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Abstract: A method for printing continuous flax fiber-reinforced plastic (CFFRP) composite parts
by five-axis three-dimensional (3D) printer, based on fused filament fabrication (FFF) technology,
has been developed. FFF printed parts usually need supporting structures, have a stair step effect,
and unfavorable mechanical properties. In order to address these deficiencies, continuous natural
fiber prepreg filaments were first manufactured, followed by curved path planning for the model
for generation of the G-code, and finally printed by a five-axis 3D printer. The surface quality of
printed parts was greatly improved. The tensile strength and modulus of CFFRP increased by 89%
and 73%, respectively, compared with polylactic acid (PLA) filaments. The flexural strength and
modulus of the 3D-printed CFFRP specimens increased by 211% and 224%, respectively, compared
with PLA specimens. The maximal curved bending force load and stiffness of the 3D-printed CFFRP
specimens increased by 39% and 115%, respectively, compared with the flat slicing method. Advanced
light structures, such as leaf springs, can be designed and manufactured by taking advantage of the
favorable properties of these composites, which endow them with significant potential for application
in the field of automobiles.
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1. Introduction

Three-dimensional (3D) printing technology, also called rapid prototyping or additive
manufacturing, has been rapidly developed and widely used in various fields [1]. Fused filament
fabrication (FFF) is one of most widely used 3D printing technologies due to inexpensive equipment
and materials, and ease of operation [2]. FFF forms a 3D geometry by slicing a model along the
XY-plane and assembling the resulting individual layers along the Z-axis, with extruded thermoplastic
filaments, such as acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), polypropylene (PP), or
polyethylene (PE) [3]. Much research has focused on the limitations of the FFF process, such as the
stair step effect and inadequate mechanical strength, and put forward corresponding solutions.

In terms of process parameter optimization, Chacón et al. [4] characterized the effect of build
orientation, layer thickness, and feed rate on the mechanical performance of PLA specimens.
Alaimo et al. [5] studied the influence of meso-structure and chemical composition on the mechanical
behavior of ABS specimens. Mohamed et al. [6] investigated the effect of the parameters on the
viscoelastic response. Sood et al. [7] predicted and optimized the parameters using an artificial neural
network (ANN) in conjunction with a bacterial-foraging optimization algorithm. Bayraktar et al. [8]
also used ANN to analyze the impact of melt temperature, layer thickness, and raster pattern on tensile
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strength. In summary, melt temperature and rate speed have little effect on strength. The number of
contours should be as large as possible, and the layer thickness should be as small as possible. In
addition, 45◦ of the raster angle and 100% infill are the best.

Regarding path planning and the printer, Huang et al. [9–11], Jin et al. [12], Zhang et al. [13], and
Allen et al. [14] proposed a curved layer slicing method in contrast with the flat layer slicing method.
In order to print the path by curved layer slicing, it should be combined with a multi-axis printer. The
printers are now available in many advanced design types. One such design is the Delta-type, whose
variant forms include three pairs of moving parallel arms that hold the print-head in place during 3D
printing operation. A more popular design is the Cartesian gantry design that is usually composed
of drives along the X and Y axes, and a moving platform along Z. Isa et al. [15] added two degrees
of freedom to the platform on the Delta printer model. Asif et al. [16] added the A and B axes to the
extruder on the Cartesian printer model.

The main limitation of FFF is its inferiority in terms of the mechanical properties of the resulting
prototypes. This led to the development of various types of alternative materials in order to improve
the application domain of this technology [17]. Research on fiber-reinforced thermoplastic composites
can be categorized according to the type or size of reinforcements [18]. The variables commonly used in
experiments with short fiber-reinforced composites are weight fraction and fiber type, such as carbon
fiber and glass fiber. Tekinalp et al. [19], Ning et al. [20,21], Anwer et al. [22], Jaszkiewicz et al. [23],
and Ferreira et al. [24] studied different aspects of the above. In experiments with continuous
fiber-reinforced composites, Tian et al. [25–27], Yao et al. [28], Zhang et al. [29], and Hao et al. [30]
studied composite behavior and printing using continuous carbon fiber-reinforced plastic (CCFRP). On
this basis, Hu et al. [31] manufactured continuous carbon fiber prepreg filaments, in which the flexural
strength of the final printed parts can reach as much as 610 MPa. Caminero et al. [32] printed carbon,
glass, and Kevlar fibers in the middle layer of thermoplastic using two extruders. Matsuzaki et al. [33]
printed carbon and natural jute fiber composites by in-nozzle impregnation. In conclusion, continuous
fiber-reinforced plastic fabricated using prepreg showed superior mechanical properties.

