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Abstract: Thermal-Energy Storage (TES) properties of organic phase change materials have been
experimentally investigated and reported in this paper. Three paraffin-based Phase Change Materials
(PCMs) and one bio-based PCM are considered with melting temperatures of 24 ◦C, 25 ◦C and
26 ◦C. Sensible heat storage capacities, melting characteristics and latent heat enthalpies of the
studied PCMs are investigated through Differential Scanning Calorimetry (DSC) measurements. Two
alternative methods, namely the classical dynamic DSC and a stepwise approach, are performed and
compared with the aim to eliminate and/or overcome possible measurement errors. In particular, for
DSC measurements this could be related to the size of the samples and its representativity, heating
rate effects and low thermal conductivity of the PCMs, which may affect the results and possibly
cause a loss of objectivity of the measurements. Based on results achieved from this study, clear
information can be figured out on how to conduct and characterize paraffin and bio-based PCMs, and
how to apply them in TES calculations for building applications and/or simulations. It is observed
that both paraffinic and bio-based PCMs possess a comparable TES capacity within the selected
phase transition temperature, being representative for the human thermal comfort zone. The phase
change of bio-based PCMs occurred over a much narrower temperature range when compared
to the wider windows characterizing the paraffin-based materials. Bio-based PCMs turned out to
be very suitable for building applications and can be an environmentally friendly substitute for
petroleum-based PCMs.

Keywords: thermal-energy storage (TES); phase change materials (PCMs); latent enthalpy; melting
temperature; differential scanning calorimetry; IEA method

1. Introduction

The global challenge to strongly cut back the use of fossil fuels with the aim to implement
renewable resources and to neutralize greenhouse gas emissions make energy efficiency a key issue that
is at the center of our society [1,2]. According to the EU commission, heating and cooling the residential
and non-residential sector accounts for half of the EU’s energy consumption, while about 84% of it
is still generated from fossil resources [3]. Since the introduction of the new EU Buildings Directive
2019/2021 [4], all member states are obliged to guarantee that all new constructions are designed as
“Nearly Zero Energy Buildings” (NZEBs), from the beginning of 2021. This obligation has been already
applied to non-residential buildings from the beginning of 2019. Therefore, the development of new
and smart energy storage solutions and technologies, with the aim to use environmental thermal
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energy more efficiently, and to balance out daily heating/cooling demands, are worth investigation for
building applications [5,6].

One promising technique available for Thermal Energy Storage (TES) applications is by
implementing Phase Change Materials (PCMs) in construction and building composites [7]. PCMs can
be used to store large quantities of heat, not only through their sensible capacity, but also (sometimes
predominantly) via their latent storage property [8]. As PCMs are capable of storing large amounts of
latent heat at constant temperature, they are contributing to the energy efficiency and thermal comfort
of residential and non-residential buildings, by balancing out daily environmental heat demands [9].
Consequently, the passive storage/release of latent heat through phase transitions from solid to liquid
or vice versa, allows to save considerable amount of primary energy [10]. The principle of latent TES
can be employed in a wide range of applications [11], such as, solar heating systems [12], building air
conditioning [13], building envelope [14], production of energy-saving cementitious composites [15]
and high porous insulation systems [16], waste heat recovery in residential and non-residential
sectors [17], and many other applications [18].

Designing large-scale practical applications for passive latent thermal energy storage systems
requires in-depth knowledge on the thermal characteristics of PCM before, during and after its phase
change. Therefore, an accurate and correct determination of the thermal properties of PCM systems is
crucial to efficiently design composite systems or devices that use latent TES [19].

Differential Scanning Calorimetry (DSC) is an effective method to characterize the thermal behavior
of PCMs, and to determine their TES capacities, in terms of transition temperature, enthalpy and
specific heat, and its stability throughout the various melting and crystallization cycles. The heating
and cooling rates of DSC measurements are typically much faster than in real applications, while
the sample mass is also very small (less than 90 mg), which might lack representativity for real size
applications [20,21]. Some commercially calorimeters are already available on the market for measuring
and analyzing larger sample masses with a very high precision and adopting quite low heating rates
(as low as 0.01 K/min). Actually, samples with a large mass implicitly show a lower error ratio resulting
from reduced sample inhomogeneity. However, larger samples may also strongly affect the course
of the measured phase change temperatures (i.e., the onset temperature or the maximum one). It
follows that DSC measurements can be affected by changing the heating/cooling rate and/or sample
mass. They mainly influence the thermal equilibrium status in the sample, thus producing a shifting
of the phase change temperature and also lead to non-realistic shapes of the heat capacity and/or
enthalpy temperature responses h(T) [22]. Moreover, DSC test results depend on further factors such
as sample preparation, correct calibration of the experimental set-up, and many other factors that
should, in fact, be standardized in order to achieve comparable and objective results, under different
test environments [23]. Therefore, developing an appropriate and objective methodology, in this field,
is essential to improve the accuracy of the PCM characterization procedure and to make measurement
errors negligible [24].

An alternative method that overcomes the aforementioned DSC limitations (i.e., mass influence
and heating rate effects) is the T-History Method (THM), which was originally developed by Yinping
and Yi [25]. The method records the time–temperature evolutions of PCM samples against a well-known
reference material, usually water. THM easily allows to evaluate the heat capacity, temperature of
melting/crystallization, enthalpy and phase change temperature. The accuracy and soundness of
this method was evaluated by many researchers, see for example [26–28]. Hong et al. [29] verified
the accuracy of a modified THM for several PCMs, having different freezing patterns. A further
improvement of the THM measurement technique was developed by Stankovic and Kyriacou [30]. A
procedure to numerically correct the enthalpy-temperature response of PCMs obtained from THM
was developed by Tan et al. [31]. Then, a critical comparison between DSC and THM was done by
Rathbeger et al. [32]. The authors mainly concluded that the key difference between both methods is
represented by the sample size of the investigated material, and the temperature profile to which they
are subjected. THM samples are much larger than DSC samples (about 1000 times), while also constant
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heating and/or cooling temperatures are applied. In addition, THM minimizes heating/cooling rate
effects, overcomes sample size issues and can be used for low thermal conductivity samples. The only
drawback of THM, which is actually crucial for standardized measurements and test procedures, is
that the accuracy of the lab results largely depends on the measuring procedures and the self-built
calorimeters. For this reason, measurements from different laboratories can differ a lot and are generally
not comparable [33].

