the viscoelastic material according
to the Kelvin–Voight model and the linear strain–displacement relation, one can express [19,40–42]:

εx = −z
∂2w
∂x2 (7)

σnl
x − (e0a)2 ∂

2σnl
x

∂x2 = E(x)εx + β
D
Dt
εx (8)

where β, εx, σnl
x , and w(x, t) represent the viscosity coefficient, axial strain, nonlocal axial stress,

and transverse displacement of the system, respectively. Additionally, e0 is the material constant.
Furthermore, a is the characteristic length. The resultant nonlocal bending moment can be defined as [43,44]:

Mnl = −

∫
A

zσnl
x dA (9)

Substituting Equations (7) and (8) into Equation (9) yields the following relation:

Mnl
− (e0a)2 ∂2Mnl

∂x2 = E(x)I
∂2w
∂x2 + βI

(
∂3w
∂x2∂t

+ V
∂3w
∂x3

)
(10)

The kinetic and potential energies of the system can be expressed as follows [14,19,45]:

T =
1
2

∫ L

0
ρ(x)A

(
V2 +

( .
w + Vw′

)2
)
dx (11)

U =
1
2

∫ L

0

(
P(w′)2 + Mnlw′′

)
dx (12)
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where primes and dots represent the spatial and temporal derivatives. The governing dynamical
equation of motion can be obtained by employing Hamilton’s principle as follows [46,47]:

p(x)A
( ..
w + 2V

.
w′ + V2w′′

)
+ ρ′(x)A

(
V

.
w + V2w′

)
− Pw′′

−(eoa)2
(
ρ′′ (x)A

( ..
w + 2V

.
w′ + V2w′′

)
+ρ′(x)A

( ..
w′ + 2V

.
w′′ + V2w′′′

)
+2ρ′(x)A

( ..
w′ + 2V

.
w′′ + V2w′′′

)
+ ρ′′′ (x)A

(
V

.
w + V2w′

)
+2ρ′′ (x)A

(
V

.
w′ + V2w′′

)
+ ρ′(x)A

(
V

.
w′′ + V2w′′′

)
− Pw′′′′

)
+E(x)Iw′′′′ + 2E′(x)Iw′′′ + E′′ (x)Iw′′ + βI

( .
w′′′′ + Vw′′′′ ′

)
= 0

(13)

To derive the non-dimensional dynamical equation of motion, the following normalized parameters
are introduced to derive dimensionless equations [48]:

ξ =
x
L

, η =
w
L

, τ =
t
T

(14)

where

T =

√
ρ0AL2

P
(15)

Substituting dimensionless parameters of Equation (14) into Equation (13), one can acquire the
dimensionless dynamical equation to become:

g(ξ)
( ..
η+ 2v

.
η
′
+ v2η′′

)
+ g′(ξ)

(
v

.
η+ v2η′

)
− η′′

−µ2
(
g′′ (ξ)

( ..
η+ 2v

.
η
′
+ v2η′′

)
+ 2g′(ξ)

( ..
η
′
+ 2v

.
η′′ + v2η′′′

)
+g(ξ)

( ..
η′′ + 2v

.
η′′′ + v2η′′′′

)
+ g′′′ (ξ)

(
v

.
η+ v2η′

)
+2g′′ (ξ)

(
v

.
η
′
+ v2η′′

)
+ g′(ξ)

(
v

.
η′′ + v2η′′′

)
− η′′′′

)
+k2

f ( f (ξ)η′′′′ + 2 f ′(ξ)η′′′ + f ′′ (ξ)η′′ ) + ζ
( .
η′′′′ + vη′′′′ ′

)
= 0

(16)

The dimensionless parameters appeared in Equation (16) are defined as

v = V

√
ρ0A

P
, k f =

√
E0I
PL2 , µ =

eoa
L

, ζ =
βI

PL3

√
P
ρ0A

(17)

where kf, v, µ, and ζ represent the dimensionless flexural stiffness, dimensionless axial velocity, nonlocal
parameter, and viscosity coefficient, respectively.

