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Abstract: Synthetic hydrocarbon aviation lubricating oils (SHALOs) gradually degrade over time
when subjected to high temperatures, resulting in their composition and properties varying over
the operation lifetime. Therefore, understanding the SHALO degradation properties by elucidating
the mechanism on a molecular level, as a function of high temperature, is of interest. A SHALO
was subjected to thermal treatment (TT) at 180, 200, 230, 250, 270, or 300 ◦C for 2 h. The chemical
compositions of six TT samples and one fresh oil were analyzed by fourier transform infrared F
spectroscopy, advanced polymer chromatography, and gas chromatography/mass spectrometry.
Furthermore, the physicochemical properties, such as kinematic viscosity, pour point, and acid
number, of seven samples were determined. The oil samples were grouped by cluster analysis (CA)
using a statistical method. The SHALO was identified to comprise 20 functional groups, including
comb-like alkanes, long-chain diesters, amines, phenols, and other compounds. TT at <230 ◦C caused
partial cracking of the SHALO base oils, with a concomitant change in the antioxidant content and
type, and the polycondensation reactions were dominant. The observed antioxidant changes were not
obvious from TT at >230 ◦C. A large number of small-molecule compounds were detected, including
n-alkanes and olefins. TT at 250 ◦C was shown to be an important threshold for the kinematic viscosity,
pour point, and acid number of the samples. Below 250 ◦C, the sample properties were relatively
stable; but at elevated TT temperatures (>250 ◦C), the properties were observed to dramatically
degrade. As the sample color was highly sensitive to temperature, the TT temperature induced rapid
and significant color changes. The CA analysis results for the oil compounds at the molecular level
were in good agreement with observed changes in the physicochemical properties at the macro level.

Keywords: synthetic hydrocarbon aviation lubricating oil; high temperature; composition; structure;
advanced polymer chromatography; cluster analysis

1. Introduction

Synthetic lubricating oils (SLOs) are liquid lubricants, possessing specific structures and properties
derived from organic synthesis. Compared with vegetable oils and mineral-based lubricating oils, SLOs
have the advantages of eco-compatibility, excellent thermal stability, and low-temperature behavior [1,2].
There are six types of SLOs, namely, synthetic hydrocarbon oils, organic acid ester synthetic oils,
polyether synthetic oils, phosphate esters, fluorine-containing oils, and silicone oils. The SLO types
exhibit significant differences in chemical structure, lubricating properties, and antidegradation
behaviors compared with the base oil. Therefore, specific SLOs are better suited to different working
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conditions. Hydrocarbon and ester synthetic oils are often employed in the military, aerospace industry,
and under other harsh working conditions owing to their anti-high temperature performance [3].

The base oil is the principal component of an SLO, accounting for 70–90 wt.%, and is not only the
carrier of lubricating additives but also directly determines the lubricating performance [4]. The base
oil of synthetic hydrocarbon aviation lubricating oil (SHALO) is synthesized from ethylene as the
raw material, which is first polymerized into an α-olefin, followed by polymerization to afford a
poly-α-olefin (PAO), or obtained by copolymerization of PAO with ethylene. PAO has a unique
comb-like hydrocarbon structure that enables SHALO to possess excellent viscosity-temperature
properties, low-temperature fluidity, low volatilization loss, and good thermal and hydrolysis stability.
Furthermore, the PAO properties enable SHALO to exhibit excellent oxidation, shear, and low corrosion
properties, as well as excellent lubrication and wear properties [5,6].

With the development of aero-engines designed to improve thrust-to-weight ratios while
maintaining high reliability and durability, the operating conditions that lubricants are subjected to
are becoming increasingly complicated and demanding [7]. When in use, the temperature near to the
first piston ring of the main bearing can reach 200–300 ◦C [8]. High temperatures are considered a
critical factor in the acceleration of lubricant degradation, which might impact flight safety under harsh
conditions [9,10]. Recently, much interdependent research has focused on the effect of temperature
on the degradation of synthetic aviation lubricants, with respect to lubricating properties and the
associated mechanisms [11–13].

Research has shown that high temperatures accelerate the cracking, oxidation, and polymerization
reactions of SHALO [14,15] while also promoting the desorption of lubricants that negatively impact
directional adsorption, melting the oil film [16], and reducing the anti-foaming performance [17].
Furthermore, carbide accumulation [18–20], the blockage of fuel supply lines and filtration systems [21],
and reduced thermal conductivity of the engine are often observed during oxidation at high
temperatures. Therefore, tight and stagnant moving joints [22,23] form, resulting in reduced engine
operation and service life. Although some reports have demonstrated that high temperatures reduce
the lubricating properties of SHALO, other studies have observed improved friction properties after
the appearance of oxidized derivatives in aged oils [24]. Therefore, elucidating the SHALO lubricating
properties as a function of engine warming during aircraft flight is required.

The present study also aimed to demonstrate how changes in the SHALO molecular structure and
base oil composition through organic synthesis design improve the lubricating properties of lubricating
oils and increase compound stability. Changes to the compound structures and SHALO compositions
are the principal reason for the degradation of lubricating properties. Furthermore, changes in the
molecular structure and composition as a function of the heating process need to be elucidated at the
molecular level.

The gas-phase thermal degradation of three commercial industrial lubricants (two different triaryl
phosphate compositions and one based on fatty acid methyl and ethyl esters) was investigated under
oxidative pyrolysis conditions between 400 and 1000 ◦C by Mascolo et al. [25]. Significant differences were
observed in the thermal stability between lubricants containing phosphorus and those without phosphorus.
Lubricant degradation in the absence of phosphorus was assumed to start with the breakdown of aliphatic
moieties to generate vinyl radicals, which, in turn, afforded benzene radicals and polycyclic aromatic
hydrocarbons (PAHs) through displacement and cyclization reactions. However, phosphorus-based
lubricants degraded to directly form benzene radicals and PAH structures through consecutive reactions.
At temperatures of >700 ◦C, the benzene and PAH contents in the degradation products of lubricants
without phosphorus were significantly lower than in corresponding lubricants containing phosphorus [25].
Various types of synthetic lubricants are observed to undergo different degradation processes.

Tripathi and Vinu [26] observed that the major hydrocarbon present in fresh synthetic oil
was tetratriacontane (C34H70) and that the oxidative degradation of synthetic oil as a function of
temperature resulted in the formation of shorter-chain hydrocarbons as the major products. For example,
shorter-chain hydrocarbons, such as pentadecane (C15H32) and hexadecane (C16H34), were the major
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products at 200 ◦C, while longer-chain hydrocarbons, such as tetrapentacontane (C54H110) and
hexacontane (C60H122), were observed along with other hydrocarbons at 120 and 149 ◦C, respectively.
The chemical reactions of synthetic lubricants during heating are complicated, with cracking and
polymerization phenomena occurring simultaneously. The oxidation mechanism of SHALOs is
generally considered to occur via a radical chain mechanism, in which the hydrocarbons in the
lubricating oil are pyrolyzed to form organic free radicals that react with oxygen to form peroxy radicals
and peroxides, and thereafter, polymerize to form oligomers [21,27,28]. However, Wu et al. [15] subjected
synthetic lubricating oil diethylhexyl sebacate (DEHS) to continuous high-temperature treatment
(150 ◦C) and observed that DEHS degradation not only resulted in oxidation reactions but also hydrolysis
reactions. Furthermore, Santos et al. [29] observed that the content of insoluble high-molecular-weight
polymers in mineral lubricating oils increased as a function of temperature, together with an increase
in the kinematic viscosity (KV) of the lubricating oils. Meanwhile, computational methods are valuable
tools for determining properties that are dependent on the microstructure. Gueorguiev et al. developed
the synthetic growth concept based on density functional theory, with their computational experiment
providing useful information to achieve a systematic understanding of the stability/reactivity and
identification of the various compounds [30,31]. Furthermore, the thermal oxidation process of
lubricating oils has been simulated using visual reactive force field molecular dynamics at an atomic
level [9,13]. Typically, the degradation process of lubricating oils at high temperatures is relatively
complicated from a molecular perspective. The influence of temperature on the structure and
composition of lubricating oils still requires elucidation, while structural and compositional changes
during the heat treatment of lubricating oils, especially SHALOs, remain unclear.

Based on actual working conditions, SHALO was subjected to thermal treatment (TT) at six different
temperatures. The six TT samples and one fresh oil were analyzed by fourier transform infrared
spectroscopy (FT-IR), advanced polymer chromatography (APC), and gas chromatography/mass
spectrometry (GC/MS) to explore changes in the SHALO composition and structure in more detail.
Furthermore, the degradation mechanism and physicochemical properties were described, including
KV, pour point (PP), acid number (AN), and color. This study aimed to develop an understanding of the
SHALO macroscopic-microscopic structure relationship and to elucidate changes in the composition
and physicochemical properties as a function of the TT process.