The main objective of this work is to investigate the thermo-physical properties and heat storage
capacity of a representative organic bio-based (non-paraffin) PCM, in terms of phase-change enthalpy,
specific heat capacity and melting temperature, using different experimental setups. The influence
of various parameters, involved in DSC measurements, are compared with results done on three
comparable paraffin waxes. The measurements are carried out in accordance with the currently available
standard of the International Energy Agency (IEA), i.e., under the Task 42 Annex 29, to characterize
the thermal-energy properties of the PCMs under discussion. Heat-flux DSC dynamic measurements
and DSC stepwise procedures are considered and compared to scrutinize the aforementioned aims.

To the Authors’ best knowledge, only a few studies on thermal analysis (even under the still not
published final version of the IEA-SHC 42 Annex 29 Standard for common PCMs) are so far available
in scientific literature dealing with the use of bio-based PCM. Moreover, no Standard is currently
available on the thermal analysis of organic PCMs, but there are some discussions going on in this
direction. In this context, with the current paper, the authors like to contribute to this discussion by
presenting the differences in DSC responses between three commonly used petroleum-based PCMs
(paraffinic) and one novel bio-based PCM. Especially highlighting the differences in TES characteristics
and data of various kinds of PCMs, in a general sense. Thus, this document tried to examine if the
currently employed procedures can also be applied to other types of PCMs, such as the considered
bio-based one investigated in this work. In addition, the presented results lead to demonstrate the
feasibility of completely substituting petroleum-based PCMs with a more environmentally friendly
bio-based one. This aspect may open doors for a new scenario in research for developing novel PCMs,
that can be employed in thermal storage materials for building construction materials, which can be
more sustainable, eco-friendly and energy-saving.

The paper is structured as follows: Section 2 reports Materials and Methods of the experimental
program and outlines the key thermophysical characteristics of the investigated materials and shows
the overall experimental program. Then, in Section 3, the experimental results for both paraffin and
bio-based PCMs are described following the dynamic DSC procedure. Section 4 outlines the results of
the stepwise approach where some comparisons between the two alterative procedures are conducted
to characterize the TES of the PCMs. Finally, concluding remarks and future developments of this
research are addressed in Section 5.

2. Materials and Methods

In this section, the employed materials, methods and experimental program, considered for
analyzing the TES properties of the selected PCMs, are presented. Particularly, two types of organic
phase change materials are analyzed, namely three Paraffin Waxes and one Bio-based PCM, which
have physical, kinetic, chemical and economic relevance for constructions and building application in
civil engineering [34,35].

2.1. Paraffin Wax

Three commercial paraffin-based waxes (RT-series® by Rubitherm GmbH, Berlin, Germany) are
used as reference PCMs. These commercial products, having a melting temperature Tm that ranges
between 22 ◦C and 26 ◦C (suitable for enhancing the thermal comfort in building applications) are
selected for this study. More specifically, RT24, RT25 and RT26 are taken into consideration which are
characterized with a Tm of 24 ◦C, 25 ◦C and 26 ◦C, respectively.
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2.2. Bio-based PCM

One bio-based PCM has also been investigated in this work as an eco-friendly alternative to
the petroleum-based paraffin wax. The bio-based material, viz. PureTemp25 by PureTemp LLC
(Minneapolis, MN, USA), made of natural oils with a Tm of 25 ◦C, is used, while its results can be
directly compared to RT25. The thermal properties of the RTs and the bio-based PCM are listed in
Table 1.

Table 1. Properties of RT24, 25, 26 and PureTemp25 as given by manufacturers´ datasheets [36,37].

Properties RT24 RT25 RT26 PureTemp25
Tm (main peak) [◦C] 24 25 26 25

Density liquid [kg/L] 0.77 (40 ◦C) 0.76 (at 40 ◦C) 0.75 (at 30 ◦C) 0.86

Density solid [kg/L] 0.88 (15 ◦C) 0.88 (at 15 ◦C) 0.90 (at 20 ◦C) 0.95

Specific Heat Capacity (liquid) [kJ/kg×K] - - - 2.29

Specific Heat Capacity (solid) [kJ/kg×K] - - - 1.99

Spec. Heat Capacity [kJ/kg×K] 2 2 2 -

Heat storage capacity [kJ/kg] 160 (16–31 ◦C) 170 (16–31 ◦C) 180 (19–34 ◦C) 187 *

*Measurement interval not available in the Datasheet.

2.3. Methods

This section reports the methods used to investigate the TES properties of the PCMs presented
in Sections 2.1 and 2.2. Two alterative heat-flux DSC methods (Figure 1), namely the dynamic and
a stepwise method, have been considered for this purpose. The German Standards DIN 51005 [38]
and DIN 51007 [39] have been considered as a reference to perform the DSC tests (generally applied
for this test method to any kind of material), while, the IEA standard procedure [40] is followed to
determine the heat storage capacity of PCMs.