3. Numerical Procedure

According to the Laplace transform, one can write [49]:

L
[
η(ε)(τ)

]
= sεη(s) − sε−1η(0) (18)

Hence, the dimensionless governing equation of motion in the Laplace domain can be rewritten as:

g(ξ)
(
s2η+ 2svη′ + v2η′′

)
+ g′(ξ)

(
svη+ v2η′

)
− η′′

−µ2
(
g′′ (ξ)

(
s2η+ 2svη′ + v2η′′

)
+2g′(ξ)

(
s2η′ + 2svη′′ + v2η′′′

)
+g(ξ)

(
s2η′′ + 2svη′′′ + v2η′′′′

)
+ g′′′ (ξ)

(
svη+ v2η′

)
+2g′′ (ξ)

(
svη′ + v2η′′

)
+ g′(ξ)

(
svη′′ + v2η′′′

)
− η′′′′

)
+k2

f ( f (ξ)η′′′′ + 2 f ′(ξ)η′′′ + f ′′ (ξ)η′′ ) + ζ
( .
η′′′′ + vη′′′′ ′

)
= 0

(19)
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To discretize Equation (19), the transverse displacement of the nanobeam can be assumed as
follows [50–52]:

η(ξ, s) =
n∑

r=1

ϕr(ξ)qr(s) (20)

where n, ϕr, and qr indicate the number of basic functions, dimensionless mode shapes of the
pinned–pinned nanobeam, and dimensionless generalized coordinate, respectively. The normalized
mode shapes of a simply supported nanobeam are given by [53]

ϕr(ξ) =
√

2 sin(σrξ) (21)

where

σr = p j

√√ √
4 +

(
µp j

)4
+

(
µp j

)2

2
(22)

The characteristic frequency equation of the simply supported boundary condition is as follows [54]:

sin(σr) = 0 (23)

Inserting Equations (20)–(22) into Equation (19), multiplying by ϕs, integrating over the nanobeam
length and considering orthogonality condition of mode shapes leads to the following relation:

Zmn = Kmn + Cmn + Mmn (24)

where Z denotes the coefficient matrix and M, C, and K are defined as follows:

M jk = −s2µ2
(∫ 1

0 g′′ (ξ)φ j(ξ)φk(ξ)dξ+ 2
∫ 1

0 g′(ξ)φ j(ξ)φ
′

k(ξ)dξ+
∫ 1

0 g(ξ)φ j(ξ)φ
′′

k (ξ)dξ
)

+s2
∫ 1

0 g(ξ)φ j(ξ)φk(ξ)dξ
(25)

C jk = sv
(
2
∫ 1

0 g(ξ)φ j(ξ)φ
′

k(ξ)dξ+
∫ 1

0 g′(ξ)φ j(ξ)φk(ξ)dξ

−µ2
(
2
∫ 1

0 g′′ (ξ)φ j(ξ)φ
′

k(ξ)dξ+ 4
∫ 1

0 g′(ξ)φ j(ξ)φ
′′

k (ξ)dξ

+
∫ 1

0 g′′′ (ξ)φ j(ξ)φk(ξ)dξ+ 2
∫ 1

0 g′′ (ξ)φ j(ξ)φ
′

k(ξ)dξ

+
∫ 1

0 g′(ξ)φ j(ξ)φ
′′

k (ξ)dξ+ 2
∫ 1

0 g(ξ)φ j(ξ)φ
′′′

k (ξ)dξ
)
)

+sζ
∫ 1

0 φs(ξ)φ
′′′′

r (ξ)dx

(26)

K jk = v2
(∫ 1

0 g(ξ)φ j(ξ)φ
′′

k (ξ) +
∫ 1

0 g′(ξ)φ j(ξ)φ
′

k(ξ)dξ

−µ2
(∫ 1

0 g′′ (ξ)φ j(ξ)φ
′′

k (ξ)dξ+ 2
∫ 1

0 g′(ξ)φ j(ξ)φ
′′′

k (ξ)dξ

+
∫ 1

0 g(ξ)φ j(ξ)φ
′′′′

k (ξ)dξ+
∫ 1

0 g′′′ (ξ)φ j(ξ)φ
′

k(ξ)dξ

+2
∫ 1

0 g′′ (ξ)φ j(ξ)φ
′′

k (ξ)dξ+
∫ 1

0 g′(ξ)φ j(ξ)φ
′′′

k (ξ)dξ
)
)

