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Abstract: In this paper, a novel algorithm for the determination of Walker damage in loaded disc
springs is presented. The algorithm takes a 3D-scan of a disc spring, measured residual stresses,
material parameters, and spring loads as inputs. It outputs a distribution of Walker damage over
the surface area of the input disc spring. As the algorithm allows a fully automated determination
of the Walker damage, it can be used by disc spring manufacturers to reduce the working time
spent on this task by specialized engineers significantly. Compared to spreadsheet applications
using analytical formulas and finite element models using idealized geometry, this approach offers a
superior description of the stress states in disc springs.
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1. Introduction

The fatigue behavior of disc springs can be described by models ranging widely in complexity.
Simple models like the one described in [1,2] can be implemented using spreadsheet applications,
e.g., Microsoft Excel. As models become more sophisticated, the expense of building and evaluating
the model rises. With the latest step in creating more complex models, the introduction of scanned
geometries, superposed residual stresses, and the Walker damage parameter, the need for a novel
algorithm for the determination of Walker damage in loaded disc springs has arisen.

The algorithm described in this paper is implemented in the Spring_stack Python module, which
can also be used for other applications. For more information on the simulation of single disc springs
without a 3D-scanned geometry or with multiple springs in one assembly, see [3,4].

The algorithm is the first published algorithm to build and evaluate a finite element model from a
3D-scanned geometry without user interaction. It allows the user to obtain an understanding of the
influence of geometric deviations that are present in a batch of disc springs on the lifetime of individual
disc springs under cyclic loading. This would be impossible without the algorithm because manually
conducting a finite element simulation for each disc spring is prohibitively expensive.

Introductions to the mathematical description of disc springs and to the Walker damage parameter
are given in Section 2. In Section 3, an algorithm used to describe Walker damage at the surface of
a 3D-scanned disc spring is presented. Its implementation is described in Section 4. An example
application is presented in Section 5. We recommend that readers without programming experience
read Section 5 before Section 4.
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2. Related Research

2.1. Mechanical Behavior of Disc Springs

The first mention of conical disc springs with a rectangular cross-section in the literature was
BELLEVILLE’s patent in 1861 [5–7]. The first formulas to compute the characteristic of disc springs,
as well as the stresses present in disc springs under load were published by ALMEN and LASZLO in
1936. These formulas are still in use in today’s standards [1,2], supplemented by a friction formulation
published by CURTI and MONTANINI [8]. There is a variety of other approaches for the analytical
assessment of disc springs, each bringing its own advantages, such as improved accuracy [9–19],
improved simplicity [20], applicability for different geometries [21–28], consideration of new material
laws [29–31], offering a new concept for friction [32], or allowing the computation of resonance
frequencies [33].

Analytical assessment of disc springs allows a direct understanding of the mechanical nature of
disc springs and even the direct identification of links between geometric features and stresses. It also
offers a sufficiently precise description of disc springs for applications like fatigue design according to
EN 16983 and EN 16984 [1,2] at low computational costs. They can also be automated easily, which
makes these approaches attractive for optimization algorithms like [34,35] and for analytical models of
systems containing multiple components like [36,37].

Since the 1980s [38], disc springs have also been assessed using finite element analysis (FEA).
While FEA is expensive in licensing, computational cost, and training, it allows models to be adapted to
new, similar problems quickly. The first FEA models were used to exceed the accuracy of the analytical
approaches available at that time [39,40]. FEA is still in use for the verification of new analytical
models. FEA has extensively been used to describe residual stresses and changes in the characteristics
created by plastic deformation and creep effects [41–46]. It has also been used to describe disc springs
with complex geometries [47–51] or complex load cases [52], as well as for disc springs made from
new materials [48,53–57] and to describe the behavior of assemblies containing disc springs [58–60].