Figure 1. (a) Differential Scanning Calorimetry (DSC) 214 Polyma equipment from company Netzsch
(Selb, Germany, with a T work range−170 ◦C to 600 ◦C — Heating/Cooling rate 0.001 K/min to 500 K/min
— Indium Response Ratio > 100 mW/K — Resolution (technical) 0.1 µW — Enthalpy precision ±0.1%
for indium, ± 0.05% to ±0.2% for most samples), (b) aluminum sample holders (maximum volume
capacity of 40 µL) and (c) position into the DSC device.

Characterizing the PCMs was done by measuring three cycles over three different temperature
ranges: (i) solid phase (−20 to 10 ◦C); (ii) phase change/transition (melting and/or crystallization),
(10 to 30 ◦C); and (iii) liquid phase (30–60 ◦C). Figure 2 shows these three ranges that occur during the
DSC heating/cooling tests, and also describes the typical enthalpy and specific heat capacity evolutions
of non-isothermal PCMs.
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Figure 2. Separation of the measurements in 3 phases: (i) heat (sensible) capacity in solid phase, (ii) heat
(latent) capacity under phase change, and (iii) heat (sensible) capacity in liquid phase according to DIN
EN ISO 11357-3 [41].

It may be worth highlighting that only for the dynamic DSC tests, and following the IEA
indications [40], each sample measurement consisted of 3 (DSC) cycles over the pre-defined temperature
range (−20 to 60 ◦C). Particularly, the first cycle was performed to eliminate previous thermal histories
of the specimen; the second cycle was carried out to identify the TES characteristics; and finally, the
third one was done mainly to check the reproducibility of the results and the possible appearance of
cyclic chemical instability of the material.

2.3.1. Dynamic DSC Method and Evaluation of TES Parameters

The most common way to operate DSC tests is by performing the experimental procedure with
a constant heating/cooling rate. This is known as “dynamic DSC”, since the heat transfer (energy)
is evolving without a necessary thermodynamic equilibrium inside the analyzed sample. However,
DSC measurements with a fast and dynamic process and occurrence of phase change phenomena
can be affected by this lack of thermodynamic equilibrium, and, hence can provide non-realistic
enthalpy temperature data h (T). The shape of the latter can be largely affected while the melting point
may be systematically shifted towards higher values for the heating cycles, or lower crystallization
temperatures for the cooling process.

This will result in significant errors in the temperature-dependent measurements, such that the
heat supply/release, referred to each temperature record, cannot be objectively attributed to the real TES
values. For this reason, carrying out measurements with different heating rates and mass variations can
provide good information about the influence of the measured variables, detects the needed thermal
equilibrium status of the material and verifies the soundness of the measured data.

From a practical point of view and to avoid the above-mentioned complications, the heating (or
cooling) rate must be low enough to allow the sample to be measured close to the various isothermal
states and with reasonable accuracy. The procedure described in the IEA standard [40] gives some
direction in this sense and it was used to control/solve heat rate issues. This was done by changing
the heating rate slowly from 10.0 K/min (high rate) to 0.125 K/min (low rate), or even lower, until
the temperature difference between two inflection points of consecutive enthalpy curves (i.e., the
peaks of the corresponding cp-T curves), is lower than a predefined threshold (normally fixed by the
standard to 0.2 K). Thus, the maximum permissible heating rate will be the minimum heating rate
of two consecutive heating curves which comply with the above criterion [40]. A heating rate of
10 K/min was adopted for the measurements in the sensible range following the DIN 51007 [39]. In
these measurement conditions, large quantity samples were tested in order to achieve a proper signal
from the device.
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The enthalpy change (at both sensible and latent stage), dH(T), of a sample, can be evaluated by
integrating the heat flow registered during the DSC measurements. It can be assumed that a small
variation of enthalpy dH (or the specific one, dh) is equal to a small amount of heat dQ (or the specific
one, dq) added/released [42,43]. This is valid for those processes characterized at constant pressure, as
it happens during DSC experiments.

Therefore, it can be written that:

dH = dQ mspdh = mspdq (1)

being
dq = csp

p · dT (2)

where msp is the sample mass, chosen as small as possible to comply with the instrument-specific
requirements and to reach the state of equilibrium more quickly [39]. However, msp should be large
enough to guarantee the representativity of the material sample. Furthermore, dT represents a small
variation of temperature, and csp

p (T) the specific heat capacity.
Based on the recorded heat flow (DSC signal), the specific heat capacity of the sample csp

p (T) can
be easily determined from Equation (2), as follows

csp
p =

dq
dT
−−−−−−−−−−−−→
under finite ∆T

csp
p =

∆q
∆T

(3)

while the enthalpy variations have been directly evaluated from Equation (1).
In general, changes in enthalpy (latent heat) or the specific heat capacity (sensible heat) of

an examined sample are determined by recording the absorbed heat between two equilibrium
states, assigned as baselines of the acquired measurement curves. It is worth highlighting that the
baseline-construction due to the specific heat capacity, measurements outside its melting range, is
determined by performing three measurements: (1) empty measurement, (2) calibration measurement,
and (3) real sample measurement for each temperature range (more details are available in [39]). This
is due to the correction of measurement results possible affected by asymmetries and to compensate
device specific errors.

2.3.2. Stepwise DSC Method and Evaluation of TES Parameters

A stepwise method is used as an alternative for reducing the heating rate effect that is affecting
the measurements of dynamic DSC tests. In the stepwise procedure, the net heat applied in a certain
temperature interval, is the same as the amount considered in the dynamic DSC tests (see Figure 3a,b).
However, the whole interval is sub-divided into small sub-steps. This will favor the accumulation
time to reach the thermodynamic equilibrium, between each temperature step, and will improve the
temperature resolution (indicated in Figure 3b), which was assumed to be 1 K in this study [44]. In this
procedure, isothermal (equilibrium) states are always awaited between two subsequent temperature
steps (i.e., 1 K). The waiting needed to reach this state of equilibrium mainly depends on the selected
(temperature) step and can only be determined empirically. In this work, the waiting times were taken
10 min at the beginning of the melting and 20 min by reaching the melting peaks. More details are
described in Section 4.