+k2
f

∫ 1
0

(
f (ξ)φ j(ξ)φ

′′′′

k (ξ) + 2 f ′(ξ)φ j(ξ)φ
′′′

k (ξ) + f ′′ (ξ)φ j(ξ)φ
′′

k (ξ)
)
dξ

−

∫ 1
0 φ j(ξ)φ

′′

k (ξ)dξ+ µ2
∫ 1

0 φ j(ξ)φ
′′′′

k (ξ)dξ+ ζv
∫ 1

0 φs(ξ)φ
′′′

r
′′ (ξ)dξ

(27)

4. Stability Analysis

For the existence of non-trivial solutions, the determinant of the coefficient matrix must be equal
to zero

det[Z(s)] = 0 (28)
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The complex-valued roots (λ) of Equation (28) are the natural frequency and can be computed
in terms of system velocity, nonlocal parameter, viscosity coefficient, elastic modulus, and density
gradient parameters. It should be mentioned that the system experiences divergence instability when
the imaginary part of one of the natural frequencies becomes zero (ω = Image(λ) = 0). Additionally,
flutter instability occurs in the system when the real part of one of the natural frequencies becomes
negative (δ = Real(λ) < 0) [55].

5. Results and Discussion

In this section, first, the eigenvalues and mode shapes for a simply-supported nanobeam are
calculated and compared with the available theoretical results. Then, the results for the homogeneous
system are extracted and compared with those available in the literature. Afterward, the effect of axial
load, nonlocal parameter, viscosity, power index, elastic modulus, and density gradient parameters on
the natural frequencies, dynamical response, and stability boundaries of the simply supported system
are evaluated. It should be mentioned that the dynamical response of the system can be determined by
applying the fourth-order Runge–Kutta technique.

5.1. Model Validation

The first fifteen eigenvalues as well as first four mode shapes of a pinned–pinned nanobeam are
depicted in Figures 2 and 3, respectively. As shown, the numerical results demonstrated an acceptable
correlation with those in [54]. According to the nonlocal model, the eigenvalues of the system descend
with the increase of the nonlocal parameter.
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5.2. Effect of Axial Load

To illustrate the effect of axial load on the dynamics of the system, the fundamental frequency
of the system against axial velocity is depicted in Figure 5 for different values of axial tension loads.
The physical and geometrical parameters were considered as E = 200 Gpa, ρ = 7840 Kg/m3, I = 2 cm4,
L = 0.2 m. As is evident, the increment of the axial tension load led to the enhancement of the effective
stiffness of the system, and accordingly, the fundamental frequency and critical divergence of the
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system increased. Hence, one can state that at higher axial compressive loads, the moving system
experiences the divergence (buckling) phenomenon at lower axial velocities.
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5.3. Effect of Elastic Modulus Variation