Today, 2D models of disc springs solve quickly. An automated tool for the processing of 2D
simulations of disc springs was implemented as early as 2000 [61]. FEA has been included in the
curricula of most engineering programs. Therefore, graduates with basic FEA skills are available
to companies. Disc springs have been numerically simulated by free finite element software [62].
These effects have led to the literature being split roughly in half between analytical formulas and FEA.
The authors believe this distribution to roughly stay the same in the future because both approaches
offer unique advantages and because of a legacy effect. The legacy effect is created by fatigue tests
being evaluated using a certain method and the raw data like material laws and spring geometries
not being documented. Furthermore, engineers are more experienced in the design of springs using
analytical formulas, and this experience can only partially be used for the design of springs using FEA.

2.2. The Walker Damage Parameter

The Walker damage parameter [63] helps to compare the fatigue behavior of materials under
different mean stresses. Compared with other approaches to the characterization of mean stress effects
in steels [64–66], the Walker damage parameter shows a superior lifetime prediction [67]. In this paper,
the stress-based approach is described. For the strain-based approach, see [68].

The Walker damage parameter PWalker is computed from the maximum stress σmax, the stress
amplitude σamp, and the Walker exponent γ:

PWalker = σ
1−γ
max σ

γ
amp (1)

The Walker exponent γ is a material parameter that can be identified by fitting fatigue-curves
with different mean stresses or R-ratios. A high Walker exponent implies a low sensitivity to mean
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stress effects, while a low Walker exponent implies a high sensitivity. If the Walker exponent γ is fixed
to 0.5, the stress Walker approach is equivalent to the stress Smith–Watson–Topper [66] approach.

The Walker equation requires σmax and σamp to be scalar values. At the surface of the disc spring,
the stress state is two-dimensional; therefore, an equivalent stress must be computed. Here, the von
Mises equivalent stress is used.

For proportional loads in Quadrant 1, the computation of the maximum stress σmax and the stress
amplitude σamp from the minimum and maximum principal stresses σI,max, σII,max, σI,min, and σII,min

is obvious.

σmin =

√
σ2

I,min + (σI,min − σII,min)
2 + σ2

II,min

2
(2)

σmax =

√
σ2

I,max + (σI,max − σII,max)
2 + σ2

II,max

2
(3)

σamp = 0.5 · (σmax − σmin) (4)

The stress state in disc springs however is non-proportional, especially in shot peened specimens.
An example why the formulas given for the proportional case may give inconsistent results for the
non-proportional case is depicted in Figure 1. Given the stress states σa, σb, and σc in Quadrant 1,
the stress amplitude between σa and σc is equal to the stress amplitude between σb and σc if the von
Mises equivalent stress in σa is equal to the von Mises equivalent stress in σb. The same applies for
mean stresses. In reality, the damage inflicted by cycling between σb and σc is smaller than the damage
inflicted by cycling between σa and σc.

Figure 1. Planar stress with the von Mises equivalent (zero shear).

To avoid the described misrepresentation of damage inflicted, the modified Manson–McKnight
method [69] is used. Instead of computing two scalar stress states σmax and σmin and deducing a scalar
amplitude and a scalar mean stress, a two-dimensional stress amplitude and a two-dimensional mean
stress are deduced from a two-dimensional maximum and minimum stress state:

σI,amp = 0.5 · (σI,max − σI,min) (5)

σII,amp = 0.5 · (σII,max − σII,min) (6)

σI,mean = 0.5 · (σI,max + σI,min) (7)

σII,mean = 0.5 · (σII,max + σII,min) (8)
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These pairs of stress components are converted into von Mises equivalent stresses:

σamp =

√
σ2

I,amp +
(
σI,amp − σII,amp

)2
+ σ2

II,amp

2
(9)

σmean =
σI,mean − σIII,mean

σI,mean + σIII,mean
·

√
σ2

I,mean + (σI,mean − σII,mean)
2 + σ2

II,mean

2
(10)

The maximum stress σmax is defined with a lower bound to avoid complex numbers as Walker
damage parameters.