2. Experimental

2.1. Materials

The SHALO sample was supplied by Unit 94923 of the People’s Liberation Army of China.
SHALO comprised base oils, which are low-viscosity PAOs, together with nominal amounts of esters
(ETs) and additives, such as antioxidants, antifoaming agents, and preservatives. The SHALO KV at
100 ◦C was ≥3 mm2/s, the AN was ≤0.05 mg KOH/g, and the specified operating temperature range
was −40 to 200 ◦C. All solvents used in experiments were commercially purchased analytical reagents
and purified by distillation prior to use.

2.2. Sample Preparation

SHALO (150 mL) was placed into a 500-mL stainless-steel autoclave and heated to 180, 200, 230,
250, 270, or 300 ◦C with magnetic stirring at 1000 rpm, and each temperature was maintained for 2
h, followed by immediately cooling of the reactor to room temperature in an ice-water bath within
0.5 h. The TT samples were obtained from the autoclave by filtration through a polytetrafluoroethylene
membrane (pore size, 0.45 µm) and denoted as S180, S200, S230, S250, S270, and S300, respectively.
The untreated oil control sample was denoted as Srt.
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2.3. Sample Analysis

All SHALO samples were characterized by FT-IR spectroscopy and APC. FT-IR spectra were
recorded using an FT-IR spectrometer (Nicolet 380, Thermo Fisher, Waltham, MA, USA) across a
wavenumber range of 400–4000 cm−1. Each sample was mixed with KBr and pressed into a pellet for
FT-IR analysis. APC analysis was performed using a GC system (ACQUITY APC, Waters, Milford,
MA, USA) equipped with three ACQUITY APC XT columns placed in series, as follows: 450 Å
column (4.6 × 150 mm, 2.5 µm); 200 Å column (4.6 × 150 mm, 2.5 µm); 45 Å column (4.6 × 150 mm,
1.7 µm). The ranges of effective molecular weights of each column were 20,000–400,000, 3000–70,000,
and 200–5000, respectively. The columns were kept at 45 ◦C. Tetrahydrofuran (THF) was used as
the mobile phase at a flow rate of 0.5 mL/min. Each sample (5 mg) was diluted to 1.5 mL with THF.
The injection volume was 10 µL.

All samples were analyzed by GC/MS using a GC/MS system (Hewlett-Packard 6890/5973, Agilent,
Santa Clara, CA, USA) equipped with a capillary column coated with HP-5MS (30 m × 0.25 m inner
diameter, film thickness of 0.25 µm, cross-linked 0.5% PhMe siloxane). The injector temperature was set at
300 ◦C, with high purity helium used as the carrier gas. The electron impact mode ion source temperature
was set at 230 ◦C, with the electron energy set at 70 eV, and a mass range of m/z 35–500. The initial oven
temperature was 120 ◦C, which was increased to 274 ◦C at a rate 13 ◦C min−1, then to 281 ◦C at a rate of
0.5 ◦C min−1, holding for 2 min, and finally to 300 ◦C at a rate of 12 ◦C min−1, holding for 5 min. Data
acquired was processed using MSD ChemStation software (D.02.00, Agilent, Santa Clara, CA, USA).
Compounds were identified by comparing the mass spectra with NIST11 library data. The relative content
of each compound was determined by peak area normalization. Compounds were analyzed using Origin
Pro 2018 software (OriginLab, Northampton, MA, USA) for cluster analysis (CA).

The physicochemical properties were determined simultaneously. The color was determined
using a visual method (GB/T6540-1986) [32], KV was measured using a glass capillary viscometer
(GB/T 265/1988) [33] at 40 ◦C, AN was determined using a glass indicator electrode method
(GB/T7304-2000) [34], and PP was determined using a PP method (GB/T3535-2006) [35].

3. Results

3.1. Subsection FT-IR Analysis

As shown in Figure 1, there were no significant differences between the S180–S300 and Srt FT-IR
spectra. Twenty functional groups were detected in the FT-IR spectra (Table 1). Some functional groups
exhibited absorbances attributed to aliphatic moieties at ~2854, ~2925, and 2957 cm−1, C=O vibrations
at ~1741 cm−1, CH2 vibrations at ~1465 cm−1, –CH(CH3)2 vibrations at ~1378 cm−1, =CH–H vibrations
at ~970 cm−1, and –(CH2)n– vibrations at ~720 cm−1, which were significantly stronger than others,
implying that the components in the oil samples mainly comprised these groups.

The bands at 2957, 2925, and 2854 cm−1 were attributed to aliphatic –CH3 and –CH2 stretching
vibrations, the band at ~1465 cm−1 was attributed to –CH2 shear bending vibrations, and the band
at 1378 cm−1 was assigned to the C–H deformation vibration in –CH(CH3)2. A sharp and strong
band was observed at 721 cm−1, implying that samples were rich in four or more –CH2 moieties.
Functional groups detected in the samples indicated an abundance of long-chain aliphatic species.

The peak at 1741 cm−1 was assigned to the C=O stretching vibration in saturated fatty acid esters
(νC=O). The peaks at 1169 and 1142 cm−1 were attributed to the C–O–C stretching vibrations in long-chain
fatty acid esters (νas

(COC)), suggesting an abundance of long-chain fatty acid esters present in the sample.
The weak peaks located at ~2730 and ~2672 cm−1 were assigned to the –CHO stretching and C–H

bending vibrations of the aldehyde group, respectively. The bands located at ~1611 and ~1588 cm−1

were attributed to aromatic ring skeletal vibrations (ν), while those at ~879, ~821, and ~779 cm−1

corresponded to o-, m-, and p-substituents on the aromatic ring, respectively. The peak at 1506 cm−1

was assigned to the N–H bending vibrations (νNH) in secondary amines. The C–N stretching vibrations
(νC–N) of aromatic secondary amines produced bands at 1241 and 1314 cm−1. The peaks observed at
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3645 and 686 cm−1 were attributed to O–H stretching vibrations (νOH) and O–H curling vibrations (τ)
in phenols, respectively. These data demonstrated that SHALOs were mixed with base oils comprising
long-chain alkanes, saturated fatty acid esters, and additives, such as amines and phenols.Materials 2020, 13, x FOR PEER REVIEW 5 of 22 
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Figure 1. FT-IR spectra of Srt, S180, S200, S230, S250, S270, and S300.

Table 1. FT-IR spectra assignments for Srt, S180, S200, S230, S250, S270, and S300.

Type Group Characteristic
Frequency/cm−1 Intensity ∗ Belonging

alkyl group

–CH3 2957 vs νas

–CH2- 2925 vs νas

–CH2- 2854 vs νs

–CH2- 1465 vs δ

–CH(CH3)2 1738 s δas

–(CH2)n- 721 m δ

aldehyde group C–H 2730 w νCH
C–H 2672 w γ

ester
C=O 1741 vs νC=O

C–O–C in long-chain
saturated fatty acids 1169 and 1142 m νas

(C–O–C)

benzene

framework vibrations 1611 and 1588 w ν

o- 879 m
γ=C–Hm- 821 m

p- 779 m

olefin
C=C 1640 vw νC=C

=CH–H 970 s ωC=C

secondary amine –NH 1506 w νNH
C-N in aromatic

compounds 1241 and 1314 w νC–N

phenol –OH 3645 w νOH
O–H 686 w τ

∗ vs—very strong; s—strong; m—medium; w—weak; vw—very weak.
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As shown in Figure 1 and Table 1, the FTIR spectra of the seven oil samples changed very little
under high-temperature treatment. Strong absorbances at around 2957, 2925, 2854, 1741, 1465, 970,
and 721 cm−1 suggested that long-chain alkanes, carbonyl compounds, and unsaturated hydrocarbons
were still abundant in the aged oils. The O–H stretching vibration located at ~3645 cm−1 decreased
as a function of TT temperature until the vibration was no longer detected, indicating that phenolic
antioxidants were continuously consumed. The C=C stretching vibration observed at ~1640 cm−1 was
only detected in S300, which suggested that long-chain hydrocarbons were broken into olefins (OFs)
and other substances as a function of TT temperature. Thermal cracking and polymerization reactions
were concluded to occur to varying degrees during the high-temperature treatment of SHALOs,
with antioxidant consumption somewhat preventing the lubricating oil properties from diminishing.

3.2. APC Analysis

The relative molecular mass and corresponding mass distribution are among the most basic
structural parameters of lubricating oils that are closely related to the physicochemical properties
(such as KV and PP) and the thermal and tribological properties of the lubricating oil. The molecular
mechanism of thermal stability can be explored using the molecular weight and corresponding mass
distribution. APC is an effective method for measuring the molecular weight and molecular weight
distribution of lubricating oils. APC can also obtain important molecular weight information, such as
the weight-average molecular weight (Mw) and number-average molecular weight (Mn).

