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Abstract: The main purpose of this work was to experimentally determine the effect of the cooling rate
during the eutectoid transformation on the corrosion resistance of a hypoeutectic Zn-4Al cast alloy
in 5% NaCl solution. This was considered in relation to the alloy microstructure. For this purpose,
metallographic and electrochemical studies were performed. It was found that the faster cooling
promoted the formation of finer (α + η) eutectoid structures, which translated into a higher hardness
and lower corrosion current density. In the initial stage of corrosion processes the eutectoid structure
in the eutectic areas were attacked. At the further stages of corrosion development, the phase η was
dissolved, and the α phase appears to be protected by the formation of corrosion products.
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1. Introduction

Zinc-based alloys have good tribological properties, relatively high mechanical strength and
hardness values, and show good castability due to their low melting points. These features make them
good candidates for use in automotive and electronics applications, and they have also been used in
the production of small components and plain bearings. Studies have shown that these alloys have
superior wear resistance to common copper-bearing alloys. Adhesion and smearing are the main wear
mechanisms of zinc-based alloys, while abrasive wear is the predominant wear mode in bronzes [1–5].
In the last decade, zinc has been extensively studied as a potential biocompatible and biodegradable
metal for medical applications [4,6–10].

Zinc has one of the lowest electrode potentials, and machines made from it are highly susceptible
to electrochemical corrosion due to the formation of a galvanic cell. The presence of extensive corrosion
may also affect other co-working components made of different materials. The resulting corrosion
products affect the pH of the surrounding environment, which, in turn, may accelerate the degradation
of lubricants. On the other hand, a low electrochemical potential gives zinc and its alloys broad
application prospects as cathodic protection coatings. Thus, Zn-Al alloys may be used to replace
traditional zinc galvanic coatings [11–18] The commercial Galfan alloy has found broad applications in
this area [18] but it exhibits several serious drawbacks, including a low creep resistance, low shape
stability associated with aging, insufficient corrosion resistance in acidic and alkaline environments,
and a low cavitation erosion resistance [5,19–21]

The main alloying elements in Zn-based alloys are aluminum, magnesium, and copper. Cast
Zn-Al alloys are commercially available under the Zamak tradename, the most popular of which is the
Zamak 3 alloy which has a nominal composition of 4% Al. This aluminum content classifies this alloy
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as hypoeutectic (Figure 1) whose microstructure is composed of a η-Zn(Al) dendrite solid solution and
(α+η) eutectic phases, in which the α solid solution is Al(Zn).
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Chloride ions are one of the primary catalysts responsible for the corrosion of zinc and its alloys.
Components made from these alloys are exposed to chloride ions in both seawater and also in seaside
environments. Micron-sized salt aerosol particles can be deposited on elements located as far as
10 km from the shoreline. The threat in engineering practice may be intergranular corrosion by
chloride ions [10,22,23], which was the main reason that a solution rich in these ions was used as a
corrosive environment.

Analyzing the corrosion mechanisms of Zn-based alloys is challenging due to their complex
microstructures. However, previous studies have only focused on the influence of factors affected by
the crystallization conditions (from the temperature of the liquid phase). This translates into an effect
on the size and branching of dendrites, as well as eutectic dispersion. Thus, practical considerations are
important during casting. The grain size and microstructure morphology (affected by the crystallization
conditions) [5,16,17,19,24] and cooling rate have been shown to affect the corrosion resistance of zinc
alloys [12,24–27]. Finer dendrites were shown to improve the corrosion resistance of hypoeutectic
alloys, whereas a coarse microstructure was more preferable for hypereutectic alloys [5,17]. The aim
of this work was to determine the effect of the cooling rate during the eutectoid transformation on
the corrosion resistance of a hypoeutectic Zn-4Al alloy. These changes apply to the crystallized alloy
and are relevant to determining a heat treatment process. As a part of this research, samples were
heat-treated at temperatures higher and lower than the eutectoid transformation, and electrochemical
studies were combined with metallographic studies to confirm the effect of heat treatment on the
alloy’s microstructure. The surface condition of the alloy was assessed after electrochemical tests to
determine the role of microstructure during corrosion.

2. Materials and Methods

The investigated material was a Zn-4Al alloy that was fabricated by melting and casting pure
elements (99.995% Zn and 99.7% Al) in a PIT10 induction furnace. The obtained material was subjected
to heat treatment by annealing for 1 h at 250 ◦C and 300 ◦C, followed by cooling. The samples were
quenched in water and cooled in air or in a furnace. The scheme of the research design is shown in
Table 1.