However, many limitations persist in the CCFRP printing process due to the stiffness of carbon
fiber; most machines adopt the solution of double nozzles (e.g., Markforged [34], Anisoprint [35]). In
addition, the high-cost, high-energy consumption carbon fiber manufacturing process is still significant.
In contrast, natural fibers have the characteristics of light density, low price, and abundant sources. If
it is possible to replace carbon fibers with natural fibers in the field of light-weight manufacturing, it
will be very beneficial. At the same time, in order to improve the printing quality and mechanical
strength of composites, two degrees of freedom were added to the printer. Taking into consideration
the factors discussed above, this paper presents a novel method to print continuous flax fiber-reinforced
plastic (CFFRP).

2. Materials and Methods

2.1. CFFRP Filament Manufacturing

As shown in Figure 1, a single screw extruder and composite extrusion mold were employed for
the manufacturing process. The process could be divided into four steps as follows:

Heating: the diameter of PLA-GH401 (Guanghe Co., Ltd., Shanghai, China) pellets was 0.5 mm,
added through the barrel, and the extruder was equipped with heating and heat preservation devices,
so that the solid pellets were heated to a melting state and had certain fluidity. The heating band,
which could be heated up to 300 ◦C, was placed in the front part of the single screw extruder. The melt
extrusion temperature of PLA was set at 190 ◦C.

Extruding: the single screw extruder squeezed the molten PLA resin into the composite extrusion
die. The extrusion speed of the screw was from 200 to 600 mm/min. The selected extrusion speed
needed to be compatible with the composite filament diameter and collecting speed.
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Compounding: the die had a vertical opening where a 3D printer nozzle was attached and
the diameter of the upper hole was 1.2 mm. Flax fibers of which the diameter was about 0.5 mm
were introduced and coated by the molten PLA resin as shown in Figure 1c. The diameter of the
CFFRP prepreg filaments could be changed by varying the 3D printer nozzle. The flax was a two-ply
yarn of 68Tex. The diameter of CFFRP prepreg filaments was set to 0.8, 1.0, and 1.2 mm by the 3D
printer nozzle.

Collecting: the dragger machine maintained constant speed and tension during the entire
manufacturing process. At the same time, the composite material was mechanically collected into rolls.
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2.2. 3D Printer

3D printed CFFRP specimens were manufactured using a five-axis 3D printer, which had an
added B-axis with an extruder that rotated around the Y-axis and C-axis with a platform that rotated
around the Z-axis, in addition to the three ordinary axes of the Cartesian printer model. As shown
in Figure 2, the overall size of the printer frame was 470 × 450 × 460 mm, and the maximum size
that could be printed was 100 × 100 × 100 mm. The C-axis platform and rotating mechanisms could
be removed and therefore, without the C-axis, the printing size was 190 × 170 × 150 mm. When the
B-axis pointed to the negative direction of the X-axis, it was 0◦. However, it could be rotated from 0◦ to
180◦, while the C-axis could be rotated freely (360◦). The shortest line of 0.2 mm could be printed to
approximate the curve. The printer’s extruder was modified, since the CFFRP could not be squeezed
like pure melted PLA. The diameter of the nozzle matched the diameter of the CFFRP filaments. The
printer adopted was the Atmega2560 (Airuide 3D Co., Ltd., Shenzhen, China), which used the same
CPU, the Arduino MEGA, as the master control chip of the slave computer, called the RUMBA (RepRap
Universal Mega Board with Allegro driver). Marlin 1.0.2 [36] was used as firmware to communicate
with the host computer in order to control five-axis printing.

2.3. Tests

Tensile, three-point bending and curved bending tests were conducted using the microcomputer
controlled electronic testing machine (WDW-1, SONGDUN Corp., Shanghai, China). Surfaces of
the filaments and fracture surfaces of the tested specimens were observed with a HITACHI SU-1510
(HITACHI Ltd., Tokyo, Japan) scanning electron microscope (SEM). The geometry of the specimens
was designed using computer aided design software and exported as STL files. The main dimensions
of the specimens are shown in Figure 3. For tensile tests of filaments (refer to ASTM D4018 [37]), test
length was 150 mm (Figure 3a). The tensile strength was σt using σt =

F
A , where F is the tensile load

and A is the cross-sectional area of the specimen. The tensile modulus was Et using Et =
∆S
∆St

, where
∆S is the stress increment and ∆St is the strain increment.
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Figure 3. Standard specimens for testing. Dimensions are in mm. (a) Specimens for CFFRP tensile test.
(b) Specimens for three-point bending test. (c) Specimens for curved bending test. (d) Analysis of force
of curved structure.