The SHALO used in this study contained a base oil comprising 80% PAO, 20% diisooctyl adipate
(DIOA), and a small number of additives. A previous study [36] has shown that PAO is polymerized
and comprises linear α-olefins ranging from trimers to pentamers. The PAO structure is relatively
regular with a uniform comb-shaped isoparaffin (IP) chain length of generally C8–C10. Based on the Mw

of Srt being 507 Da (Figure 2), the Mw of PAO could be predicted to be 520 Da, with a molecular formula
of C37H76. Combined with the PAO comb-shaped structure, the preliminary estimated structural
formula of PAO is shown in Figure 3.Materials 2020, 13, x FOR PEER REVIEW 7 of 22 
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Figure 2. Molecular weight distributions of Srt, S180, S200, S230, S250, S270, and S300.

As shown in Figure 2, Mn and Mw fluctuated as a function of temperature. Mn and Mw both
decreased at 180 and 200 ◦C, with values of 503 and 494 Da, and 496 and 488 Da, respectively.
The highest Mn and Mw values of 501 and 511 Da, respectively, were observed at 230 ◦C. Thereafter,
Mn and Mw were again reduced and found to be stable at temperatures over 230 ◦C, with values of
495 and 487 Da, 494 and 486 Da, and 494 and 486 Da for S250, S270, and S300, respectively. There was
insufficient thermal energy in the SHALOs to induce a larger degree of polymerization below 200 ◦C,
at which the Mw was relatively low owing to the cracking degree being higher than the polymerization
degree. In the range of 200–230 ◦C, increasing temperature caused larger-scale polymerization owing
to TT, providing sufficient energy to significantly increase the Mw. Therefore, Mn and Mw reached
peak values in S230. The cracking degree was again higher than the polymerization degree when
the temperature increased above 230 ◦C. In contrast, the SHALOs were less able to dissolve the
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polymers, resulting in coking and sludge formation at high temperatures. Under these experimental
conditions, the Mw first decreased, then increased, and finally decreased again. The molecular weight
distribution width index, D (D = Mw/Mn), varied from 1.018 to 1.020 depending on the TT temperature,
showing that the oil samples were narrow heterogeneous dispersion systems at each temperature.
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3.3. GC/MS Analysis

As shown in Figure 4, Srt was rich in two base oils (PAO and DIOA) and also contained four additives,
three of which were antioxidants (butylated hydroxytoluene (BHT), N-phenyl-α-naphthylamine (NPAN),
4-octyl-N-(4-octylphenyl) aniline (ODA)), while the other was an antiwear additive (tris(3-methylphenyl)
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Figure 4 also shows significant differences in oil composition as a function of TT temperature.
In contrast to Srt, DIOA and NPAN were not detected in S180-S300 at retention times of 7–11 min and
15–17 min by GC/MS, respectively. Significant compositional differences existed between Srt and
S180, including a clear reduction in BHT, ODA, and TMP contents observed in S180. Furthermore,
BHT and TMP were barely detected, together with an observed decrease in ODA in S300, implying
that antioxidants were continuously removed from the system, preventing thermal cracking reactions.
Furthermore, the compounds detected by GC/MS increased in intensity as a function of TT temperature
over the first 11 min. The free radicals generated by thermal oxidation during the service life of lubricants
are suggested to first be consumed by free-radical trapping antioxidant NPAN (medium-temperature
antioxidant), which hinders more severe oxidation reactions [37] and, therefore, maintains the normal
lubrication function of the oil.

Cracking reactions were performed with the oil samples according to the variation and relative
contents (RCs) of small-molecule compounds. As shown in Figure 5 and Table 2, 82 organic compounds
were detected by GC/MS, which were classified into n-alkanes (NAs), eight IPs, 21 OFs, 24 ETs,
three alcohols (AHs), eight antioxygen and other compounds (AOs), and two unknowns (UKs).

Twenty-seven compounds were identified in Srt, including 23 ETs, three AOs, and one UK.
Among them, ETs were the main components, accounting for the content of 10.90%. The three
antioxidants were BHT (22), NPAN (N), and BHT derivatives (19). Fifteen compounds were detected
in S180, including three NAs, two OFs, four IPs, one AH, and five AOs. The RCs of BHT (22), 2-,
6-, 10-, and 14-tetramethylhexadecane (39), and eicosane (43) accounted for a higher percentage.
The distribution of compounds comprising S200 was similar to that of S230. Twenty-two compounds
were detected in both samples, including seven NAs, two OFs, four IPs, two AHs, and six AOs.
The RCs of 4-methylheptan-1-ol (7), BHT (22), 3,5-di-tert-butyl-4-hydroxybenzaldehyde, eicosane
(43), and (E)-2-methylnonadec-7-ene (47) accounted for a higher percentage. Thirty-one compounds
were detected in S250, including 12 NAs, eight OFs, four IPs, two AHs, and five AOs. The RCs of
4-methylheptan-1-ol (7), 2-(tert-butyl)-4-methylphenol (12), BHT (22), and the isomer of BHT (24)
accounted for a higher percentage. Thirty-seven compounds were detected in S270, including 15 NAs,
11 OFs, four IPs, two AHs, and five AOs. The RCs of decane (6), 2-(tert-butyl)-4-methylphenol
(12), BHT (22), and the isomer of 22 (24) accounted for a higher percentage. Fifty-two compounds
were detected in S300, including 16 NAs, 21 OFs, and four AOs. The amounts of (Z)-oct-2-ene (4),
2-(tert-butyl)-4-methylphenol (12), the isomer of BHT (24), and NAs (C9–C21) had obviously increased.
However, the BHT (22) content was drastically reduced (>50%) compared with that of Srt.

The above results showed that temperature played an important role in the compounds detected
and influenced the compound type and RC. As shown in Figures 4 and 5, at a retention time of 8–11 min,
the RCs of DIOA and NPAN in Srt were high, but the same compounds were not detected in S180.
Instead, BHT underwent basic structure unit degradation to yield a small number of hydrocarbons.
(Z)-Oct-2-ene (4, C8), NAs (6, C10; 21, C15), and 4-methylheptan-1-ol (7, C8) were observed in S200,
while the other two BHT derivatives, namely, 2-(tert-butyl)-4-methylphenol (12) and the isomer of
BHT (24), were detected in S230. When the temperature reached 250 ◦C, small-molecule compounds
showed increased contents, with the appearance of additional NAs (5, C9; 6, C10; 8, C11; 10, C12; 21,
C15; 26, C16). As shown in Figures 4 and 6, when the temperature exceeded 270 ◦C, the amount and
RC of small molecular compounds in S300 gradually increased compared with the other TT oil samples,
reaching 52 compounds and 4.600%, respectively. This might be principally attributed to thermal
cracking reactions of the base oils. Conversely, BHT, ODA, and TMP cracked only into relatively
few small molecules through high-temperature oxidation. The results showed that the oil samples
subjected to TT temperatures of >230 ◦C presented an increase in the number of small molecules, while
the average molecular weight decreased, with concomitant deterioration in the properties. These
observations were in agreement with the APC results.
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Figure 5. TICs of the oil samples as a function of temperature at retention times of 1–11 min. 
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Table 2. Compounds detected in the total ion chromatograms of the oil samples as a function of temperature at retention times of 1–11 min.

Peak
Retention

Time (min)
Compounds Chemical

Formula
Molecular

Weight
Structural
Formula

Relative Content (%)

Srt S180 S200 S230 S250 S270 S300

1 1.468 1-Butene C4H8 56
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7 2.182 4-methylheptan-1-ol C8H18O 130  - - 0.086 0.066 0.087 0.058 0.122 

8 2.432 Undecane C11H24 156  - - - - 0.024 0.021 0.12 

9 2.547 2-ethylhexyl pentanoate C13H26O2 214 
 

0.024 - - - - - - 

10 2.948 Dodecane C12H26 170  - - - - 0.009 0.01 0.083 

11 3.601 Tridecane C13H28 184  - - - - - 0.007 0.027 

12 4.015 2-(tert-butyl)-4-methylphenol C11H16O 164 

 

- - - 0.009 0.038 0.059 0.646 

13 4.157 2-ethylhexyl hexanoate C14H28O2 228 

 

0.013 - - - - - - 

- - - - - 0.007 0.027

12 4.015 2-(tert-butyl)-4-methylphenol C11H16O 164
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16 4.656 pentylpentanoate C10H20O2 172 
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17 4.883 3-(tert-butyl)-4-methoxyphenol C11H16O2 180 

 

- 0.009 0.008 0.005 0.008 0.005 0.013 

18 4.981 
2,6-di-tert-butylcyclohexa-2,5-diene-

1,4-dione 
C14H20O2 220 

 

- 0.005 0.012 0.005 - - - 

19 5.064 4,4,5,7,8-pentamethylchroman-2-one C14H18O2 218 
O O

 

0.014 0.019 0.016 - - - - 

20 5.096 (E)-tetradec-5-ene C14H28 196  - - - - - - 0.055 

21 5.175 Pentadecane C15H32 212  - - 0.007 0.005 0.01 0.007 0.083 

22 5.281 2,6-di-tert-butyl-4-methylphenol C15H24O 220 

 

0.833 1.692 1.402 1.472 1.13 0.492 0.363 

23 5.434 2-methylbutyl heptanoate C12H24O2 200 
 

0.049 - - - - - - 

24 5.550 isomer of 22 C15H24O 220 - - - - 0.002 0.043 0.03 0.123 

25 5.909 (Z)-hexadec-7-ene C16H32 224  - - - - - - 0.042 

26 6.013 Hexadecane C16H34 226  - - - - 0.004 0.011 0.085 

- - - - - 0.008 0.063
15 4.358 Tetradecane C14H30 198
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Table 2. Cont.