The total specific heat, supplied over the individual intervals, is obtained by summarizing the heat
increments supplied at each sub-step ∆qstepwise. Thus, the experimental approach used in the stepwise
method to analyze the h(T) response of the materials, along with the melting peak temperature Tm,
follows the same relationships as proposed for the dynamic DSC test:

∆H = msp∆h = msp∆qstepwise (4)
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Figure 3. T(t) program for (a) dynamic DSC method and (b) stepwise DSC method.

2.4. Experimental Program

For the measurement of each parameter pair (cp, h) three samples per material (paraffin-based
RT24, RT25, RT26 and bio-based PureTemp25, as shown in Figure 4) were taken into account. Table 2
reports an overview of the full experimental program considered for the dynamic and stepwise method,
respectively. The table gives information regarding the considered heating/cooling rates (in both
dynamic and stepwise methods), which range from 10 K/min to 5 K/min, 2 K/min, 1 K/min, 0.5 K/min,
0.25 K/min, and 0.125 K/min. Furthermore, the investigated parameters, considered masses and test
type of DSC method are also highlighted in the table.

Figure 4. DSC specimens for the measurement of specific heat capacity and enthalpy of Phase Change
Materials (PCMs) following the dynamic and stepwise procedures.

Table 2. Samples, heating rates, investigated parameters and DSC test-type applied in this study.

Tests Materials (Mass Values in mg)

RT24 RT25 RT26 PureTemp25

Dynamic Heat Rate (R), (R: 10,
5, 2, 1, 0.5, 0.25, 0.125 K/min)

P1 P3 P3 P1 P2 P3 P4 P1 P2 P3 P1 P2 P3 P4
4 - - 4 - - - 4 - - 4 - - -

18.8 17.2 17.7 18.9

Dynamic Sample Mass
(R: 0.125, 0.25 K/min)

- - - 4 4 4 4 - - - 4 4 4 4

16.3 18.4 18 7.9 18.9 19 17.7 10.1

Dynamic - Enthalpy
Temperature h (T)
(R: 0.125 K/min)

4 4 4 4 4 4 - 4 4 4 4 4 4 -

13.3 16.5 16.9 16.3 18.4 18 17.7 18.5 16.1 18.9 19 17.7

Dynamic - Heat Capacity cp
(T) (R: 10 K/min)

4 4 4 4 4 4 - 4 4 4 4 4 4 -
14.3 16 16.1 17.2 18.4 18 16.4 18.9 12.4 10.5 18.9 18

Step-wise Heat Rate (R:2, 1,
0.5, 0.25, 0.125 K/min) - - - 4

16.3 - - - - - - 4

18.9 - - -

Step-wise - Enthalpy
Temperature h (T) (R: VAR) - - - 4

16.3 - - - - - - 4

18.9 - - -

Abbreviations in table: R: heating Rate; h: enthalpy; cp: specific heat capacity; VAR: variable; RT: RubiTherm.
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3. Dynamic DSC Results

3.1. Heating Rate Effect

Dynamic DSC tests were performed for all PCMs (3 paraffin-based and 1 bio-based), considering
several heating rates (ranging from 10 K/min to 0.125 K/min) and various masses. The effect of the
heating rate, between 10 ◦C to 50 ◦C, was investigated for only one of the samples per each PCM type
(labelled as P1 in Table 2 of either RT24, -25, -26 or PureTemp 25).

Figures 5–8 show the resulting cp(T) and h(T) (latent-only) curves of the samples abovementioned.
It can be observed that the melting temperature Tm, defined as the temperature at which the maximum
peak of the cp(T) curve is registered, of all four samples mainly depends on the heating rate. Tm is
shifting progressively to lower values with decreasing heating rates. When comparing the different
DSC measurements of each sample, the influence of the heating rate on the curves becomes clearly
visible. It may be worth mentioning that even the cp(T) and h(T) (latent-only) curves are largely
influenced by the rate of heating during the melting transition, the related measured total specific
latent heat (enthalpy) is independent on the heating rate.

From the experimental results (Figures 5–8) it can be also observed that the acceptable heating rate
to be selected in order to stay below the defined threshold value of 0.2 K (i.e., the difference between
a high and successive smaller heating rate, as proposed by the IEA standard [40] and described in
Section 2.3.1), must be 0.125 K/min (or lower) for RT25 and PureTemp 25, and 0.250 K/min (or lower) for
RT24 and RT26. This would reduce as much as possible the heating rate issues for the considered PCMs.

The cp curves of RT24, -25 and -26 with different heating rates contain mainly two (local) peaks, at
different temperatures. These double-peak curves actually become more pronounced for lower heating
rates. The first local one, as for each curve and considering 0.125 K/min, was registered at 6.2 ◦C for
RT24 (Figure 5), at 17.6 ◦C for RT25 (Figure 6) and 17.4 ◦C for RT26 (Figure 7). The second local (and
also maximum) peak, which is representing the melting of paraffin, while adopting a heating rate of
0.125 K/min, was achieved at 25.0 ◦C for RT24 (Figure 5), at 26.5 ◦C for RT25 (Figure 6) and 26.2 ◦C for
RT26 (Figure 7).

Figure 5. Dynamic DSC measurements: (a) cp(T) and (b) h(T) curves (latent only) with different heating
rates for RT24.
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Figure 6. Dynamic DSC measurements: (a) cp(T) and (b) h(T) curves (latent only) with different heating
rates for RT25.

Figure 7. Dynamic DSC measurements: (a) cp(T) and (b) h(T) curves (latent only) with different heating
rates for RT26.