Hardness measurements were performed using the Vickers method. Microscopic examinations
were carried out using a stereoscopic microscope (Leica M205 C, Leica Microsystems, Wetzlar, Germany),
a light microscope (Nikon Eclipse MA 200, Nikon Instruments Inc., Tokyo, Japan), and a scanning
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electron microscope (SEM) (Phenom World ProX, Thermo Fisher Scientific, Waltham, Massachusetts,
USA). Light microscopy was used to examine metallographic sections to identify microstructural
features after Nital etching (3% nitric acid in ethanol) and 5% NaCl solution. Stereoscopic and SEM
microscopes were used after electrochemical measurements to illustrate the corrosion progress.

Table 1. Scheme of the research design.

Material Methods

As delivered

Hardness measurements,
Microstructural examination,
Electrochemical examination,

SEM surface evaluation

Heat treatment at 250 ◦C
Furnace cooled

Hardness measurementsAir cooled
Water quenched

Heat treatment at 300 ◦C
Furnace cooled Hardness measurements,

Microstructural examination,
Electrochemical examination,

SEM surface evaluation
Air cooled

Water quenched

Polarization tests were performed using a three-electrode cell with a potentiostat (ATLAS 0531
ELEKTROCHEMICAL UNIT & IMPEDANCE ANALYSER, Atlas-Sollich, Gdansk, Poland). The
auxiliary electrode was made of austenitic stainless steel, while a saturated Ag/AgCl electrode was
used as the reference electrode. Just before the experiments, samples were subjected to mechanical
grinding with 800 SiC emery papers. The surface area of the working electrode (the sample) was 0.785
cm2. Before experiments, each sample was immersed for 20 min in 250 mL of a 5% NaCl solution at
room temperature. After that, the open circuit potential (EOCP) was measured. Polarization tests were
conducted in the same solution by stepping the potential in the anodic direction using a scanning
rate of 1 mV/s from −250 mV relative to the open-circuit potential. The pH of the applied solution
was 7.5. Four anodic and cathodic polarization curves were recorded for the as-delivered material.
The initial potential value was 200 mV lower than the EOCP value. The polarization of each tested
sample was terminated at different potential values. Thus, the potentiodynamic curves were stopped
at potentials of +150, +225, +300, and +450 mV vs. Ecorr. Polarization curves were also obtained for
samples heat-treated at 300 ◦C. Three curves per series were determined for the heat-treated alloy.
The polarization curves were plotted using an automatic data acquisition system, and the corrosion
potential (Ecorr) and corrosion current density (Icorr) were estimated by Tafel plot extrapolation.

3. Results

3.1. Hardness Measurements

The hardness measurement results and their standard deviations in Figure 2 show that the
hardness of the as-delivered material was 58 ± 2 HV1. Changing the cooling rate affected the hardness
of samples heat-treated at 300 ◦C. The hardness increased by more than 20 HV1 for the water-quenched
sample compared with the material that was furnace-cooled from the same temperature (300 ◦C). This
is due to the eutectoid transformation which occurred at 275 ◦C. Faster cooling promoted the formation
of finer (α + η) eutectoid structures from the γ phase, while slower cooling allowed the alloy to form a
coarser eutectoid structure, which translated into a lower hardness. The increased hardness due to
the increased cooling rate realized from the beginning crystallization temperature and microstructure
refinement has been observed by other Authors [27].

To provide a comparison, heat treatment was also carried out at a temperature lower than the
eutectoid transformation, i.e., 250 ◦C, and various cooling rates were also used. The cooling rate had
no effect on the material hardness at this temperature, which indicates that the formed microstructure
was stable. The slight differences in the hardness values were within the standard deviation.
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Figure 2. Hardness values obtained for heat-treated Zn-4Al alloy at 250 and 300 ◦C using various
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3.2. Microstructural Examination

The microstructure of the material in delivered state was typical of hypoeutectic Zn-Al alloys
(Figure 3). Dendrites of the Zn-base solid solution (η) and an (α + η) eutectic lamellar structure were
visible. The microstructure contained the product of eutectoid decomposition because the γ phase was
transformed into (α + η) phase at 275 ◦C, as shown in Figure 1. On the other hand, rod-like eutectic
features that may have been formed due to rapid quenching were not observed [11].
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Figure 3. Microstructure of examined Zn-4Al alloy (as-delivered). Visible dendrites of η phase and a
eutectic lamellar morphology (α + η). Etched with 10% NaCl solution. (a) Light Microscopy, (b) SEM.