Peak
Retention

Time (min)
Compounds Chemical

Formula
Molecular

Weight
Structural
Formula

Relative Content (%)

Srt S180 S200 S230 S250 S270 S300

19 5.064 4,4,5,7,8-pentamethylchroman-2-one C14H18O2 218
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20 5.096 (E)-tetradec-5-ene C14H28 196
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27 6.446 2-ethylhexyl 2-methoxyacetate C11H22O3 202
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28 6.729 (E)-heptadec-8-ene C17H34 238
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29 6.846 Heptadecane C17H36 240
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Table 2. Cont.

Peak
Retention

Time (min)
Compounds Chemical

Formula
Molecular

Weight
Structural
Formula

Relative Content (%)

Srt S180 S200 S230 S250 S270 S300

36 7.880 (Z)-nonadec-5-ene C19H38 266 - - - 0.011 0.007 0.009 0.017 -

37 7.979 10-methylnonadecane C20H42 282
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38 8.099 nonadec-1-ene C19H38 266

Materials 2020, 13, x FOR PEER REVIEW 4 of 22 

 

27 6.446 2-ethylhexyl 2-methoxyacetate C11H22O3 202 
 

0.064 - - - - - - 

28 6.729 (E)-heptadec-8-ene C17H34 238  - - - - - - 0.062 

29 6.846 Heptadecane C17H36 240  - - - 0.006 0.009 0.017 0.112 

30 7.192 
7,9-dimethylhexadecane 

 
C18H38 254 

 
- - - - - - 0.017 

31 7.443 
3,5-di-tert-butyl-4-

hydroxybenzaldehyde 
C15H22O2 234 

 

- 0.019 0.075 0.048 0.035 0.013 - 

32 7.493 2-ethylhexyl isobutyl carbonate C13H26O3 230 
 

1.427 - - - - - - 

33 7.534 (E)-octadec-9-ene C18H36 252  - - - - - - 0.053 

34 7.661 Octadecane C18H38 254  - - - - - 0.016 0.096 

35 7.747 unknown - - - 0.021 - - - - - - 

36 7.880 (Z)-nonadec-5-ene C19H38 266 - - - 0.011 0.007 0.009 0.017 - 

37 7.979 10-methylnonadecane C20H42 282  - 0.007 0.02 0.022 0.022 0.025 0.128 

38 8.099 nonadec-1-ene C19H38 266  - 0.022 0.032 0.016 0.03 0.023 0.067 

39 8.259 2,6,10,14-tetramethylhexadecane C20H42 282  - 0.007 0.083 0.069 0.081 0.063 0.113 

40 8.310 2-(hexadecyloxy)ethan-1-ol C18H38O2 286  - 0.022 0.028 0.027 0.034 0.021 0.072 

41 8.367 4-methylnonadecane C20H42 282  - 0.05 0.05 0.051 0.048 0.03 0.087 

42 8.445 Nonadecane C19H40 268  - - - - - 0.02 0.103 

- 0.022 0.032 0.016 0.03 0.023 0.067
39 8.259 2,6,10,14-tetramethylhexadecane C20H42 282

Materials 2020, 13, x FOR PEER REVIEW 4 of 22 

 

27 6.446 2-ethylhexyl 2-methoxyacetate C11H22O3 202 
 

0.064 - - - - - - 

28 6.729 (E)-heptadec-8-ene C17H34 238  - - - - - - 0.062 

29 6.846 Heptadecane C17H36 240  - - - 0.006 0.009 0.017 0.112 

30 7.192 
7,9-dimethylhexadecane 

 
C18H38 254 

 
- - - - - - 0.017 

31 7.443 
3,5-di-tert-butyl-4-

hydroxybenzaldehyde 
C15H22O2 234 

 

- 0.019 0.075 0.048 0.035 0.013 - 

32 7.493 2-ethylhexyl isobutyl carbonate C13H26O3 230 
 

1.427 - - - - - - 

33 7.534 (E)-octadec-9-ene C18H36 252  - - - - - - 0.053 

34 7.661 Octadecane C18H38 254  - - - - - 0.016 0.096 

35 7.747 unknown - - - 0.021 - - - - - - 

36 7.880 (Z)-nonadec-5-ene C19H38 266 - - - 0.011 0.007 0.009 0.017 - 

37 7.979 10-methylnonadecane C20H42 282  - 0.007 0.02 0.022 0.022 0.025 0.128 

38 8.099 nonadec-1-ene C19H38 266  - 0.022 0.032 0.016 0.03 0.023 0.067 

39 8.259 2,6,10,14-tetramethylhexadecane C20H42 282  - 0.007 0.083 0.069 0.081 0.063 0.113 

40 8.310 2-(hexadecyloxy)ethan-1-ol C18H38O2 286  - 0.022 0.028 0.027 0.034 0.021 0.072 

41 8.367 4-methylnonadecane C20H42 282  - 0.05 0.05 0.051 0.048 0.03 0.087 

42 8.445 Nonadecane C19H40 268  - - - - - 0.02 0.103 

- 0.007 0.083 0.069 0.081 0.063 0.113

40 8.310 2-(hexadecyloxy)ethan-1-ol C18H38O2 286

Materials 2020, 13, x FOR PEER REVIEW 4 of 22 

 

27 6.446 2-ethylhexyl 2-methoxyacetate C11H22O3 202 
 

0.064 - - - - - - 

28 6.729 (E)-heptadec-8-ene C17H34 238  - - - - - - 0.062 

29 6.846 Heptadecane C17H36 240  - - - 0.006 0.009 0.017 0.112 

30 7.192 
7,9-dimethylhexadecane 

 
C18H38 254 

 
- - - - - - 0.017 

31 7.443 
3,5-di-tert-butyl-4-

hydroxybenzaldehyde 
C15H22O2 234 

 

- 0.019 0.075 0.048 0.035 0.013 - 

32 7.493 2-ethylhexyl isobutyl carbonate C13H26O3 230 
 

1.427 - - - - - - 

33 7.534 (E)-octadec-9-ene C18H36 252  - - - - - - 0.053 

34 7.661 Octadecane C18H38 254  - - - - - 0.016 0.096 

35 7.747 unknown - - - 0.021 - - - - - - 

36 7.880 (Z)-nonadec-5-ene C19H38 266 - - - 0.011 0.007 0.009 0.017 - 

37 7.979 10-methylnonadecane C20H42 282  - 0.007 0.02 0.022 0.022 0.025 0.128 

38 8.099 nonadec-1-ene C19H38 266  - 0.022 0.032 0.016 0.03 0.023 0.067 

39 8.259 2,6,10,14-tetramethylhexadecane C20H42 282  - 0.007 0.083 0.069 0.081 0.063 0.113 

40 8.310 2-(hexadecyloxy)ethan-1-ol C18H38O2 286  - 0.022 0.028 0.027 0.034 0.021 0.072 

41 8.367 4-methylnonadecane C20H42 282  - 0.05 0.05 0.051 0.048 0.03 0.087 

42 8.445 Nonadecane C19H40 268  - - - - - 0.02 0.103 

- 0.022 0.028 0.027 0.034 0.021 0.072

41 8.367 4-methylnonadecane C20H42 282

Materials 2020, 13, x FOR PEER REVIEW 4 of 22 

 

27 6.446 2-ethylhexyl 2-methoxyacetate C11H22O3 202 
 

0.064 - - - - - - 

28 6.729 (E)-heptadec-8-ene C17H34 238  - - - - - - 0.062 

29 6.846 Heptadecane C17H36 240  - - - 0.006 0.009 0.017 0.112 

30 7.192 
7,9-dimethylhexadecane 

 
C18H38 254 

 
- - - - - - 0.017 

31 7.443 
3,5-di-tert-butyl-4-

hydroxybenzaldehyde 
C15H22O2 234 

 