σmax = max
(
σmean + σamp, 0

)
(11)

3. The Algorithm

3.1. General Concept

The algorithm starts with a surface mesh (given as an .STL file) of a disc spring placed randomly
in space. After aligning the disc spring approximately symmetrically around the y-axis, it imports
the geometry information into a finite element application. In our implementation of the algorithm,
the finite element application was used. Through the Abaqus Scripting interface [70,71], it builds a
model around the geometry data, using additional inputs like loads and friction coefficients provided
by the user. It generates an output database file using the Abaqus/Standard Solver. Utilizing
Abaqus/Viewer functionalities via the Scripting interface, a field of residual stresses is generated
from input data. Aggregated minimum and maximum stress fields are computed by superposing the
computed load stress field and the residual stress field. A Walker damage parameter field is computed
from the minimum and maximum stress fields. The Walker damage parameter at the surface of the
disc spring is computed and exported as tabular data.

3.2. Architecture

The software architecture used is called a pipeline in programming terms and resembles a
production line: an instance of the class Spring_stack is passed through a series of different processing
stations. The processing stations gradually transform the instance from input data to a solved finite
element model with post-processed output fields and from there to easily readable tabular data and a
graphical representation thereof. In programming terms, these processing stations are called methods.
The flow of data is depicted in Figure 2.

3.3. User-provided Inputs

To conduct the inquiry described above, the algorithm requires several inputs. These inputs are
provided by the user. They are comprised of an .STL file containing the triangle surface mesh of a
scanned disc spring and one .JSON file for the description of the simulated physical situation and the
numerical configuration of the simulation, respectively.

The .JSON file describing the simulated physical situation contains an array of parts defining
the geometry, the Walker exponent γ, Young’s modulus, the Poisson number, and a volumetric mass
density (for numerical stability) for each. The geometry of scanned disc springs is given by means of a
link to an .STL file. Plasticity may be defined for disc springs in the present implementation. However,
this is not in the scope of this paper. Furthermore, the friction coefficients between springs stacked
in parallel and springs stacked in series, as well as between springs and the plates and the pillar are
committed. The axial load is committed as an array of paths, giving the displacements of one of the
plates at the end of each time step. Measured residual stresses in the radial and tangential direction are
committed for two points with different coordinates. These two points should be selected carefully by
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the user and ideally describe a linear model representing more measurements. Furthermore, a target
value for the number of triangles of the coarsened triangle surface mesh is committed.

Figure 2. Simplified flowchart of the algorithm.

The .JSON file describing the numeric inputs contains several naming definitions, element
types, solver options, contact and friction formulations, computing resource allowances, and flags
determining whether stresses etc. are to be written to input files. Different modeling conventions for
plates and pillars may be used in the current implementation. However, this is outside the scope of
this paper.

4. Implementation

4.1. Aligning the Disc Spring

In order to build a model around a part, the alignment of the part in space must be known.
For example, to apply axial loads, the axial direction of the loaded part must be known. Because it
makes the rest of the algorithm much easier, the input disc spring is preprocessed so it always has the
same orientation. By convention, this position is in the point of origin, closely axially symmetric to
the y-axis.

In the alignment process, the mesh Mstart is processed as a set of vertices Vstart = {v1, . . . , vv} and
a set of triangles e = {e1, . . . , ee} connecting these vertices. The vertices vi,start = (xi,start, yi,start, zi,start)

are defined in a Cartesian coordinate system (x, y, z). The point set is aligned by a translation
t
(
tx, ty, tz, V

)
along and a rotation A

(
θx, θy, θz

)
around the principal axes.

Valigned (A, t, Vstart) = A
(
θx, θy, θz

)
· t
(
tx, ty, tz, Vstart

)
(12)

The edges are defined as connectors between vertices; therefore, a geometric transformation of
any mesh M is fully described by a geometric transformation of its vertices V . The resulting mesh
Maligned is defined by the vertices Valigned and the edges e.

A feasible combination of translation t and rotation A is found by solving an optimization problem.

min
θx,y,z ,tx,y,z

f
(

Valigned (A, t, Vstart)
)

(13)
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To compute the objective function f , the transformed point cloud Valigned is projected into the
xy-plane, producing Vxy =

{
vxy,1, . . . , vxy,v

}
by rotation around the y-axis. Vxy is computed using the

coordinates of Valigned:

vxy,i =

(√
x2

i,aligned + y2
i,aligned

zi,aligned

)
(14)

The objective function f is defined as the area A of the convex hull of Vxy.

f = A
(
Conv

(
Vxy
))

(15)

The convex hull is computed using the Quickhull algorithm [72,73]. The objective function f
is invariant to rotations around the y-axis. Therefore, θy is fixed to zero. To further simplify the

optimization problem, it is assumed that the centroid of the aligned mesh c
(
Maligned

)
lies in the

point of origin. Although this assumption is applicable only for perfectly symmetric spring geometries,
we assumed that for springs possessing minor deviations regarding their symmetry, the assumption
holds true, too.