In Figure 6a,b, real and imaginary parts of the first two natural frequencies of the system versus
axial velocity are shown, respectively, when µ = 0.025 and kf = 0.5. As is obvious, the vibrational
frequencies of the nanobeam were purely real when the axial velocity of the system was zero. Afterward,
by increasing the velocity, the real part of the natural frequencies of the system declined gradually,
while their imaginary part was still equal to zero. At the critical axial velocity (ud), the real part of
the system frequencies vanished, and the system lost its stability and consequently underwent the
divergence phenomenon. The induced divergence instability in moving structures due to ascending
the axial velocity is analogous to that of buckling in classical beams under the compression load [14].
By further increasing the axial velocity, the fundamental frequency of the system became purely
imaginary, while, the second natural frequency declined monotonically. Due to gyroscopic effects in
the system, at higher velocities, the beam regained its stability again. In other words, the initiation
and termination of divergence instability are related to the vanishing of real and imaginary parts of
the fundamental frequency, respectively. Eventually, real parts of the first and second frequencies
merge via a Paidoussis coupled-mode flutter bifurcation, while their imaginary parts increase and
the system experiences flutter instability. In fact, in addition to velocities lower than critical velocity,
a narrow velocity range (between the termination point of the divergence instability and the initiation
of flutter instability) exists in which the system is stable at this operational velocity range. It should be
mentioned that the system is no longer stable beyond the critical flutter velocity. As a result, the moving
beam experiences a stability evolution of “stable—first mode divergence—stable—coupled-mode
flutter”. According to Figure 6a, the real part of the system frequencies ascends by increasing the
elastic modulus gradient parameter, particularly the frequencies of the higher modes. Additionally,
increasing αE leads to ascending the critical divergence and flutter velocities of the axially moving
AFG nanobeam. In other words, it is feasible to hinder the occurrence of undesirable divergence
phenomenon by increasing the elastic modulus gradient in moving nanostructures. This trend can be
reasonable by this point, since the elastic modulus gradation parameter has an increasing role in the
stiffness matrix; hence, any increment in the elastic modulus gradient leads to a stiffer structure and
also wider stability regions. In other words, increasing αE induces the stiffness-hardening effect in the
system. Another important feature in Figure 6a,b is that the velocity bandwidth corresponding to the
divergence and flutter phenomena in the system (vd < v < vf) would be expanded by increasing αE.
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Moreover, based on these figures, compared with the exponential variation, the linear variation of the
elastic modulus gradient leads to a more stable structure. As demonstrated in Figure 6b, the damping
ratio of the system was higher for αE > 1 and linear variation of elastic modulus. Accordingly, it is
possible to determine the instability thresholds and vibrational behavior of the system by fine-tuning
the elastic modulus gradient parameter. Generally, natural frequencies of the axially moving systems
can be improved by ascending the elastic modulus in the longitudinal direction of the system in
comparison to a homogeneous system.
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To better understand the stable configuration of the system, stability maps of the system in vd–kf

and vd–αE planes are drawn in Figure 7a,b, respectively. The indicated curves in the stability maps
separate the stable and unstable zones, in which, above each curve, the structure is in the divergence
instability condition. According to Figure 7a, the greater the flexural stiffness, the more stable the
system becomes. Therefore, one can conclude that increasing the flexural stiffness has a stabilizing
effect on the axially moving nanosystems. Additionally, by increasing the elastic modulus gradient
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parameter, the stability regions of the system expanded. According to Figure 7b, compared with the
conventional homogeneous axially moving nanobeam (αE = 1), the AFG nanosystem is more stable
when αE > 1 and ascending αE promotes the stability of the system. It is evident from Figure 7a,b that
the critical divergence velocity of the system increases by kf, which can be attributed to the stabilizing
effects of the flexural stiffness. When αE > 1, the increment/decrement of k leads to decrement/increment
of the materials’ volume fraction at the end part of the nanobeam, which induces decrement/increment
of system stiffness. Additionally, the effect of the elastic modulus gradient and power index variation
are more prominent at higher values of kf and the stability borders separate from each other. In other
words, the variation of power index and elastic modulus gradient parameter play more important
roles in the instability thresholds of the system at higher values of kf, and the stability borders of the
system separate more from each other as kf and k vary. Additionally, by approaching the value of
the elastic modulus gradient parameter to one (homogeneous condition), the stability boundaries of
the system are close to each other, and these boundaries separate from each other by increasing or
decreasing of αE.Materials 2020, 13, x FOR PEER REVIEW 12 of 24 
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The stability map of the system in the vd–k plane is demonstrated in Figure 8. The stability
boundaries of the system in Figures 7 and 8 are consistent with each other. As shown, when αE > 1,
a descending trend is observed by increasing k, while, this trend reverses for αE < 1. In other words,
descending the power index leads to a stiffer (softer) system for αE > 1 (αE < 1); hence, a decrement of
the power index stabilizes (destabilizes) the system for αE > 1 (αE < 1). Moreover, a rapid change in
the critical divergence velocity of an axially moving AFG nanobeam was observed for lower values of
k, while for higher values of k (e.g., k > 10), the divergence velocity was practically constant, regardless
of the value of αE and converges to that of an axially moving homogenous nanobeam. As a result, it
can be stated that the simultaneous selection of higher values of αE and kf as well as lower values of k
is more appropriate for the stability enhancement of the system.Materials 2020, 13, x FOR PEER REVIEW 13 of 24 
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5.4. Effect of Density Gradient