Similar behavior can be observed from the cp- and h-T (latent-only) DSC curves of the bio-based
PureTemp25. From the DSC tests, two adjacent peaks appear in the cp-T curves. The first melting
temperature of the highest peak was measured at 24.6 ◦C (Figure 8), while the second local (not
maximum) peak was registered at a higher temperature of 26.2 ◦C. The actual melting peak temperature
of 24.6 ◦C was close to the declared value in the datasheet, which is 25 ◦C (Table 1).

The presence of a local (not maximum) peak, that was detected for both PCM types, could be
the result of either a mixture of different compounds, having different chain lengths, or a possible
occurrences of solid–solid latent phase transitions prior the melting.

These results also show that the declared melting temperatures in the datasheets (Table 1) are
lower than the ones measured with the dynamic DSC tests. This was expected, since measuring the
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exact melting peak temperature requires a heating rate that should be as low as possible, meaning
theoretically nearly 0 K/min. In practice, this is not feasible, since extremely low heating rates result in
very weak signals and characterized by huge noise on the measured signal and implicitly limits the
choice of the lowest possible heating rate to be assigned.

Figure 8. Dynamic DSC measurements: (a) cp(T) and (b) h(T) curves (latent only) with different heating
rates for PureTemp25.

3.2. Mass of Sample Effect for RT25 and PureTemp 25

The effect of the sample mass in the dynamic DSC experiments is discussed in this subsection.
Paraffin-based RT25 and bio-based PureTemp 25 were considered for this aim and two masses per each
PCM were investigated. Tests were performed considering different heating rates (again ranging from
10 K/min to 0.125 K/min), with temperatures raising between 10 ◦C and 50 ◦C; 7.9 mg and 16.3 mg
samples were tested for RT25, while 10.1 mg and 18.9 mg for the PureTemp 25.

Figure 9 shows the comparative evolution of the melting peak temperatures, Tm, against the
different heating rates by considering the aforementioned two masses (low mass 7.9 mg and high mass
16.3 mg, respectively). It can be observed that the measured melting points, through the DSC tests
for the small sample mass (7.9 mg), rather quickly approximates the melting peak temperature (i.e.,
26.0 ◦C of the lowest heating rate 0.125 K/min). Hence, Tm was 26.50 ◦C at 0.50 K/min and 26.25 ◦C
at 0.25 K/min. Contrarily, the sample with the higher mass (16.3 mg) showed more influence of the
heating rate: i.e., Tm = 27.25 ◦C at 0.50 K/min, 26.75 ◦C at 0.25 K/min and 26.25 ◦C at 0.125 K/min.

Also, for PureTemp 25 the comparison of melting peak temperatures, Tm, against the various
heating rates and two different masses (10.1 mg and 18.9 mg, respectively) is presented in Figure 10.
As for RT25, the sample with the lower mass (10.1 mg) showed a less influence of the heating rate on
the melting peak temperature (e.g., Tm = 24.50 ◦C at 0.25 K/min and 24.25 ◦C at 0.125 K/min). For the
higher mass (18.9 mg) this was, Tm = 25.00 ◦C and 24.50 ◦C, at 0.25 K/min and 0.125 K/min, respectively.

It should be noted that all curves, which were obtained from measurements with heating rates
less than 0.125 K/min, had high fluctuations due to signal noises, which make the evaluation of the
data and baseline construction difficult to build up. For this reason, a heating rate of 0.125 K/min was
considered as the lowest possible choice at which the instrument could still detect signals that were
easy to be analyzed. Moreover, 0.125 K/min, for all tests, provides a proper accuracy to fulfill the IEA
standard requirements [40], see Section 2.3.1.
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Figure 9. Melting peak temperature Tm for dynamic DSC measurements with several heating rates and
2 different masses for RT25.

Figure 10. Melting peak temperature Tm of dynamic DSC measurements with several heating rates
and 2 different masses for PureTemp25.

The results in this section showed that the selection of the “heating rate” and “sample mass” arises
mainly from a compromise between accuracy of the measurements (enthalpy, specific heat capacities
and melting peak values) and mitigation of the data due to heating rate effects. Besides the effect
of instrument precision and adopted parameters, the measurement accuracy also depends on the
representativeness of the sample, which also requires the analysis of larger masses. However, higher
mass samples need a strong reduction of the heating rate for achieving a proper thermal equilibrium
and valid TES analysis. From the practical point of view, very low heating rates go along with huge
signal noises. Contrarily, in low mass samples, thermal equilibrium can be reached more easily with
higher heating rates. Experimentally, the most representative mass should be found first, followed by
choosing the proper “noiseless” heating rate.

3.3. Specific Heat Capacities, Enthalpy and Melting Points for Heating and Cooling

For each type of PCM, six samples were investigated through dynamic DSC tests under both
heating and cooling. Three of them were used for cp(T) characterization, while the remaining three
for h(T). Before and after the non-isothermal phase change (either melting or crystallization), a
heating/cooling rate of 10 K/min was adopted for all tests to minimize noise ratios in the signal [39].
In the latent stage, the considered heating/cooling rates were of 0.250 K/min for RT24 and RT26 and
0.125 K/min for RT25 and PureTemp 25. These assumptions were done following the IEA standard
procedure [40] to mitigate the influence of the heating/cooling rate for each compound, as discussed in
previous Section 3.1.
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Figure 11 shows the results of dynamic DSC measurements done for the paraffin waxes (RT24,
RT25, RT26) and the bio-based PCM (PureTemp 25), for determining the cp [J/g × K] versus T [◦C]
response, in both latent and sensible ranges. All DSC curves are characterized by an almost sensible
behavior in the temperature range far from the melting and crystallization points (i.e., in the solid
range −20 ◦C to 10 ◦C and the liquid range 30 ◦C to 60 ◦C), while a non-isothermal latent behavior
appears in the phase change region (either with solid-to-liquid and liquid-to-solid responses). It can be
also observed that the results show very little (almost negligible) deviation, for all tests, as indicated by
the gray area. In the liquid-sensible ranges (i.e., between 30 and 60 ◦C), the determined specific heat
capacities varied between 2.1 and 2.3 J/g × K (for both heating/cooling), for all samples RT24, RT25,
RT26 and PureTemp 25. Then, in the lower temperature ranges (solid-sensible responses, between
−20 and 10 ◦C), the cp values varied between 1.7 and 2.0 J/g × K (for both heating/cooling), for RT24,
RT25, RT26 and PureTemp 25. In the latent responses, pronounced peaks developed that represent the
solid–liquid and liquid–solid phase changes of the various PCMs.