- 0.019 0.075 0.048 0.035 0.013 - 

32 7.493 2-ethylhexyl isobutyl carbonate C13H26O3 230 
 

1.427 - - - - - - 

33 7.534 (E)-octadec-9-ene C18H36 252  - - - - - - 0.053 

34 7.661 Octadecane C18H38 254  - - - - - 0.016 0.096 

35 7.747 unknown - - - 0.021 - - - - - - 

36 7.880 (Z)-nonadec-5-ene C19H38 266 - - - 0.011 0.007 0.009 0.017 - 

37 7.979 10-methylnonadecane C20H42 282  - 0.007 0.02 0.022 0.022 0.025 0.128 

38 8.099 nonadec-1-ene C19H38 266  - 0.022 0.032 0.016 0.03 0.023 0.067 

39 8.259 2,6,10,14-tetramethylhexadecane C20H42 282  - 0.007 0.083 0.069 0.081 0.063 0.113 

40 8.310 2-(hexadecyloxy)ethan-1-ol C18H38O2 286  - 0.022 0.028 0.027 0.034 0.021 0.072 

41 8.367 4-methylnonadecane C20H42 282  - 0.05 0.05 0.051 0.048 0.03 0.087 

42 8.445 Nonadecane C19H40 268  - - - - - 0.02 0.103 

- 0.05 0.05 0.051 0.048 0.03 0.087
42 8.445 Nonadecane C19H40 268

Materials 2020, 13, x FOR PEER REVIEW 4 of 22 

 

27 6.446 2-ethylhexyl 2-methoxyacetate C11H22O3 202 
 

0.064 - - - - - - 

28 6.729 (E)-heptadec-8-ene C17H34 238  - - - - - - 0.062 

29 6.846 Heptadecane C17H36 240  - - - 0.006 0.009 0.017 0.112 

30 7.192 
7,9-dimethylhexadecane 

 
C18H38 254 

 
- - - - - - 0.017 

31 7.443 
3,5-di-tert-butyl-4-

hydroxybenzaldehyde 
C15H22O2 234 

 

- 0.019 0.075 0.048 0.035 0.013 - 

32 7.493 2-ethylhexyl isobutyl carbonate C13H26O3 230 
 

1.427 - - - - - - 

33 7.534 (E)-octadec-9-ene C18H36 252  - - - - - - 0.053 

34 7.661 Octadecane C18H38 254  - - - - - 0.016 0.096 

35 7.747 unknown - - - 0.021 - - - - - - 

36 7.880 (Z)-nonadec-5-ene C19H38 266 - - - 0.011 0.007 0.009 0.017 - 

37 7.979 10-methylnonadecane C20H42 282  - 0.007 0.02 0.022 0.022 0.025 0.128 

38 8.099 nonadec-1-ene C19H38 266  - 0.022 0.032 0.016 0.03 0.023 0.067 

39 8.259 2,6,10,14-tetramethylhexadecane C20H42 282  - 0.007 0.083 0.069 0.081 0.063 0.113 

40 8.310 2-(hexadecyloxy)ethan-1-ol C18H38O2 286  - 0.022 0.028 0.027 0.034 0.021 0.072 

41 8.367 4-methylnonadecane C20H42 282  - 0.05 0.05 0.051 0.048 0.03 0.087 

42 8.445 Nonadecane C19H40 268  - - - - - 0.02 0.103 - - - - - 0.02 0.103
43 8.514 Eicosane C20H42 282 - - 0.155 0.15 0.15 0.128 0.075 0.116

44 8.571 2,3-dimethylnonadecane C21H44 296

Materials 2020, 13, x FOR PEER REVIEW 5 of 22 

 

43 8.514 Eicosane C20H42 282 - - 0.155 0.15 0.15 0.128 0.075 0.116 

44 8.571 2,3-dimethylnonadecane C21H44 296  - 0.065 0.067 0.036 0.043 0.034 0.057 

45 8.620 2-hexyldecan-1-ol C16H34O 242  - - - - - - 0.055 

46 8.697 unknown - - - - - - - 0.01 0.019 0.042 

47 8.745 (E)-2-methylnonadec-7-ene C20H40 280  - 0.048 0.058 0.055 0.06 0.039 0.116 

48 8.854 icos-1-ene C20H40 280 - - - - - 0.017 0.018 0.085 

49 9.022 (E)-icos-9-ene C20H40 280  - - - - - - 0.076 

50 9.073 (E)-icos-5-ene C20H40 280 - - - - - - 0.03 0.123 

51 9.203 Heneicosane C21H44 296 - - - - - 0.014 0.032 0.152 

52 9.431 olefin（C ≥ 21） 

- - - 

- - - - 0.016 0.023 0.04 

53 9.481 isoparaffin（C ≥ 21） - - - - - - 0.047 

54 9.589 olefin（C ≥ 21） - - - - 0.015 0.022 0.072 

55 9.690 isoparaffin（C ≥ 21） - - 0.017 0.019 0.024 - - 

56 9.821 olefin（C ≥ 21） - - - - - - 0.04 

57 9.936 normal alkane（C ≥ 21） - 0.024 0.02 0.023 0.031 0.026 0.064 

58 10.137 olefin（C ≥ 21） - - - - - - 0.037 

59 10.188 isoparaffin（C ≥ 21） - - - - - - 0.032 

60 10.291 olefin（C ≥ 21） - - - - - - 0.053 

61 10.511 olefin（C ≥ 21） - - - - 0.015 - 0.062 

62 10.631 normal alkane（C ≥ 21） - 0.015 - 0.027 0.021 - 0.033 

63 10.967 olefin（C ≥ 21） - - - - - - 0.077 

D1–

D18 
8.135–10.893 dioctylhexanedioate C22H42O4 370 - 10.155 - - - - - - 

N 10.549 N-phenylnaphthalen-1-amine C16H13N 219 
NH  

0.450 - - - - - - 

- 0.065 0.067 0.036 0.043 0.034 0.057

45 8.620 2-hexyldecan-1-ol C16H34O 242

Materials 2020, 13, x FOR PEER REVIEW 5 of 22 

 

43 8.514 Eicosane C20H42 282 - - 0.155 0.15 0.15 0.128 0.075 0.116 

44 8.571 2,3-dimethylnonadecane C21H44 296  - 0.065 0.067 0.036 0.043 0.034 0.057 

45 8.620 2-hexyldecan-1-ol C16H34O 242  - - - - - - 0.055 

46 8.697 unknown - - - - - - - 0.01 0.019 0.042 

47 8.745 (E)-2-methylnonadec-7-ene C20H40 280  - 0.048 0.058 0.055 0.06 0.039 0.116 

48 8.854 icos-1-ene C20H40 280 - - - - - 0.017 0.018 0.085 

49 9.022 (E)-icos-9-ene C20H40 280  - - - - - - 0.076 

50 9.073 (E)-icos-5-ene C20H40 280 - - - - - - 0.03 0.123 

51 9.203 Heneicosane C21H44 296 - - - - - 0.014 0.032 0.152 

52 9.431 olefin（C ≥ 21） 

- - - 

- - - - 0.016 0.023 0.04 

53 9.481 isoparaffin（C ≥ 21） - - - - - - 0.047 

54 9.589 olefin（C ≥ 21） - - - - 0.015 0.022 0.072 

55 9.690 isoparaffin（C ≥ 21） - - 0.017 0.019 0.024 - - 

56 9.821 olefin（C ≥ 21） - - - - - - 0.04 

57 9.936 normal alkane（C ≥ 21） - 0.024 0.02 0.023 0.031 0.026 0.064 

58 10.137 olefin（C ≥ 21） - - - - - - 0.037 

59 10.188 isoparaffin（C ≥ 21） - - - - - - 0.032 

60 10.291 olefin（C ≥ 21） - - - - - - 0.053 

61 10.511 olefin（C ≥ 21） - - - - 0.015 - 0.062 

62 10.631 normal alkane（C ≥ 21） - 0.015 - 0.027 0.021 - 0.033 

63 10.967 olefin（C ≥ 21） - - - - - - 0.077 

D1–

D18 
8.135–10.893 dioctylhexanedioate C22H42O4 370 - 10.155 - - - - - - 

N 10.549 N-phenylnaphthalen-1-amine C16H13N 219 
NH  

0.450 - - - - - - 

- - - - - - 0.055

46 8.697 unknown - - - - - - - 0.01 0.019 0.042
47 8.745 (E)-2-methylnonadec-7-ene C20H40 280

Materials 2020, 13, x FOR PEER REVIEW 5 of 22 

 

43 8.514 Eicosane C20H42 282 - - 0.155 0.15 0.15 0.128 0.075 0.116 

44 8.571 2,3-dimethylnonadecane C21H44 296  - 0.065 0.067 0.036 0.043 0.034 0.057 