To explore the effect of the density gradient parameter on the system dynamics, the evolution
of real and imaginary parts of first and second vibrational frequencies versus the axial velocity is
demonstrated in Figure 9a,b for different density gradient parameters. The influence of the density
gradient was more tangible in the natural frequencies of higher modes. It is evident that the effect of
density and elastic modulus variations on the vibrational behavior are opposite to each other, so the
natural frequencies of the system have a descending trend by increasing the density gradient parameter.
Furthermore, the stability region shrinks by ascending αρ. The density gradient parameter contributed
to the stiffness, damping, and mass matrices, which were associated with the mass-addition effect,
gyroscopic effect, and stiffness-hardening effect, respectively. According to Figure 9, one can conclude
that the mass-addition effect is dominant in the system. Another important feature in the frequency
diagrams of moving AFG nanobeams is that compared with the case of density grading, the system
experienced a wider range of frequencies in the case of elastic modulus grading. For this reason,
from the perspective of design, the case of elastic modulus variation is more effective in avoiding
the resonance phenomenon. By scrutinizing Figures 6 and 9, it can be observed that axially grading
the materials changes the critical velocities of the system, while it does not alter the order and the
type of the system bifurcation series. Accordingly, one can conclude that the quantitative values of
natural frequencies and critical velocities are strictly dependent on the axial grading of materials, but
the qualitative stability of the system does not vary by the axial gradation of materials. According to
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Figures 6 and 9, it can be mentioned that the vibrational behavior of the axially moving systems is highly
dependent on the density, elastic modulus gradient parameters, and the type of their distributions.
Furthermore, compared with the homogeneous systems, the AFG axially moving systems have higher
natural frequencies when the density of the system descends along the axial direction.Materials 2020, 13, x FOR PEER REVIEW 14 of 24 
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To better describe the dynamical behavior of moving AFG nanobeams, the stability maps in vd–αρ
and vd–µ planes are plotted in Figure 10a,b, respectively. As demonstrated in Figure 10a, the moving
AFG nanobeam is more stable for αρ < 1 in comparison with the homogeneous one, especially at
lower values of the nonlocal parameter. Additionally, for each constant value of µ, the stability regions
of the system shrink by decreasing the density gradient parameter. According to Figure 10b, since
increasing the nonlocal parameter displaces the stability borders toward the lower velocities, one
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can assert that any increment in µ leads to a softer system. In other words, the nonlocal parameter
induces a stiffness-softening effect on the system. Additionally, it can be observed that in contrast to
the vd–kf and vd–αE curves, the vd–µ and vd–αρ curves are overall descending, as µ and αρ increase.
Any increment in the nonlocal and density gradient parameters makes the system more unstable and
leads to a diminishing of critical divergence velocity. Based on Figure 10a,b, for αρ > 1, the stability of
the system was enhanced by increasing k, whereas, this trend was the reverse for αρ < 1. It should
be mentioned that choosing a density gradient parameter close to one (i.e., homogeneous condition),
the stability boundaries converge to each other for different power indices. In other words, for higher
and lower values of the density gradient, the effect of the power index variations on the stability
boundaries is more tangible. Another important point in the stability map of the system is that for
lower values of nonlocal parameter, the critical velocity of the nanobeam declines monotonically by
the increment of the density gradient parameter, whereas, this trend is not true for higher values of µ.
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Figure 11 demonstrates the stability map of the system in the vd–k plane. The indicated stability
boundaries of the system in Figures 10 and 11 are in agreement with each other. As is obvious, in the
cases of density and elastic modulus grading, the power index has a reverse influence on the stability
boundaries of the system. So, for αρ > 1, an ascending trend is observed by increasing k, while, for αρ
< 1, this tendency is reversed. In other words, for αρ > 1 (αρ < 1), an increase of the power index leads
to a more stable (unstable) structure. Moreover, similar to the case of elastic modulus grading, small
values of k have a considerable impact on the stability regions of the axially moving AFG nanobeam,
while the variation of the critical velocity of the structure in higher values of the power index is
negligible. As a result, a small value of k plays an key role in the stability of axially moving AFG
nanobeams. Generally, the simultaneous selection of lower values of αρ, kf and k is more suitable for
the performance improvement of the system.
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5.5. Effect of Simultaneous Density and Elastic Modulus Variations