Based on this assumption, t is defined as translating the volumetric centroid c of the mesh Mstart

into the point of origin.
c (Mtranslated) = (0, 0, 0) (16)

The computational cost for finding t is low because the volumetric centroid of any closed mesh
M can be computed inexpensively.

In the following rotation A, the mesh Mtranslated is only rotated around the principal axes. As the
volumetric centroid lies on all three principal axes, it is invariant under said rotation A.

c
(
Maligned

)
= c (Mtranslated) = (0, 0, 0) (17)

By fixing the translation additionally to the rotation around the y-axis, the dimensionality of the
optimization problem is reduced from six to two.

min
θx,z

f
(

Valigned (A, t, Vstart)
)

(18)

The parameters θx and θz are calculated using the L-BFGS-B method [73–75].
The resulting mesh Maligned may be aligned upside down. This being the case, it can simply be

rotated by 180 degrees around the x-axis. To further ease the following steps, it is translated along the
y-axis, so its lowest point is in the xz-plane.

min
(

yi,postprocessed

)
= 0 (19)

The postprocessed, aligned mesh Mpostprocessed is exported as an Abaqus input file (.inp).

4.2. Building the Finite Element Model

The creation of the model is structured as a pipeline inside the pipeline depicted in Figure 2.
The sub-pipeline is depicted in Figure 3. The allotment of tasks to processing stations (methods) along
the pipeline is based on the allotment of functionalities to modules in the Abaqus/CAE environment.
Each of the processing stations is customized according to input data. The following paragraphs
describe the individual processing stations.

For the simulation of a single disc spring, four components are required: the disc spring itself,
a guide pin, and two flat plates. The geometry of the disc spring is read from the input file generated
from the 3D-scan data. The guide pin is defined as an idealized cylinder with the same height as the
disc spring, and the plates are defined as idealized planes.
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The plate and the guide pin part instances are defined as analytic rigid surfaces and therefore
do not need to be meshed. The part instance representing the disc spring is imported as a triangle
surface mesh and is converted into a volume tetrahedron mesh by the free mesher implemented in
Abaqus/CAE. Mesh size cannot be controlled actively, but only by changing the mesh size of the
imported surface mesh. The surface mesh size is adjusted by exporting very fine surface meshes from
the 3D-scanning software GOM Scan and increasing the mesh size using the quadric edge collapse
decimation algorithm [76]. In this application, quadric edge collapse is especially suitable because it
reduces the mesh size at the flat surfaces, where the mesh may be more coarse, and keeps it nearly
constant at the edges, where a fine mesh is needed.

Figure 3. Flowchart of the sub-pipeline ’build model’.

In the approach described in this paper, the finite element analysis utilizes a purely elastic material
law. Residual stresses are incorporated by superposition of the measured stresses committed by the
user. This is implemented by building two axisymmetric field outputs, one for σresidual,tan and one for
σresidual,rad, in Abaqus/CAE. These output fields will later be used for the computation of σI,min, σI,max,
σII,min, and σII,max according to Equations (24) to (27).
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To introduce inertia and improve convergence, a volumetric mass density is defined for the disc
spring. Because the spring was aligned beforehand, the assembly is straightforward. All four parts are
joined in an assembly with a single coordinate system. The lower plate, the disc spring, and the guide
pin are already in place. The upper plate is positioned in its place by a translation along the y-axis.

The lower plate and the guide pin are fixed in space, and loads are applied to the upper plate.
To improve convergence, a small gravitational load is defined. No other loads are applied directly to
the disc. Forces are transmitted via contacts. Surface to surface contacts are defined between the disc
spring and each of the other part instances.