Figure 11. Specific heat capacities following the dynamic DSC tests (for heating between 0 ◦C and
50 ◦C and cooling between 50 ◦C and 0 ◦C): (a) RT24, (b) RT26, (c) RT25 and (d) PureTemp 25. Note:
the total specific heat capacities have been constructed by additively linking the sensible parts with the
latent ones.

In Figure 12, the resulting enthalpy curves (latent part only), measured with the dynamic DSC
method, are shown for all materials. The plotted curves represent the mean values of the measurements
done for three samples, over three cycles. These data mainly represent the absorbed/released thermal
energies for heating and cooling, respectively, and the unitary latent heat during a phase change. The
measured total and specific h of each material is shown in Figure 13. It can be observed that the
absorbed heat from 0 J/g to the total specific latent heat of each PCM (i.e., 182.1 J/g for RT24, 193.3 J/g
for RT25, 211.9 J/g for RT26 and 186.1 J/g for PureTemp 25) is represented by a clear non-isothermal
behavior. Similar trends, in a releasing way, from the maximum values of h(T) (i.e., form 178.8 J/g for
RT24, 213.4 J/g for RT25, 211.4 J/g for RT26 and 186.8 J/g for PureTemp 25) to 0 J/g, can be observed for
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the cooling responses. From the data, it can be observed that the bio-based PureTemp 25, compared
to the RT ones, is characterized by a faster acceleration of the h(T) response. This means that the
phase change occurs in a narrower melting or crystallization range, which is often more appreciated in
practical passive applications for buildings.

Figure 12. Enthalpy (latent-only) measurements (heating and cooling) following the dynamic DSC
tests: (a) RT24, (b) RT26, (c) RT25 and (d) PureTemp 25.

Figure 13. Latent absorbed/released h [J/g] during melting/crystallization following the dynamic
DSC method.

Finally, the maximum peak temperatures (meaning those points at which the maximum cp was
registered) for either melting or crystallization of all PCMs are compared in Figure 14. The graphs
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further show the “melting” and “crystallization” temperatures of the three specimens, their mean
values and the statistical deviation via error bars. It can be seen that the peak temperature (mean value
of three specimens) at which melting happened were detected at 25.0, 26.5, 26.2 and 25.4 ◦C for RT24,
RT25, RT26 and PureTemp 25, respectively. Similarly for the crystallization measurements (again mean
value of three specimens), peak temperatures were registered at 23.8, 25.1, 24.2 and 21.1 ◦C for RT24,
RT25, RT26 and PureTemp 25, respectively.

Figure 14. Comparison of the maximum peak temperatures (◦C) of all samples in the
melting/crystallization range.

In Figure 14 it can also be seen that there is an obvious difference between the cooling and heating
peak temperature. Overheating or subcooling effects [18], occurred due to a kinetic delay in phase
transformation, could be a possible explanation for the shifted heating/cooling peaks. Upon the
attained results, the subcooling is lower in paraffins, also known as alkanes (about 1.2–2 K), compared
to the PureTemp 25 (made of fatty acids) with about 4.3 K subcooling. These phenomena occur even if
the amount of stored/released heat stayed almost the same (see Figure 13).

Finally, the Tonset,heating and Tonset,cooling are reported in Table 3. They are representing the
extrapolated peak start temperature (defined Tp,ini,e as sample transformation temperature by DIN
51007:2019 [39]). These temperature values represent the intersection point of the extrapolated start
baseline with the tangent (or a straight) line through the linearly rising or falling part of the endothermic
or exothermic peak. The onset temperatures are worth knowing since at this point the lower surface
area of the sample (crucible bottom) begins to change phase, as this temperature can be determined
sufficiently reproducible and is almost independent of the heating rate. All other temperatures largely
depend on test conditions, masses and heating/cooling rates (as shown in Figures 5–8).

Table 3. Comparison of extrapolated peak initial temperatures (assigned to the transformation
temperature) of all samples in the melting/crystallization range according to DIN 51007 [39].

PCM
Type

RT24
R 0.250 K/min

RT25
0.125 K/min

RT26
0.250 K/min

PureTemp 25
0.125 K/min

Tonset, heating Tonset, cooling Tonset, heatingTonset, heatingTonset, heatingTonset, heatingTonset, heatingTonset, heating
P1,2,3 3.0 24.3 15.5 25.7 15.6 25.1 23.0 21.9
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4. Stepwise DSC Results

4.1. Heating Rate Effect

Tests with different heating rates (ranging from 2 K/min to 0.125 K/min) have also been performed
for the stepwise DSC method. These activities were scheduled for RT25 and PureTemp 25 under
temperatures ranging between 10 and 30 ◦C (a range which is relevant for the phase transition).

Figure 15a and a show the stored heat, per each temperature interval (being 1 K, representing the
difference between two isothermal temperature increments), while the accumulated specific enthalpy
(latent part only) is shown in Figures 15b and 16b. Actually, these results represent the determined
partial enthalpies and the cumulated ones between 10 ◦C and 30 ◦C from the measurements done for
RT25 and PureTemp 25.