After heat treatment at 300 ◦C, the effect of the cooling rate on the phase distribution in the eutectoid
structure was examined (Figures 4 and 5). During the applied heat treatment, only the morphology of
the microconstituents inside the lamellar structure was affected by eutectoid decomposition. Some
divorced eutectic structure was also observed along the grain boundaries. Despite the eutectoid
decomposition, the morphology of the interdendritic lamellar eutectic structure was not affected
because it was not subjected to any solid-state transformation (Figure 4).
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air-cooled, (c) water-quenched. A finer (α + η) eutectoid phase was formed from the γ phase. Etched
with Nital. SEM.
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3.3. Electrochemical Examinations

Figure 6 shows a comparison between the polarization curves of investigated samples. The
corrosion current density and corrosion potential were estimated from the polarization curves using
the Tafel extrapolation method (Table 2). The corrosion test results of the as-delivered material are
presented as the average of four measurements. For the heat-treated samples measurements are shown
as the average of three measurements. As expected, the Zn-4Al alloy had a negative corrosion potential,
and the four curves obtained for the as delivered material were similar. This value was consistent with
the results of other Authors [6,16]. A strong increase in the current density during the initial stage of
the anodic curve was found, which indicates highly intense electrochemical processes.

The microstructure of the investigated material was composed of two phases—anα aluminum-rich
solid solution and a η zinc-rich solid solution. The resultant electrochemical potential was closely
related to the phase heterogeneity of the zinc alloy, i.e., to the corrosion potential of each phase. The
phases with various electrode potentials became anodic and cathodic during contact between the
alloy and the electrolyte [28]. Al has a nobler electrochemical behavior than Zn [17,29], and similar
behavior should be attributed to Al-base and Zn-base solid solutions. It was previously shown that the
anodic nature of the η phase depends on the pH of the corrosive agent [16,24,30]. In slightly acidic or
neutral environments, the α phase is nobler than the η phase, so it may act as a cathode. Conversely,
in alkaline environments, the α phase may play the role of the anode [24,30]. Shihirova at al. [31]
indicated that the electrochemical behavior of phases may be associated with local pH changing and
their thermodynamic stability in this corrosive environment. In this study, experiments were carried
out at a slightly alkaline pH of 7.5. However, the anodic processes lead to a local reduction pH due to
the H+ produced from the hydrolysis of Al3+ [32].

The test results show that the corrosion current density and corrosion potential change as the
microstructural morphology changes. The other morphologies were obtained due to different cooling
rates during the eutectoid reaction. A very important factor in galvanic corrosion is the ratio of the
anodic to cathodic area. If the surface of the cathode is larger than the anode, then more oxygen
reduction or another cathodic reaction can occur, which increases the galvanic current. However, in
this case, it remained at the same level, but the distance between the anode and cathode changed.

In this case, we had a corrosion microcell, in which the anodes and cathodes were separated by
just a few microns. Previous electrochemical research determined that finer structures show a lower
Icorr compared with a coarse structure. Ecorr remained rather constant, although it showed a slight
decrease. It can be observed that the furnace-cooled structure was related to a corrosion current density
and a corrosion potential of 7.01 µA/cm2 and −1.06 V (vs. Ag/AgCl), respectively, compared with
4.74 µA/cm2 and −1.07 V (vs. Ag/AgCl), respectively, for the water-cooled structure. Increasing the
dispersion of cathode inclusions usually increases the cathode activity. However, if anode passivation
occurs or a surface film of corrosion products forms, its activity can be decreased, and the anode
process will be inhibited. On the other hand, the short phase distances typical of eutectoid structures
may have protected the anode phase. This effect may be clearer due to the finer eutectoid structure.

The Ecorr value was more electronegative than EOCP. The differences between the EOCP and Ecorr

values were due to the diffusive nature of the cathode potential curve, which has been previously
observed during anodic polarization [29].

Table 2. The electrochemical parameters obtained for as delivered samples, as well as samples
heat-treated at 300 ◦C and subjected to different cooling rates.

Sample Icorr
(µA/cm2)

Ecorr
(V) vs. Ag/AgCl

EOCP
(V)

As delivered 9.45 ± 0.36 −1.05 ± 0.01 −1.02 ± 0.01
Furnace-cooled 7.01 ± 0.23 −1.06 ± 0.01 −1.02 ± 0.01

Air-cooled 5.47 ± 0.9 −1.06 ± 0.01 −1.03 ± 0.01
Water-quenched 4.74 ± 0.20 −1.07 ± 0.01 −1.05 ± 0.02
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heat-treated at 300 ◦C in 5% NaCl solution. In the curve of the sample polarized to the highest
potential value, the potential values (relative to Ecorr) were marked where polarization was stopped.