The Abaqus Scripting interface includes an option to customize output requests. This option
is used in the algorithm to request stress and coordinate outputs. However, coordinates cannot be
requested at integration points by means of the Scripting interface. Coordinate data in the integration
points are necessary to compute residual stresses in the integration points.

A job instance is created to generate an input file. The input file is manipulated to create an output
request for coordinate information in the integration points, and a second job instance pointing to the
new input file is created. This way, a job is created that is identical to the first job except that it includes
an output request for coordinate information in the integration points. The second job is converted
into a system of partial differential equations and solved using Abaqus/Standard.

4.3. Computing Stresses and Walker Damage Parameters

After solving the system of partial differential equations for the displacements of the nodes in the
model, Abaqus/Standard computes stresses and coordinates in the integration points at different points
in step-time, which refer to the minimum and the maximum load. In this section, the computation of
Walker damage parameters at the surface of the disc spring between Edge II and Edge III (see Figure 4)
is described. Here, we may assume a plane stress state with a dominating tension component:

σload,II,min = 0∨ σload,III,min = 0 (20)

σload,II,max = 0∨ σload,III,max = 0 (21)

II

I

III

IV

Figure 4. Idealized geometry of the spring under investigation.

For integration points close to the surface, this is approximately true. The assumption becomes
more realistic with a finer mesh and is true with an infinitesimal mesh size. The minimal and maximal
stress components σ′load,II,min and σ′load,II,max are redefined:

σ′load,II,min = σload,II,min + σload,III,min (22)

σ′load,II,max = σload,II,max + σload,III,max (23)

In the surface of disc springs, σload,I points in the tangential direction and σ′load,II points in the
radial direction. Residual stresses are measured in the tangential direction (σresidual,tan) and in the
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radial direction (σresidual,rad). The input stresses for the computation of the Walker damage parameters
are defined as:

σI,max = σload,I,max + σresidual,tan (24)

σII,max = σ′load,II,max + σresidual,rad (25)

σI,min = σload,I,min + σresidual,tan (26)

σII,min = σ′load,II,min + σresidual,rad (27)

Walker damage parameters are computed according to Equations (1) to (11). For each surface
triangle, a surface area Ai and a Walker damage parameter PWalker,i are computed. The surface Walker
damage parameter is computed by averaging the Walker damage parameters of the neighboring nodes.
These data pairs are saved as the set S.

4.4. Extracting Tabular Data

The set S is too rich in information to be captured holistically without extraction and/or
condensation. This is done by transforming the information into tabular data. Therefore, it is condensed
into human readable tabular data. Each element of the set is defined as a Dirac delta function:

fi (PWalker) = Ai · δ (PWalker − PWalker,i) (28)

The accumulated surface area Aacc assigned to a given Walker damage parameter is computed as:

Aacc (PWalker) =
∫ ∞

PWalker
∑

i
fi (PWalker)dPWalker (29)

It describes the size of the surface area of the disc spring with a Walker damage equal to or greater
than the given PWalker. A graphical representation [77] of the accumulated surface area is created.

5. Example Application

In this section, an example application of the algorithm presented in Section 3 is given. A single
disc spring was modelled. The surface mesh of the disc spring under investigation is presented in
Figure 5. The mesh was obtained using the commercially available 3D-scanning device GOM ATOS
and the software GOM Scan. The number of surface triangles was already reduced for the displayed
mesh, from 253,904 to 50,152. Convergence studies with different loads showed this mesh to be a good
compromise between computational cost (about seven hours of CPU time on a i7-9800X and 16 GB of
RAM vs. about 110 h of CPU time and 115 GB of RAM for the 253,904 surface triangle model) and
accuracy (no significant bias of the Walker damage-surface area plot) [4].

Figure 5. 3D-scanned, coarsened surface mesh of the disc spring under investigation.