Figure 15. (a) ∆q (T) and (b) h(T) curves determined through stepwise DSC and considering different
heating rates for RT25.

Figure 16. (a) ∆q (T) and (b) h(T) curves determined through stepwise DSC and considering different
heating rates for RT25.
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It is shown in Figures 15 and 16 that all the results, having different heating rates, are completely
overlapping. Particularly, the ∆q-T and h-T (dotted) curves obtained by considering different heating
rates, i.e. 2, 1, 0.5, 0.25 and 0.125 K/min, show almost the same values, with a very small difference
in terms of either ∆q or h values. The enthalpy deviation between the different heating curves has a
maximum of 5 J/g, and this occurred mainly close to the melting range. This difference is less than
3% of the total and specific heat absorbed in the considered temperature range. This means that
with the stepwise method the influence of the heating rate, which classically affects dynamic DSC
measurements, can be neglected. (see Section 3.1 where the results were obtained through dynamic
DSC measurements).

It may be worth mentioning that the length of the relaxation time (namely, isothermal step) is
an important parameter for the temperature resolution of the accumulated heat, especially in the
temperature ranges close to the melting peak (defined as the point in which the maximum amount
of stored heat can be measured). Particularly, to reach thermal equilibrium in these zones a longer
isothermal step is required. This can be observed in Figure 15a where the highest peak (readable in the
ranges 25 ◦C and 26 ◦C) for all tests is obtained for heating rates of 2, 1, 0.5, 0.25 and 0.125 K/min, while
performed with an isothermal step of 10 min. To evaluate the sensitivity of the results regarding the
duration of the applied isothermal step, an additional measurement was conducted for a heating rate
of 0.125 K/min and where the isothermal step was increased from 10 min to 25 min with the aim to
reach proper thermodynamic equilibrium during the phase change transition (see the red curve in
Figure 15). The results clearly show the influence of this increased isothermal step.

4.2. Enthalpy and Phase Change Temperature

The enthalpy measurements, i.e., the absorbed specific heat along the considered temperature
steps, and phase change temperatures obtained by an adopting isothermal step time of 25 min and
various heating rates, are reported in this subsection. Both sensible and latent absorbed heat, in the
range of 10 ◦C and 30 ◦C, are evaluated.

Figures 17 and 18 show a histogram of the stored heat, ∆q (T), between the temperature intervals,
representing the temperature resolution of the acquired data, of 1 K, for the aforementioned tests. The
corresponding tabular data is provided in Table 4. From the results, it can be seen that the melting
of RT25 mainly starts at 15 ◦C and ceases at 26 ◦C. A baseline construction was used to evaluate and
separate the sensible part form the latent one. The sensible absorbed heat was evaluated at 2.10 J/g,
which was in agreement with the value declared in the datasheet, i.e., 2 J/g, (see Table 1). The melting
peak temperature as indicated in Figure 17 can be appreciated in the range of 25–26 ◦C. The (latent)
melting of the PureTemp 25 takes place in a smaller temperature interval (from 21 ◦C to 28 ◦C, see
Figure 18). The absorbed sensible heat of PureTemp 25 was evaluated to 2.89 J/g while its melting point
falls in the range of 25–26 ◦C.

The phase transition enthalpy (considering the latent part only), in the defined melting range of
15 ◦C to 26 ◦C and constructing the baseline at 15 ◦C, was 207.21 J/g for RT25 (see Table 4). This value
is slightly different to the one measured through the dynamic DSC measurements (211.9 J/g reported in
Figure 13). The total latent heat of PureTemp 25, evaluated in the temperature range between 21 ◦C and
28 ◦C, is 207.5 J/g (see Table 4), which somehow deviates from the value measured using the dynamic
DSC method (186.1 J/g, showed in the Figure 13). However, it may be worth mentioning that the
results obtained from dynamic DSC tests or the stepwise methods are highly depending on the baseline
construction, which separates the sensible heat from the latent part. As the baseline-construction can
be done more precisely for the dynamic DSC method rather than for the stepwise one, the final results
of the latent heat by using both the aforementioned methods might be significantly affected.

From the results it can be stated that the stepwise DSC method is capable of cleaning and
eliminating the heating rate effects, which is classically of interest for dynamic DSC measurements.
It is a more appropriate method that is able to capture the total enthalpy in the defined temperature
range by applying predefined temperature steps, and also for validating the melting peak (range)
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more precisely than with dynamic DSC tests. However, some drawbacks are still characterizing the
stepwise DSC method, which is mainly that the temperature resolution adopted in these approaches
is still too high. The smaller the temperature steps, the better the temperature resolution. However,
the measuring time could be considerably longer as the step sizes decrease. In general, the shape
characterization of cp(T) curves can be achieved faster (and more properly) by using the dynamic DSC
method than the stepwise one.Materials 2019, 12, x FOR PEER REVIEW 17 of 22 
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Table 4. Stored heat values (sensible = S, latent = L and total = S + L) of RT 25 and PureTemp 25, as
shown in Figures 17 and 18.