45 8.620 2-hexyldecan-1-ol C16H34O 242  - - - - - - 0.055 

46 8.697 unknown - - - - - - - 0.01 0.019 0.042 

47 8.745 (E)-2-methylnonadec-7-ene C20H40 280  - 0.048 0.058 0.055 0.06 0.039 0.116 

48 8.854 icos-1-ene C20H40 280 - - - - - 0.017 0.018 0.085 

49 9.022 (E)-icos-9-ene C20H40 280  - - - - - - 0.076 

50 9.073 (E)-icos-5-ene C20H40 280 - - - - - - 0.03 0.123 

51 9.203 Heneicosane C21H44 296 - - - - - 0.014 0.032 0.152 

52 9.431 olefin（C ≥ 21） 

- - - 

- - - - 0.016 0.023 0.04 

53 9.481 isoparaffin（C ≥ 21） - - - - - - 0.047 

54 9.589 olefin（C ≥ 21） - - - - 0.015 0.022 0.072 

55 9.690 isoparaffin（C ≥ 21） - - 0.017 0.019 0.024 - - 

56 9.821 olefin（C ≥ 21） - - - - - - 0.04 

57 9.936 normal alkane（C ≥ 21） - 0.024 0.02 0.023 0.031 0.026 0.064 

58 10.137 olefin（C ≥ 21） - - - - - - 0.037 

59 10.188 isoparaffin（C ≥ 21） - - - - - - 0.032 

60 10.291 olefin（C ≥ 21） - - - - - - 0.053 

61 10.511 olefin（C ≥ 21） - - - - 0.015 - 0.062 

62 10.631 normal alkane（C ≥ 21） - 0.015 - 0.027 0.021 - 0.033 

63 10.967 olefin（C ≥ 21） - - - - - - 0.077 

D1–

D18 
8.135–10.893 dioctylhexanedioate C22H42O4 370 - 10.155 - - - - - - 

N 10.549 N-phenylnaphthalen-1-amine C16H13N 219 
NH  

0.450 - - - - - - 

- 0.048 0.058 0.055 0.06 0.039 0.116
48 8.854 icos-1-ene C20H40 280 - - - - - 0.017 0.018 0.085
49 9.022 (E)-icos-9-ene C20H40 280

Materials 2020, 13, x FOR PEER REVIEW 5 of 22 

 

43 8.514 Eicosane C20H42 282 - - 0.155 0.15 0.15 0.128 0.075 0.116 

44 8.571 2,3-dimethylnonadecane C21H44 296  - 0.065 0.067 0.036 0.043 0.034 0.057 

45 8.620 2-hexyldecan-1-ol C16H34O 242  - - - - - - 0.055 

46 8.697 unknown - - - - - - - 0.01 0.019 0.042 

47 8.745 (E)-2-methylnonadec-7-ene C20H40 280  - 0.048 0.058 0.055 0.06 0.039 0.116 

48 8.854 icos-1-ene C20H40 280 - - - - - 0.017 0.018 0.085 

49 9.022 (E)-icos-9-ene C20H40 280  - - - - - - 0.076 

50 9.073 (E)-icos-5-ene C20H40 280 - - - - - - 0.03 0.123 

51 9.203 Heneicosane C21H44 296 - - - - - 0.014 0.032 0.152 

52 9.431 olefin（C ≥ 21） 

- - - 

- - - - 0.016 0.023 0.04 

53 9.481 isoparaffin（C ≥ 21） - - - - - - 0.047 

54 9.589 olefin（C ≥ 21） - - - - 0.015 0.022 0.072 

55 9.690 isoparaffin（C ≥ 21） - - 0.017 0.019 0.024 - - 

56 9.821 olefin（C ≥ 21） - - - - - - 0.04 

57 9.936 normal alkane（C ≥ 21） - 0.024 0.02 0.023 0.031 0.026 0.064 

58 10.137 olefin（C ≥ 21） - - - - - - 0.037 

59 10.188 isoparaffin（C ≥ 21） - - - - - - 0.032 

60 10.291 olefin（C ≥ 21） - - - - - - 0.053 

61 10.511 olefin（C ≥ 21） - - - - 0.015 - 0.062 

62 10.631 normal alkane（C ≥ 21） - 0.015 - 0.027 0.021 - 0.033 

63 10.967 olefin（C ≥ 21） - - - - - - 0.077 

D1–

D18 
8.135–10.893 dioctylhexanedioate C22H42O4 370 - 10.155 - - - - - - 

N 10.549 N-phenylnaphthalen-1-amine C16H13N 219 
NH  

0.450 - - - - - - 

- - - - - - 0.076
50 9.073 (E)-icos-5-ene C20H40 280 - - - - - - 0.03 0.123
51 9.203 Heneicosane C21H44 296 - - - - - 0.014 0.032 0.152
52 9.431 olefin (C ≥ 21)

- - -

- - - - 0.016 0.023 0.04
53 9.481 isoparaffin (C ≥ 21) - - - - - - 0.047
54 9.589 olefin (C ≥ 21) - - - - 0.015 0.022 0.072
55 9.690 isoparaffin (C ≥ 21) - - 0.017 0.019 0.024 - -
56 9.821 olefin (C ≥ 21) - - - - - - 0.04
57 9.936 normal alkane (C ≥ 21) - 0.024 0.02 0.023 0.031 0.026 0.064
58 10.137 olefin (C ≥ 21) - - - - - - 0.037
59 10.188 isoparaffin (C ≥ 21) - - - - - - 0.032
60 10.291 olefin (C ≥ 21) - - - - - - 0.053
61 10.511 olefin (C ≥ 21) - - - - 0.015 - 0.062
62 10.631 normal alkane (C ≥ 21) - 0.015 - 0.027 0.021 - 0.033
63 10.967 olefin (C ≥ 21) - - - - - - 0.077

D1–D18 8.135–10.893 dioctylhexanedioate C22H42O4 370 - 10.155 - - - - - -

N 10.549 N-phenylnaphthalen-1-amine C16H13N 219

Materials 2020, 13, x FOR PEER REVIEW 5 of 22 

 

43 8.514 Eicosane C20H42 282 - - 0.155 0.15 0.15 0.128 0.075 0.116 

44 8.571 2,3-dimethylnonadecane C21H44 296  - 0.065 0.067 0.036 0.043 0.034 0.057 

45 8.620 2-hexyldecan-1-ol C16H34O 242  - - - - - - 0.055 

46 8.697 unknown - - - - - - - 0.01 0.019 0.042 

47 8.745 (E)-2-methylnonadec-7-ene C20H40 280  - 0.048 0.058 0.055 0.06 0.039 0.116 

48 8.854 icos-1-ene C20H40 280 - - - - - 0.017 0.018 0.085 

49 9.022 (E)-icos-9-ene C20H40 280  - - - - - - 0.076 

50 9.073 (E)-icos-5-ene C20H40 280 - - - - - - 0.03 0.123 

51 9.203 Heneicosane C21H44 296 - - - - - 0.014 0.032 0.152 

52 9.431 olefin（C ≥ 21） 

- - - 

- - - - 0.016 0.023 0.04 

53 9.481 isoparaffin（C ≥ 21） - - - - - - 0.047 

54 9.589 olefin（C ≥ 21） - - - - 0.015 0.022 0.072 

55 9.690 isoparaffin（C ≥ 21） - - 0.017 0.019 0.024 - - 

56 9.821 olefin（C ≥ 21） - - - - - - 0.04 

57 9.936 normal alkane（C ≥ 21） - 0.024 0.02 0.023 0.031 0.026 0.064 

58 10.137 olefin（C ≥ 21） - - - - - - 0.037 

59 10.188 isoparaffin（C ≥ 21） - - - - - - 0.032 

60 10.291 olefin（C ≥ 21） - - - - - - 0.053 

61 10.511 olefin（C ≥ 21） - - - - 0.015 - 0.062 

62 10.631 normal alkane（C ≥ 21） - 0.015 - 0.027 0.021 - 0.033 

63 10.967 olefin（C ≥ 21） - - - - - - 0.077 

D1–

D18 
8.135–10.893 dioctylhexanedioate C22H42O4 370 - 10.155 - - - - - - 

N 10.549 N-phenylnaphthalen-1-amine C16H13N 219 
NH  

0.450 - - - - - - 0.450 - - - - - -



Materials 2020, 13, 1606 13 of 20

Materials 2020, 13, x FOR PEER REVIEW 6 of 22 

 

Twenty-seven compounds were identified in Srt, including 23 ETs, three AOs, and one UK. 