Additionally, an idealized geometry derived from the scanned data is presented in Figure 4. Edges
I to IV are labelled for the reader’s orientation. A major difference between both geometries is that the
surfaces between Edges I and IV, as well as II and III of the idealized geometry are straight, while those
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of the 3D-scanned disc spring are curved. This is also visible in Figure 6. Of course, the 3D-scanned
geometry also was not perfectly symmetric.

fixed plate (all degrees of freedom)

fixed plate (all degrees of freedom but 1)

displacement
of plate

fixed pin (all degrees of freedom)

no boundary conditions on disc spring, only interactions

Figure 6. Boundary conditions defined for the finite element model.

In Figure 7, the geometry according to the standard [1] is presented. It differs from the idealized
geometry in having sharp edges and all angles between faces being 90◦. This simplified geometry is
usually utilized for the analysis of disc springs, regardless of whether analytical formulas or finite
element models are used.

II

I

III

IV

Figure 7. Geometry of the spring under investigation according to EN 16983 [1].

The triangle surface mesh was aligned and imported into Abaqus/CAE. Afterwards, it was
converted into a tetrahedron volume mesh using the generateMesh method included in Abaqus
Scripting [71]. The resulting linear tetrahedron C3D4 mesh was converted into a quadratic C3D10
mesh. Modified quadratic tetrahedrons C3D10M offer improved contact behaviour [78]; however, due to
poor mesh quality, C3D10 tetrahedrons performed better in our experience. The elements were assigned a
Young’s modulus of 206,000 MPa, a Poisson ratio of 0.3, and a volumetric mass density of 8.05 g/mm3.

The volumetrically meshed disc spring was incorporated into an assembly. The load cycle was
implemented in four steps. To obtain good convergence behavior, the steps were defined as dynamic
steps. The implicit solver Abaqus/Standard was used. The purpose of Step 1 was to apply the lower
load. Step 2 was to make sure there was no dynamic influence on the computed stresses. Step 3 was to
apply the higher load. Step 4 was, again, implemented to eliminate dynamic influences. Step times for
Steps 1 to 4 were 10 s, 1 s, 10 s. and 1 s. The boundary conditions were applied to the upper plate as
displacements in the axial direction at a reference point; see Figure 6. The prescribed displacements
were 0.425 mm for Steps 1 and 2 and 1.19 mm for Steps 3 and 4. All other degrees of freedom of the
reference points were fixed to zero. For the lower plate, all degrees of freedom were fixed to zero.

All contact formulations used in this model were defined as surface-to-surface contacts with a
finite sliding penalty formulation and a friction coefficient of 0.01.

A job was created and committed to the solver Abaqus/Standard. The resulting output database
was loaded. The resulting highest tensile load stresses in a cross-section are displayed in Figure 8.
The upper half of the disc spring was loaded compressively. This is why disc springs in general break
between Edges II and III.
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0000
0100
0200
0300
0400
0500
0600
0700
0800
0900
1000
1100
1200

I

II

III

IV

Figure 8. Computed compressive (deep blue, without detailed scale) and computed highest tensile
(colored scale) load stresses in the fully loaded cross-section in MPa.

Two field outputs representing residual stresses in the tangential and radial direction were
generated based on user input and the initial coordinates of the integration points (which were
requested as outputs earlier). Since the measured residual stresses for the spring under investigation
are confidential, the used inputs values were not the result of a measurement. They were however
realistic for disc springs. The residual stresses between Edges II and III were approximated by a linear
function, ignoring non-symmetric effects. The computed residual stresses were obviously wrong
anywhere else. This does not matter here because the Walker damage parameter is a measure used
to predict fracture. Fracture is initiated by cracks, which normally initiate from the surface between
Edges II and III [79]. Cracks originating from between Edges I and IV are usually caused by too low
preloading forces. The bias in the Walker damage parameter introduced outside the surface between
Edges II and III is non-conservative. Therefore a false positive for fracture in this area can be ruled out.
The computed output fields between Edges II and III are displayed in Figure 9. The significantly higher
residual stresses in the tangential direction compared to the radial direction are normal in disc springs
because disc springs are overloaded in production to prevent plastic deformation in use, to increase
lifetime, and to decrease creep effects [80–85].