3.4. SEM Surface Evaluation after Corrosion Tests

The surfaces of the as-delivered material after electrochemical study were examined using SEM.
Samples whose anodic polarization was terminated at different potential values were examined in
order to illustrate the corrosion progress in chloride-containing media. The results were discussed in
relation to the structural features of the alloys.

Corrosion began locally with the formation of aluminum-rich corrosion products (Figure 7,
Table 3). The microscopic observations of the sample tested after reaching a potential of +150 mV
versus Ecorr, did not permit the determination of which structural features underwent corrosion at this
stage of development. However, the high aluminum content in the corrosion products on the surface
suggested that degradation mainly involved eutectic areas. The formation of aluminum-rich corrosion
products first may be unfavorable from the point of view using the alloy as a biomaterial.

Previous works have reported the preferential oxidation of Al-rich areas [29,33]. Other authors
have shown that the α phase was protected at the initial stages of corrosion due to the formation of a
corrosion product surface film that contained various aluminum-rich phases [24,34–36]. The presence
of chlorine indicates that chlorides play an active role in the formation of corrosion products (Table 3).
The simultaneous presence of Zn, Al, and Cl in the EDX spectra may be attributed to the formation of
Zn2Al(OH)6Cl·2H2O, which has been reported to form during the early stage of corrosion [18]. Other
Authors have observed an Al2(OH)5Cl·2H2O phase [35,36]. In this case, zinc may be associated with
the base material. It is believed that, regardless of the chemical composition, these phases provide
excellent protection against further corrosion.

Based on the electrochemical tests and the above literature data, it can be hypothesized that the
finer Al-base phase in the eutectoid structure may result in the formation of a more compact corrosion
product film that increases the temporary corrosion protection. The formation of a corrosion product
film on the α phase can help reduce the corrosion current density as the distance between eutectoid
components decreases. Consequently, the finer distribution of the two phases that formed during
eutectoid decomposition in the eutectic mixture tended to decrease their corrosion rate.
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Figure 7. (a) SEM image of the surface of a sample after polarization up to a potential of +150 mV vs.
Ecorr. Corrosion initiation areas are visible. The corrosion products are rich in aluminum and chlorine
(marked with point 1 and summarized in Table 3; (b) characteristic X-ray emission spectrum obtained
from point 1 in Figure 7a.

Table 3. Chemical composition obtained from EDX analysis of point 1 in Figure 7a.

Element Atomic
%

Weight
%

Zn 22.15 45.88
Al 39.14 33.47
O 37.04 18.78
Cl 1.67 1.87

As corrosion progressed and the potential increased to +225 mV vs. Ecorr, the alloy selectively
dissolved. At this stage, due to the formation of an electrochemical cell between the α and η phases,
the eutectoid (α + η) became susceptible to corrosion (Figure 8). Thus, the anode phase was present
only in eutectoid areas, which suggested the α phase. When immersed in the corrosive solution, the
hypoeutectic Zn-4Al alloy displayed Al-rich regions (the phase of the eutectic structure) which acted as
anodic barriers that protected the η phase. Corrosion gradually occurred throughout the entire eutectic
area (Figure 9), which was also reflected by a macroscopically visible color change over the sample
surface where eutectics formed. The selective dissolution of eutectic areas has also been documented
in other works [18,24,37]. Despite this, the local dissolution of η phase dendrites was also observed at
higher magnifications (Figure 9a).
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Figure 9. (a) SEM image of the surface of a sample after polarization up to a potential of +225 mV vs.
Ecorr. Selective dissolution of the Zn-4Al alloy is visible. The dark areas represent areas in which the
eutectic structure has dissolved. (b) Magnified image.

The sample polarized up to a potential of +300 mV vs. Ecorr experienced more extensive corrosion
of the eutectic areas over its entire surface (Figure 10). At this stage, the dissolution of the η phase and
the revealed α crystals (or products of its corrosion), was observed at the macroscopic scale (Figure 11).
This is consistent with the observations that the lamellar structure enables the storage of corrosion
products in areas of the corroded α phase, thereby delaying the corrosion process in the eutectic η