Based on previous sections, it can be deduced that the variations of density and elastic modulus
gradations along the axial direction play important roles in the vibrational response of the axially
moving AFG nanobeams. Furthermore, it is demonstrated that the excessive vibrations of the system
can be suppressed by adjusting αE and αρ separately. According to Figures 6–11, variations of density
and elastic modulus along the longitudinal direction of the beam have opposite influences on the
stability. In other words, decreasing the density gradient and ascending the elastic modulus gradient
lead to an increase in the natural frequencies and expand the stability regions. As a result, these
parameters can provide additional degrees of freedom to adjust the dynamic characteristics of axially
moving nanosystems. In other words, it is possible to significantly improve the performance of axially
moving nanosystems by simultaneous fine-tuning αE and αρ. Therefore, determining the role of
simultaneous gradation of the material properties on the stability of the moving nanobeams is of great
importance. In this section, stability characteristics of the system are explored by considering the
coupled density and elastic modulus variations through the axial direction (simultaneous mass-addition
and stiffness-hardening effects). Additionally, the divergence velocity obtained through the Galerkin
method can be evaluated by employing an analytical approach. To investigate the stability conditions
of the system, the critical divergence velocity as a function of density and elastic modulus gradient
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parameters is plotted in Figure 12a. As shown in this figure, the critical velocity ascends by an increment
of αE and decrement of αρ. In other words, the divergence strength of the system can be improved
by decreasing αρ and an increment of αE. For this reason, simultaneously choosing a higher elastic
modulus gradient and a lower density gradient leads to a more stable structure, and consequently,
better operational performance of axially moving nanostructures can be achieved. In Figure 12b,
the instability thresholds of the structure when the density and elastic modulus gradient parameters are
equal (αE = αρ = α) are illustrated. Generally, increasing the nonlocal parameter decreases the stability
of the structure. Additionally, increasing the material gradient parameter (α) leads to a slight decline in
the critical velocity of the system. Accordingly, compared with the stability maps presented in previous
sections, one can deduce that the density gradient (mass-addition effect) plays a dominant role in the
stability condition of the system, and the elastic modulus gradient has less impact on the dynamical
behavior of the system. According to Figure 13, one can deduce that by fine-tuning the AFG material
characteristics, the divergence threshold of the axially moving system could be significantly improved.
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In Figure 13, the divergence velocity of the system versus the material gradient parameter is
diagrammed for different values of power index. As depicted, the critical divergence velocities of the
system obtained by the Galerkin method are in close agreement with those obtained by the analytical
method presented in the Appendix A. Based on Figure 13, when µ = 0, the stability of the system
declines monotonically by increasing α. Additionally, for α < 1, a decrease of k expands the stable
regions, while for α > 1, a decrease of k leads to the shrinking of the stable regions. For higher values
of µ, this trend reverses, so for α > 1 and α < 1, the decrement of the power index has a stabilizing
and destabilizing effect on the system. Furthermore, when the nonlocal effects are highlighted in the
system, the stability of the system varies non-monotonously with increasing α. It is worth noting that
the influence of power index variation on the stability boundaries is not sensible for values of α close
to one.