- 800
- 750
- 700
- 650
- 600
- 550
- 500
- 450
- 400
- 350
- 300
- 250
- 200

- 800
- 750
- 700
- 650
- 600
- 550
- 500
- 450
- 400
- 350
- 300
- 250
- 200

Figure 9. Residual stresses σresidual,tan and σresidual,rad in the tangential (left) and radial (right) direction
in MPa.

The output fields resulting from the finite element simulation describing stresses after Step 2 and
the output fields describing the residual stresses were added up to compute output fields describing
σI,max and σII,max. The calculation followed Equations (24) and (25). Field outputs describing σI,min and
σII,min were computed following Equations (26) and (27).

Based on these, field outputs describing the minimum and maximum equivalent stress, σmin and
σmax, were computed according to Equations (2) and (3); see Figure 10. Especially in the minimum
equivalent von Mises stress visualization, the contact line between the disc spring and the lower plate
can be identified by a circle of locations with high compressive stresses.
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- 500
- 450
- 400
- 350
- 300
- 250
- 200
- 150
- 100
- 050
±000
+050
+100

000
075
150
225
300
375
450
525
600
675
750
825
900

contact to
plate

Figure 10. Minimum and maximum equivalent von Mises stress σmin (left) and σmax (right) in MPa.

These output fields were used to compute the output fields representing the stress amplitude σamp

according to Equation (4) and finally the Walker damage parameter PWalker according to Equation (1);
see Figure 11. The Walker exponent γ = 0.5 was used, which makes the Walker damage parameter
equivalent to the Smith–Watson–Topper damage parameter. Compared to the other fields, the stress
amplitude field was very smooth. The reason for this is that the elastic deformation of the spring
partially compensated for the small asymmetries that were present. For higher load increments,
the additional elastic stresses were therefore distributed more homogeneously.

000
050
100
150
200
250
300
350
400
450
500
550
600

000
075
150
225
300
375
450
525
600
675
750
825
900

Figure 11. Stress amplitude σamp (left) and Walker damage PWalker (right) in MPa.

The algorithm created a list of all surface triangles and computed an average Walker damage
parameter PWalker,i, as well as a surface area Ai for each triangle. The graph of the accumulated surface
area over the Walker damage parameter was created; see Figure 12. From this particular graph, the user
can for example extract the surface area where the Walker damage parameter is over 750 MPa, which is
4.9 mm2. About half of the surface had a Walker damage parameter of zero because stresses there were
purely compressive; see Figure 12. This surface corresponds to the dark blue parts of the surface in
Figure 8. As can be seen on the graph on the right, the function starts to jump at high stresses. This is
because Walker damage parameters were averaged over surface triangles. The part of the graph at
very high stresses exists purely because of numerical singularities and therefore does not correspond
to the fatigue behaviour of the disc spring.
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Figure 12. Accumulated surface area of the disc spring over Walker damage.

The Walker damage parameter is not directly accessible through experiments. To evaluate the
quality of the finite element model, a characteristic derived from a similar model (only boundary
conditions were changed) was compared to a characteristic obtained in an experiment; see Figure 13.
As is customary for disc springs, the deflection was normalized over the deflection at which the disc
spring lies flat on the ground. They agree well; especially, the correct representation of the progressive
behaviour at the very start of the experiment has only been achieved by models directly implementing
3D-scanned geometry. To our knowledge, all published models directly implementing 3D-scanned
geometry have been created using the algorithm presented in Section 3. The numerical characteristic
is somewhat stiffer than the experimental one. This may be due to a misrepresentation of Young’s
modulus, which was set to the normative default of 206,000 MPa; however, tensile tests on specimens
from the same batch of material and a similar heat treatment did not show a sufficient deviation in
Young’s modulus to use a lower value.

Figure 13. Comparison of characteristics obtained from numerical simulation and from the experiment.

6. Summary

A novel algorithm as implemented in the Spring_stack module was presented in this paper.
The algorithm receives geometry data, residual stresses, material parameters, load cases, and further
inputs and builds an FE model based on these. It evaluates the FE model after solving with respect to
the Walker damage inflicted locally using a Manson–McKnight approach. In a post-processing step,
the accumulated surface area as a function of the Walker damage parameter is computed. An example
application of the algorithm was presented.
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