Temp. Range
[◦C]

RT25 (Mass: 16.3 mg) PureTemp25 (Mass: 18.9 mg)
∆q (total: S + L) ∆q (L) ∆q (total: S + L) ∆q (L)

[J/g] [J/g] [J/g] [J/g]

15 to 16 3.03 0.93 - -
16 to 17 10.70 8.60 - -
17 to 18 25.33 23.23 - -
18 to 19 16.96 14.86 - -
19 to 20 7.77 5.67 - -
20 to 21 6.77 4.67 - -
21 to 22 8.26 6.16 4.48 1.59
22 to 23 12.18 10.08 8.30 5.41
23 to 24 17.23 15.13 28.39 25.50
24 to 25 28.13 26.03 48.16 45.27
25 to 26 93.95 91.85 53.53 50.64
26 to 27 - - 62.56 59.67
27 to 28 - - 22.32 19.43

- 230.31 207.21 227.74 207.48

In summary, it can be observed that the temperature resolution for DSC tests depends on the
amount of analyzed intervals, needed to measure the heat storage capacity, within the considered
temperature range. Based on the chosen DSC method the “resolution” of the data, representing the
heat supplied to the sample and the corresponding temperature range, can differ. In the stepwise
method heating is applied in small intervals called “steps”. Thus, the resolution is equal to the height
(or length) of the temperature steps, however it is required that the start and end of each step must
be in an isothermal state. For dynamic DSC tests, the interval is continuously scanned by heating of
the sample. There are actually no steps waiting for thermodynamic equilibrium. This means that the
heating rate needs to be low enough to assure thermodynamic equilibrium within the entire sample.
Theoretically, this will occur by employing a heating rate close to 0 K/min., which is practically not
feasible. This means that the heat supplied to the sample, according to each data recording (equal to
the enthalpy change), cannot be fully assigned to the measured temperature. Too high heating rates
may cause significant errors (less “accuracy” of the results) in the data of the heat stored as a function
of temperature. However, in DSC dynamic tests the resolution of the data itself is only restricted by
the data recording system.

5. Conclusions

In this work, a detailed experimental program is reported for analyzing the Thermal Energy
Storage (TES) capacity of three paraffin-based and one bio-based PCM, employable for construction
and buildings applications. For this aim, the paraffin-based waxes, RT24, RT25 and RT26, and an
eco-friendly bio-based PCM, PureTemp 25 were examined using DSC testing equipment. All selected
PCMs have melting/ crystallization temperatures within the well-known comfort zone temperature
for buildings, e.g., ranging between 19 and 26 ◦C. Heat storage capacities, melting/ crystallization
responses and enthalpies, under both sensible (solid and liquid) and latent TES responses, were
investigated through DSC tests.

Two alternative methods were performed and compared, i.e., a dynamic DSC and a stepwise DSC
method. Based on the results reported in this work, the following conclusions can be drawn:
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• Dynamic DSC tests, performed for all 4 different PCMs and considering several heating rates
(ranging from 10 K/min to 0.125 K/min), showed that the measurable melting peak temperatures
Tm (indicated as that point at which the maximum peak of cp(T), or alternatively the inflection point
of h(T), can be registered), mainly depends on the heating rate. Tm can be shifted progressively to
lower values as the heating rate decreases and vice versa;

• The cp(T) and h(T) curves under dynamic DSC strongly depend on the selected heating rates. Only
the related measure of the accumulated (total) specific (unitary) latent heat is independent to the
heating rate. In general terms, the total achievable h is the same when different heating rates are
assumed, even though the h(T) curves and their slopes, cp(T), are heating rate dependent;

• Dynamic DSC tests, performed by considering 2 different (low and high) sample masses, for
RT25 and PureTemp 25, highlighted that the specimens with a lower mass are less affected by
the heating rate. However, they suffer higher measurement noise and less representativity of the
material under investigation;

• Dynamic DSC results of higher mass samples showed more stable measurements, especially in the
sensible parts, and seemed to be more representative for the behavior of the investigated PCMs.
However, they turned out to be more sensible to heating rate effects under latent heat storage.

• It can be concluded that the selection of the proper “heating rate” and “sample mass” (aimed at
fulfilling the IEA requirements) arises from a compromise between accuracy of the measurements
(i.e., enthalpy, specific heat capacities and melting point) and the mitigation of the heating/cooling
rate effects.

• It can be stated that reliable and reproducible results can be achieved for characterizing the
aforementioned (paraffin- and bio-based) PCMs by following the IEA standard procedure and
adopting the dynamic DSC method.

• Results following the stepwise method demonstrated that both ∆q(T) and h(T) results, obtained by
considering several heating rates (2, 1, 0.5, 0.25 and 0.125 K/min), presented almost the same trend
and similar values (with differences significantly less than 0.2 ◦C and/or in terms of enthalpy of
max. 5 J/g between them). This means that with the stepwise method the heating rate influence,
which classically affects the dynamic DSC, can be fully controlled.

• The main drawbacks of the stepwise method, however, are related to its enormously
time-consuming character, imposed by the test procedure. The required length of the relaxation
time (namely, isothermal step) is sometimes too high to achieve proper results, especially in the
melting region.

• The temperature resolution of the stored heat is considerably higher, using the stepwise method,
in comparison to the dynamic one. However, a maximum resolution of 1 K, as those employed in
the stepwise method of this study, is not high enough to obtain the cp(T) curve of the material,
which would require smaller discretized temperature steps, and also does not allow describing
the melting temperature of the material in a concise way.

• The results obtained following both dynamic and stepwise methods are dependent on the baseline
construction, which allows separating the sensible from the latent heat part. In this regard, the
baseline-construction can be more precisely built in the dynamic method than the stepwise one,
because more valuable measurement data can be evaluated within very small temperature steps.
For this reason, the stepwise method is more appropriate to measure the total enthalpy (both
sensible and latent heat) in defined temperature steps and also validating the melting peak reached
from the dynamic procedure, while the dynamic measurements can ascertain the stored latent
heat much more quickly and precisely. Then using the IEA Standard, dynamic measurements are
less time-consuming and also more precise to characterize the melting behavior of the material.

Further experimental characterizations of the TES capacity of several other types of bio-based
PCM, to be employed as environmentally friendly substitute of petroleum-based PCM in cement-based
systems, are currently under development.
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