For three bending tests of CFFRP-printing (refer to ISO 14125:1998 [38]), the specimens were
60 mm × 15 mm × 2 mm, and the support span was 40 mm (Figure 3b). The flexural strength was
σ f using σ f =

3F × L
2b × h2 , where F is the failure load (N), l is the distance between the two supports, b is

the width of specimen, and h is the thickness of the specimen. The L was set at 40 mm. The flexural
modulus was E f using E f =

L3
× ∆P

4b × h3 × ∆S , where L, b, and h have the same meaning as the variables
above; ∆P is the increment of load in the initial linear part of the load and deflection curve; and ∆S is
the increment of deflection corresponding to ∆P at the midpoint of L.

For curved bending tests, the specimens were 80 mm in length, 10 mm in width, 3 mm in thickness,
and the radius of the curve was 60 mm (Figure 3c). When there was a load on the top of the specimen,
analysis of force of the curved structure was calculated as shown in Figure 3d. It is known that the
mechanical strength of fiber-reinforced polymers is highest in the direction of fiber alignment, so we
tried to ensure that continuous fibers were arranged along the direction of the force gradient. The
build orientation was divided into three types: upright, flat, and curved. The curved bending stiffness
k (N/mm), which refers to the ability of structures to resist elastic deformation when subjected to a
force, was calculated using k = F

δ , where F is the force load (N) acting on the structure, and δ is the
deformation (mm) due to the force. Tensile tests of the CFFRP prepreg filaments and bending tests of
the specimens are shown in Figure 4.
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of continuous carbon fiber-reinforced plastic (CCFRP) specimens. (c) Curved bending test of curved
CFFRP 1.0 mm specimens.

In curved bending test experiments, all parameters of printing except the build orientation were
constant. For PLA printing, the temperature of the nozzle was 200 ◦C, layer thickness was the height
of a single layer, chosen as 0.35 mm, both the number of contours and number of roof and floor layers
were 1, and the fill density of specimens was 100%. For upright and flat build orientation, the model
was sliced using the 3D print Cura 15.04.6 [39] slicing engine, and the raster angle was 45◦. For CFFRP
printing, the thickness was 0.5 mm and the printing speed was 100 mm/min.

3. Results and Discussion

3.1. CFFRP Filament Tests

Tensile strength and tensile modulus test results of CFFRP filaments are shown in Figure 5.
The tensile strength of PLA filaments was 47 MPa, and the tensile modulus was 1.7 GPa. When
continuous flax fibers were coated by PLA, the tensile strength increased with the decrease of the
CFFRP composite’s diameter, which meant that the proportion of flax fiber increased. The weight
fraction of flax in CFFRP is depicted in Table 1. The maximum tensile strength was 89 MPa when
the diameter of the CFFRP was 1.0 mm, and the maximum tensile modulus was 2.9 GPa when the
diameter of the CFFRP was 0.8 mm. SEM images of the filament surfaces are shown in Figure 6. The
reason for the slight decrease in the tensile strength when the CFFRP diameter was 0.8 mm was that
the surface-coated PLA could not be uniformly wrapped around the flax fiber due to the limitations of
the machine, and there would be thinner or uncoated sections of the fiber; but a diameter of 1.0 mm
would avoid this problem. In addition, because the composite mold had a vertical opening, during
the process of composite materials forming, air would enter from the top of the opening, resulting in
bubbles in the composite material and slightly increased surface roughness of the filaments. However,
this did not affect the printing because the PLA outside the composite material was re-melted during
the printing process.

Table 1. Weight fraction of flax in CFFRP.

Diameter of CFFRP (mm) Weight Fraction of Flax (%)

1.2 10.6
1.0 20.4
0.8 36.7
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3.2. Three-Point Bending Test of CFFRP

Figure 7 displays the three-point bending test results of three specimens printed by CCFRP,
CFFRP, and PLA. Flexural strength of CFFRP-printed specimens was 132 MPa, 211% higher than
PLA-printed, which had flexural strength of 42 MPa, but much lower than CCFRP-printed, which had
flexural strength of 372 MPa. Flexural modulus of CFFRP-printed specimens was 7.0 GPa, 224% higher
than PLA-printed, which had flexural modulus of 2.2 GPa. The flexural modulus of CCFRP-printed
was 34.9 GPa. Although a reinforcing effect like that of CCFRP was not achieved, comprehensive
consideration of the cost, environmental protection, and degradability of natural fibers suggests CFFRP
is a reinforcing material with great application potential.Materials 2020, 13, x FOR PEER REVIEW 7 of 11 
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3.3. Build Orientation of Specimens