Among them, ETs were the main components, accounting for the content of 10.90%. The three 

antioxidants were BHT (22), NPAN (N), and BHT derivatives (19). Fifteen compounds were detected 

in S180, including three NAs, two OFs, four IPs, one AH, and five AOs. The RCs of BHT (22), 2-, 6-, 10-

, and 14-tetramethylhexadecane (39), and eicosane (43) accounted for a higher percentage. The 

distribution of compounds comprising S200 was similar to that of S230. Twenty-two compounds were 

detected in both samples, including seven NAs, two OFs, four IPs, two AHs, and six AOs. The RCs 

of 4-methylheptan-1-ol (7), BHT (22), 3,5-di-tert-butyl-4-hydroxybenzaldehyde, eicosane (43), and 

(E)-2-methylnonadec-7-ene (47) accounted for a higher percentage. Thirty-one compounds were 

detected in S250, including 12 NAs, eight OFs, four IPs, two AHs, and five AOs. The RCs of 4-

methylheptan-1-ol (7), 2-(tert-butyl)-4-methylphenol (12), BHT (22), and the isomer of BHT (24) 

accounted for a higher percentage. Thirty-seven compounds were detected in S270, including 15 NAs, 

11 OFs, four IPs, two AHs, and five AOs. The RCs of decane (6), 2-(tert-butyl)-4-methylphenol (12), 

BHT (22), and the isomer of 22 (24) accounted for a higher percentage. Fifty-two compounds were 

detected in S300, including 16 NAs, 21 OFs, and four AOs. The amounts of (Z)-oct-2-ene (4), 2-(tert-

butyl)-4-methylphenol (12), the isomer of BHT (24), and NAs (C9–C21) had obviously increased. 

However, the BHT (22) content was drastically reduced (>50%) compared with that of Srt. 

The above results showed that temperature played an important role in the compounds detected 

and influenced the compound type and RC. As shown in Figures 4 and 5, at a retention time of 8–11 

min, the RCs of DIOA and NPAN in Srt were high, but the same compounds were not detected in S180. 

Instead, BHT underwent basic structure unit degradation to yield a small number of hydrocarbons. 

(Z)-Oct-2-ene (4, C8), NAs (6, C10; 21, C15), and 4-methylheptan-1-ol (7, C8) were observed in S200, while 

the other two BHT derivatives, namely, 2-(tert-butyl)-4-methylphenol (12) and the isomer of BHT 

(24), were detected in S230. When the temperature reached 250 °C, small-molecule compounds showed 

increased contents, with the appearance of additional NAs (5, C9; 6, C10; 8, C11; 10, C12; 21, C15; 26, C16). 

As shown in Figures 4 and 6, when the temperature exceeded 270 °C, the amount and RC of small 

molecular compounds in S300 gradually increased compared with the other TT oil samples, reaching 

52 compounds and 4.600%, respectively. This might be principally attributed to thermal cracking 

reactions of the base oils. Conversely, BHT, ODA, and TMP cracked only into relatively few small 

molecules through high-temperature oxidation. The results showed that the oil samples subjected to 

TT temperatures of >230 °C presented an increase in the number of small molecules, while the average 

molecular weight decreased, with concomitant deterioration in the properties. These observations 

were in agreement with the APC results. 

0.1

1.0

5.0

10.0

R
el

at
iv

e 
co

n
te

n
ts

 /
 %

L
o

g
it

 ETs  OAs  NAs  OFs  IPs  AHs

Srt S180 S200 S230
S250 S270 S300  

Figure 6. Distribution of group components in Srt and S180–S300. 

4. Discussion 

4.1. Physicochemical Properties: Changes with Temperature 

Figure 6. Distribution of group components in Srt and S180–S300.

4. Discussion

4.1. Physicochemical Properties: Changes with Temperature

As shown in Figure 7, the KV at 40 ◦C (ν40), PP, AN, and color showed different variational
trends as a function of temperature. Changes in the trends of ν40, PP, and AN occurred at an inflection
point of 250 ◦C. When the temperature was <250 ◦C, the ν40, PP, and AN values of the samples were
relatively stable. The ranges of variation for ν40, PP, and AN were 14.6–14.4 mm2/s, −65 to −69 ◦C,
and 0.07–0.45 mg KOH/g, respectively. When the temperature was >250 ◦C, the ν40, PP, and AN values
of the samples changed dramatically. The ν40 values of S270 and S300 were reduced to 14.1 and 13.5
mm2/s, while the PP value was increased to −56 and −27 ◦C, and the AN value was increased to 0.8
and 3.5 mg KOH/g, respectively.

Materials 2020, 13, x FOR PEER REVIEW 7 of 22 

 

As shown in Figure 7, the KV at 40 °C (40), PP, AN, and color showed different variational trends 

as a function of temperature. Changes in the trends of 40, PP, and AN occurred at an inflection point 

of 250 °C. When the temperature was <250 °C, the 40, PP, and AN values of the samples were 

relatively stable. The ranges of variation for 40, PP, and AN were 14.6–14.4 mm2/s, −65 to 69 °C, and 

0.07–0.45 mg KOH/g, respectively. When the temperature was >250 °C, the 40, PP, and AN values of 

the samples changed dramatically. The 40 values of S270 and S300 were reduced to 14.1 and 13.5 mm2/s, 

while the PP value was increased to 56 and 27 °C, and the AN value was increased to 0.8 and 3.5 

mg KOH/g, respectively. 

As shown in Figure 7, the inflection point for color was 200 °C. When subjected to TT 

temperatures of >200 °C, the oil samples were brown and black, while those at 180 °C were light 

brown. Compared with 40, PP, and AN, the color was more sensitive to temperature, which induced 

rapid changes in the oil color. The color change preceded the degradation of the oil sample during 

the heating process and was relatively small during subsequent heating. Therefore, the color change 

should not be used as a basis for the degradation performance of the oil sample. Basing changes in 

the lubricating function of the oil solely on color changes is not ideal because the performance of the 

oil might not have actually deteriorated, resulting in waste. Studies have shown that changes in the 

oil color are related to the antioxidant effect of antioxidants [38]. The change in AN was derived from 

oxygen-containing compounds, such as alcohols, ketones, aldehydes, and acid esters, generated 

during high-temperature thermal oxidation [39]. PP is principally related to the -methylene content 

in alkyl groups and aromatic or naphthenic rings. The NAs exhibit a higher PP, while the IPs exhibit 

a lower PP [40]. During the low- and medium-temperature stages (<250 °C), the antioxidant effect, 

while changing the color of the oil samples, also prevented the cracking of the PAO and DIOA 

molecular chains in the oil samples and, to a certain extent, the formation of other substances [41]. 

Therefore, the degradation rate of 40, PP, and AN at this stage was reduced. At the high-temperature 

stage (>250 °C), the molecular structure of PAO was destroyed, and the type and content of n-alkanes 

exceeded that of o-alkanes, leading to an increase in PP [42]. Simultaneously, with the decrease in 

antioxidant content, the antioxidant effect was obviously weakened. The oil samples were typically 

subjected to high-temperature thermal oxidation and cracking, and the contents of small molecular 

oxygen-containing compounds, such as alcohols, ketones, aldehydes, and acid esters, significantly 

increased, leading to an increase in AN. 

Srt S180 S200 S230 S250 S270 S300
13.4

13.6

13.8

14.0

14.2

14.4

14.6

14.8

Srt S180 S200 S230 S250 S270 S300

-70

-60

-50

-40

-30

-20

Srt S180 S200 S230 S250 S270 S300

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
is

co
si

ty
 (

m
m

2
/s

)

 Viscosity

(a) (b)

P
o

u
r 

p
o

in
t 

(℃
)

 Pour point

(c)

A
ci

d
 n

u
m

b
er

 (
m

g
K

O
H

/g
)

Sample

 Acid number

Srt S180 S200 S230 S250 S270 S300

(d)

C
o

lo
u

r

Sample  

Figure 7. Kinematic viscosity at 40 °C, pour point, acid number, and color of the oil samples as a 

function of temperature. (a) Kinematic viscosity; (b) Pour point; (c) Acid number; (d) Colour. 

The KV of the lubricating oil is mainly derived from the interaction force between molecules. 

The distance between the molecules increases with rising temperature owing to volume expansion, 

which results in the decrease in force between molecules and, therefore, a decrease in viscosity. The 

Figure 7. Kinematic viscosity at 40 ◦C, pour point, acid number, and color of the oil samples as a
function of temperature. (a) Kinematic viscosity; (b) Pour point; (c) Acid number; (d) Colour.