For a better description of the dynamical stability of the system, the critical divergence velocity
versus the nonlocal parameter is depicted in Figure 14. As can be seen, the divergence velocity of the
system decreases by ascending the nonlocal parameter. The effect of the power index on the stability
regions may be different, depending on the high and low values of the nonlocal parameter. For low
values of α and µ or high values of α and µ, ascending the power index enhances the stability whereas,
choosing a small power index for other conditions improves the performance of the system. Therefore,
it can be concluded that the undesirable nonlocal effects can be alleviated by fine-tuning the materials
distribution along the axial direction.
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5.6. Effect of Viscoelastic Materials

Finally, to explore the effect of viscoelastic materials on the dynamics of the system, real
and imaginary parts of two first vibrational frequencies of the nanobeam versus axial velocity
is demonstrated in Figure 15a,b, respectively, for ζ = 0.001 and kf = 0.5. As shown, the critical
divergence velocity of the first mode does not change by increasing the viscosity coefficient. This
feature can be confirmed by the analytical approach existing in the Appendix A. Since the viscoelastic
system is non-conservative, the natural frequencies are complex before the divergence, especially the
frequency of higher modes. According to Figure 15b, the imaginary parts of the frequency curves
lose their symmetry toward the x-axis in the case of the viscoelastic system. It can be seen that the
viscoelastic system experiences the stability evolution of “stable—first mode flutter—second mode
divergence”. Additionally, the first two natural frequency branches do not merge to a single branch
beyond the critical divergence velocity. As a result, it can be concluded that compared with the
isotropic and axially graded systems, utilizing viscoelastic materials changes the stability evolution of
the axially moving nanosystems. Generally, it can be stated that the qualitative stability of the axially
moving nanobeams is dependent on the effect of viscoelastic materials, while the axial gradation of
materials plays an important role in determining the quantitative values of the critical velocity and
natural frequencies of the system.
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6. Conclusions

Structural dynamics and instability thresholds of axially moving viscoelastic AFG nanobeams
were studied analytically and numerically in this study. The distribution of the material properties of
the AFG system along the axial direction was considered according to the power-law function. Natural
frequencies, dynamical response, and divergence and flutter instability thresholds of the system were
obtained by Laplace transformation and the Galerkin discretization scheme to investigate the coupled
effects of nanobeam velocity, dimensionless flexural stiffness, nonlocal parameter, viscosity coefficient,
and axial material gradation parameters. Additionally, the accuracy of the presented solution approach
was examined analytically. The main results of the current investigation can be listed as follows:
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1. Compared with axially moving isotropic nanobeams, the system is more stable when along the
axial direction, the density and elastic modulus decreases and increases, respectively. In other
words, increasing the density and the elastic modulus gradient parameters have destabilizing
and stabilizing effects on axially moving nanobeams, respectively

2. The greater the flexural stiffness, the more stable the system becomes, while a higher nonlocal
parameter leads to a more unstable system. Additionally, the influence of the axial gradation
of materials on the stability boundaries of the system is more tangible for high values of
flexural stiffness.

3. The effect of the density gradient on the dynamical configuration of the system is dominant in the
case of simultaneous axial variation of the density and modulus.

4. Increment/decrement of the power index leads to a more stable system when density and elastic
modulus increase/decrease and decrease/increase through the axial direction, respectively.

5. Compared with axially moving isotropic and AFG nanosystems, employing viscoelastic materials
in the system can change the stability evolution.
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K.K.Ż. and H.M.-S.; formal analysis, M.S.; investigation, A.S.; resources, M.H. and H.M.-S.; data curation, M.S.;
writing—original draft preparation, M.H.; writing—review and editing, K.K.Ż. and H.M.-S.; visualization, H.M.-S.;
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Appendix A

The normalized eigenfunction of a simply-supported nonlocal beam is given by [54]:

ϕr(ξ) =
√

2 sin(σrξ) (A1)

where

σr = qr

√√ √
4 + (µqr)

4 + (µqr)
2

2
(A2)

The characteristic frequency equation of the simply-supported boundary condition is as follows:

sin(σr) = 0 (A3)

Based on the stability theory introduced by Lancaster [56], when the eigenvalue of the system
equals zero, the system experiences the buckling phenomenon. In this case, the fundamental frequency
of the system equal to zero when the system stiffness of the main mode becomes zero. As a result,
the critical divergence velocity of the system is related to the first natural mode and Equation (16)
reduces to the following equation by utilizing Equation (A1) and considering (r = s = 1):

M11
..
q1(τ) + C11

.
q1(τ) + K11q1(τ) = 0 (A4)
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where the subscript one represents the first natural mode and the system stiffness related to the first
mode may be written as:
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