Figure 8 depicts load-displacement curves of the curved bending test. As shown in Figure 9a,
when the build orientation was upright, the stair step effect was obvious. The maximal curved bending
load was 90 N and the stiffness was 14.8 N/mm. In the slicing software, the support density and
distance between the support and the model entity were adjustable. However, the less the support
and the larger the distance, the easier it was for the support to peel off, leading to poor support of
the model and model deformation. A more serious problem was that during the process of support
stripping, the surface of the model would be damaged, and the roughness would be greatly increased.
In order to solve this problem, the method of printing water-soluble support materials with dual
nozzles has been proposed, but it increased the cost of printing and forfeited the advantages of the
FFF process. Compared with Figure 9b, when the build orientation was flat, it needed no support.
However, it was not applicable to all curved surface models. Most models still needed to be supported
when they were printed in the flat direction, and the surface roughness was similar to that obtained
when the direction was upright. For the maximum curved bending load shown in the samples printed
in PLA (non-reinforced), the value was 155 N because the 45◦ intersection filling path provided a good
load-bearing capacity on the stress surface in the curved bending test. Furthermore, there were large
voids printed when the build orientation was upright or flat as shown in Figure 10a,b. Due to the
limitation of the slicing algorithm and the shape of the extruded filaments, voids were inevitable, but
reducing the voids to obtain a larger filling rate could improve the mechanical properties.
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Figure 9c displays the specimens of the curved build orientation by the five-axis machine. Although
the specimens still needed support, the support did not peel off so that they were destroyed, and could
be reused with the help of masking tape. The curved path eliminated the stair step effect and improved
the surface quality. In the curved bending test, the maximal curved bending load was 119 N, slightly
lower than that in flat printing, which was due to the compactness of filling; that is, the void formation
inside the model. The motor that controlled the rotation of the extruder was set on the X-axis rail. The
additional weight of the motor caused the extruder to tilt downward slightly, which increased the
instability of the nozzle. Furthermore, excessive printing speed and uneven support could cause a
slight jitter of the extruder. Therefore, existing 3D printers mostly use double-rod cross-axes to install
and fix, because the more stable the extruder, the higher the accuracy; the more compact the filling, the
more favorable the mechanical properties. Moreover, the stiffness was the highest in PLA specimens,
and the value was 23 N/mm. Because the curved path ensured the continuity of the filling of the
filaments, the deformation of the continuous filaments required greater force (Figure 9c).
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Figures 9d and 10d show the details of the CFFRP specimens including fractured surfaces.
Maximal curved bending load and stiffness of CFFRP composite materials were 39% and 115% higher
respectively than those of flat build orientation, and 81% and 88% higher respectively than those of the
same curved path printing of PLA filaments. Due to reinforcement by the flax fibers, the performance
of the specimens was significantly improved.

A 3D printed leaf spring part was fabricated using CFFRP prepreg filaments and curved path
planning as shown in Figure 11a. The leaf spring bears the impact of the wheel on the frame, reduces
the violent vibration of the body, and maintains the stability of the vehicle, and the adaptability to
different road conditions. When the leaf spring was subjected to load shock, it underwent a stretching
motion; that is, extrusion tension. An advanced structure such as a shoe cap (Figure 11b) can be
designed and manufactured by taking advantage of the favorable properties of this composite, which
endows it with significant potential for application. The average density of specimens printed by
CFFRP 1.0 mm composites was around 1.167 g/cm3.
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4. Conclusions

In order to improve the FFF process, prepreg filaments were manufactured as a first step.
Subsequently, the angle of the extruder was calculated according to the path of the curved layer.
Finally, the specimens were printed by a five-axis 3D printer which had a B-axis added to the extruder
and a C-axis added to the platform of the Cartesian printer model. We studied the results of tensile
tests of CFFRP and curved bending tests of printed specimens. Different ranges of two main process
parameters were analyzed: the diameter of filaments and build orientation. Both achieved considerable
improvement compared to parts printed with pure PLA. CFFRP filaments and curved path printing
make up for the deficiencies of the FFF process. If natural fibres such as flax can be used in FFF printing
of functional parts, it will have far-reaching significance in the field of composite fabrication where
most demand is for low-weight and high-performance parts.
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