phase [36]. A higher oxygen content was observed in the dendritic regions (Figure 12). The dendritic η
phase dissolved and underwent anodic dissolution reactions [29] which resulted in a constant increase
of the current density with the increased polarization potential (Figure 6).
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After reaching a potential of −675 mV vs. Ag/AgCl (+450 mV vs. Ecorr) the current density
decreased on the potentiodynamic curve (Figure 6). The SEM observations of samples tested at a
higher potential revealed that at this stage, corrosion extended to all structural constituents (Figure 13).
Due to the selective dissolution of the η phase and the macroscopic exposure of (α + η) eutectoid areas,
surface topography was observed (Figure 14). These microscopic observations suggest the anodic
character of the η phase relative to the α phase in the corrosive solution at this stage of corrosion.
Zn+ ions are formed in the Zn-rich phase (η) due to anodic reactions: Zn→ Zn2+ + 2e−, while the
Al-rich phase (α) is expected to be responsible for the cathodic reactions: O2 + 2H20 +4e−→ 4OH−.
This indicates that despite the initiation of corrosion in areas of the α phase, there is a change in the
η phase polarity and its corrosion. This is most likely due to the formation of a corrosion product
film on the surface of the α phase that protects it from further corrosion, in accordance with other
works [18,24,34]. Thus, changing the anodic zone polarity due to the formation of a protective film can
be used in corrosion protection [38].
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Figure 14. 3D SEM topography of the sample surface after polarization up to a potential of +450 mV
vs. Ecorr. The image based on “shape from shading” technology shows the selective dissolution of the
η-phase and a macroscopic exposure of the eutectic structure. Blue indicates the lowest areas, while red
represents the highest features.

4. Discussion

The results were intended to discuss the effect of the cooling rate of a Zn-4Al alloy on the corrosion
processes at the eutectoid transformation temperature. The main comments are as follows:

1) The microstructure of the material was typical for hypoeutectic cast Zn-Al alloys and was
composed of a dendritic η-phase: Zn(Al) solid solution and lamellar (α + η) eutectoid. It
contained the products of the eutectoid reaction which transformed the γ phase to (α + η) at



Materials 2020, 13, 1703 12 of 15

275 ◦C. Increasing the susceptibility to corrosion by increasing the aluminum content in Zn-Al
alloys has been reported in the previous literature [5,19] which may be associated with an
increased volumetric fraction of the (α + η) eutectic. Upon progression of the corrosion process,
the (α + η) eutectoid structure in eutectic areas was attacked first and subjected to intense
corrosion. Therefore, increasing the eutectic volumetric fraction should deteriorate the corrosion
resistance of Zn-Al alloys. The high corrosion tendency of eutectic areas may induce intergranular
corrosion [10,22,23]. In the case of two cooperating details, the accompanying pulverisation
promotes the penetration of material fragments and the corrosion products into the friction
area [22,23].

2) Different cooling rates affected the hardness of samples annealed at 300 ◦C. Water quenching
promoted the creation of a finer (α + η) eutectoid structure from the γ phase in eutectic areas of
the Zn-Al alloy and obtained higher hardness values. Slower cooling formed a coarser eutectic
structure in the alloy, which translated into a lower hardness. After furnace cooling, a hardness
similar to the as-cast material was obtained. Heat treatment at 250 ◦C showed no effect on the
hardness of the Zn-4Al alloy.

3) A finer eutectoid structure decreased the corrosion current density Icorr compared with a coarse
structure, which indicates that the short phase distances of eutectoid structures may contribute to
the protection of the anode phase and reduce the corrosion rate. The corrosion potential Ecorr

remained rather constant, although a slight decrease was observed.
4) In the initial corrosion stage, the α-phase Al-base solid solution served as the anode in a formed

corrosion microcell in the examined corrosive environment. As corrosion further developed, it
extended over the entire alloy surface. Thus, it can be stated that the dissolution of the η phase
was the preferred corrosion mode due to anodic dissolution reactions. This phenomenon may
have been related to the formation of an α-phase corrosion product film. The formation of this
film can also explain the lower corrosion current density due to a decrease in the cathode activity
due to a smaller distance between eutectoid components.

5) If there is an anode phase whose fragments are fine and homogeneously distributed within
the grain, corrosion will lead to their dissolution and the material eventually becomes
quasi-homogeneous. A very different situation takes place for large η phase dendrites which
occurs in the microstructure of Zn-Al alloy. In this case, corrosion develops involving these
structural elements, which decrease the cross-sections of components made of this material.

5. Conclusions

A finer eutectoid structure was shown to improve the corrosion resistance of the Zn-4Al alloy,
which indicates that the small phase distances between the eutectoid structures may help protect the
anode phase. Importantly, this was also accompanied by an increase in the alloy hardness. This issue
is important from the point of view of the heat treatment design of machine components exposed to
chloride ions.

Although corrosion was initiated in the α-phase, the polarity of the η-phase changed, and its
corrosion was observed. This was most likely due to the formation of a corrosion product film on the
surface of the α phase that protected it from further corrosion. A scheme of the corrosion mechanism
is presented in Figure 15.
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