As shown in Figure 7, the inflection point for color was 200 ◦C. When subjected to TT temperatures
of >200 ◦C, the oil samples were brown and black, while those at 180 ◦C were light brown.
Compared with ν40, PP, and AN, the color was more sensitive to temperature, which induced
rapid changes in the oil color. The color change preceded the degradation of the oil sample during
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the heating process and was relatively small during subsequent heating. Therefore, the color change
should not be used as a basis for the degradation performance of the oil sample. Basing changes in the
lubricating function of the oil solely on color changes is not ideal because the performance of the oil
might not have actually deteriorated, resulting in waste. Studies have shown that changes in the oil
color are related to the antioxidant effect of antioxidants [38]. The change in AN was derived from
oxygen-containing compounds, such as alcohols, ketones, aldehydes, and acid esters, generated during
high-temperature thermal oxidation [39]. PP is principally related to the α-methylene content in alkyl
groups and aromatic or naphthenic rings. The NAs exhibit a higher PP, while the IPs exhibit a lower
PP [40]. During the low- and medium-temperature stages (<250 ◦C), the antioxidant effect, while
changing the color of the oil samples, also prevented the cracking of the PAO and DIOA molecular
chains in the oil samples and, to a certain extent, the formation of other substances [41]. Therefore,
the degradation rate of ν40, PP, and AN at this stage was reduced. At the high-temperature stage
(>250 ◦C), the molecular structure of PAO was destroyed, and the type and content of n-alkanes
exceeded that of o-alkanes, leading to an increase in PP [42]. Simultaneously, with the decrease in
antioxidant content, the antioxidant effect was obviously weakened. The oil samples were typically
subjected to high-temperature thermal oxidation and cracking, and the contents of small molecular
oxygen-containing compounds, such as alcohols, ketones, aldehydes, and acid esters, significantly
increased, leading to an increase in AN.

The KV of the lubricating oil is mainly derived from the interaction force between molecules.
The distance between the molecules increases with rising temperature owing to volume expansion,
which results in the decrease in force between molecules and, therefore, a decrease in viscosity.
The small molecular compounds produced by cracking at high temperatures have made a greater
contribution to the reduction in KV [43]. Based on the APC results, at >230 ◦C, the temperature
was known to rapidly decrease both Mn and Mw. Therefore, the relative number of small-molecule
compounds increased, which led to a decrease in ν40 at high temperatures.

4.2. Molecular Structure: Changes with Temperature

The molecular structure of SLOs determines the thermal oxidation stability when oils are exposed
to harsh operating conditions [2,44]. As shown in Figures 6 and 8, there were significant differences
in the species and RCs of compounds detected by GC/MS between the fresh oil and aged oils. The
fresh oil (Srt) comprised 23 ETs (10.90%) and three AOs (0.913%), while hydrocarbons, alcohols,
and AO compounds were the main compounds observed in the aged oils (S180–S300). ETs were
not detected in S180–S270, but pentylpentanoate was observed in S300. Degradation products were
produced during the test, implying that the SHALO thermal oxidation process was highly complex.
Meanwhile, any small changes in the experimental conditions, such as the experimental reactor, heating
and cooling conditions, sampling approaches, and production batches of the same lubricating oils,
could affect the results and the changing trend under high temperatures.
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The oxidation process of lubricating oils has three stages [26]. First, the antioxidant and antiwear
additives are consumed, followed by oxidative degradation of the base oil, and, finally, polymerization,
which leads to an increase in the oil viscosity in the final stage. The APC and GC/MS data were
in agreement with the three stages of oxidation. The additives were depleted at 180 ◦C in the first
stage. The RCs of the three antioxidants (BHT, NPAN, and ODA) and one antiwear additive (TMP)
were reduced, but the amount of these compounds increased. Four derivatives of BHT are shown
in Figure 9, and the number of carbon atoms associated with the NAs in S180 was not less than
20. Generally, small-molecule compounds, which increased in content during degradation of the
lubricating oil, resulted in decreased Mn and Mw values, while cross-linking and polycondensation of
the compounds resulted in increased Mn and Mw values. Furthermore, decane was detected in S180. The
oil samples at <200 ◦C were concluded to be partially pyrolyzed, as characterized by a growing amount
of small-molecule compounds compared with that of macromolecules. The KV values of S180 and S200

were relatively low, suggesting that the formation of hydroperoxides in the initial oxidation period
seriously deteriorated the properties of the aging oils. In the temperature range of 200–230 ◦C, the degree
of polycondensation was greater than that of cracking in the aged oils owing to a growing volume
of macromolecular compounds, while the KV of S230 was observed to increase [45–47]. During this
stage, the formation of polar organic compounds in the oil (such as ketones, alcohols, carboxylic
acids, and esters) was more pronounced, with 4-methylheptan-1-ol and 2-(hexadecyloxy)ethan-1-ol
detected. Furthermore, two new derivatives of BHT—2-(tert-butyl)-4-methylphenol and the isomer
of BHT—were present in S230. The possible reaction phenolic hydroxyl oxygen pathways of BHT
are shown in Figure 10. When heated, BHT acted as a radical terminator. The phenolic hydroxyl
oxygen could participate in the benzene conjugated system to induce electronegativity, with the
pushing of electron density from the o-, m-, and p-substituents resulting in a reduction of O–H polarity.
Hydrogen atoms were quickly abstracted by the free radicals of the lubricating oils to improve the
thermal oxidation stability. The change in the composition of the SHALO was similar to the three-stage
oxidation process (depletion of additives, degradation of the base oil, and polymerization) when the
TT temperature was <230 ◦C. In the temperature range of 250–300 ◦C, the degree of thermal cracking
in the oil sample was greater than that of thermal polycondensation, characterized by a growing
amount of small-molecule compounds. C10–C18 compounds were detected in S250–S300, and the
RC of BHT derivative 2-(tert-butyl)-4-methylphenol increased from 0.009% in S230 to 0.646% in S300.
Therefore, the KV of the aged oils was also significantly reduced [2,13].
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Overall, the polycondensation and cracking reactions of the oil samples were shown to occur
simultaneously at high temperatures, with thermal cracking as the predominant mechanism of these
reactions (Figure 11). There was a significant difference between the degree of polycondensation
and cracking reactions as a function of temperature. After polycondensation and pyrolysis reactions,
the physicochemical properties of the oil samples changed, with the thermal stability decreasing to the
degree that resulted in the deterioration of these properties. The results showed that at temperatures
of <250 ◦C, the compounds in the base oil were slightly cracked, and the antioxidants significantly
changed. Polycondensation is the predominant reaction below 250 ◦C, which might explain why
lower wear was observed for the aged oils compared with fresh oil, and why the films formed from
the aged oils provided superior wear performance compared with that of the film formed from fresh
oil [24]. When the temperature exceeded 250 ◦C, the compounds present in the oil samples were mainly
pyrolyzed, but the antioxidant effect was less obvious. Furthermore, the types of small-molecule
compounds increased, and a large number of small-molecule compounds, such as OFs and NAs,
appeared. There were a large number of small molecular compounds, which indicated that a significant
degree of thermal oxidation cracking occurred in the lubricating oil. Therefore, the molecular weight
exhibited a downward trend, the viscosity decreased, and the oil film was not able to reach a certain
thickness (≤0.01 µm) [16]. The lubricating function of the lubricating oil was significantly impacted,
with friction and wear occurring, leading to the deterioration of the oil properties.
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Figure 11. Possible reaction types of PAO.

4.3. CA of the Oil Samples

Clustering aims to seek natural groupings in the data based on the similarity of individual
components or objects, such that the objects of the same group, or cluster, are more similar than
different groups [48–50]. CA is considered a principal task of data exploration, is a common technique for
statistical analysis and chemometric approaches, and is widely used in molecular spectroscopy [51–53].
The results of CA were intended to elucidate the compound structure and compositional changes of
SHALOs resulting from oxidative high-temperature degradation, allowing detection of the degradation
stages of SHALOs and signaling of the need for an oil change when warranted by the oil conditions [54].
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Furthermore, the SHALO clusters could be used to detect possible relationships between compound
structure and compositional changes at the molecular level and, therefore, facilitate the discovery of
physicochemical properties at the macro level.

Based on 82 compounds detected from seven samples by GC/MS at retention times of 1–11 min,
the SHALO clusters were classified by CA using Origin 9.0 software. The average distance between
groups, data standardization, and the Pearson correlation coefficient was chosen for hierarchical CA.
As shown in Figure 12, the system CA tree diagram showed that seven types of oils could be classified,
as follows: S180, S200, S230, and S250 belonging to cluster I, S270 and S300 belonging to cluster II, and
Srt belonging to cluster III. The classifications of clusters I and II were consistent with the inflection
points of the Mn, Mw, ν40, PP, and AN values of the oil samples at 250 ◦C. The classification of Srt into
cluster III was also consistent with the physical system studied. CA results at the molecular level were
observed to be in good agreement with the changes observed to the physicochemical properties of the
samples on the macro level. Gong et al. observed that hierarchical CA results based on two-channel
and differential dielectric spectroscopy (TD-DES) data were also in good agreement with those based
on FT-IR data and proposed using the TD-DES technique to monitor the oil and conduct hierarchical
CA [54]. Furthermore, the present study offered a platform for further researching the molecular
mechanism of oil sample degradation performance.
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Figure 12. Dendrogram of the oil samples by cluster analysis based on the average linkage and Pearson
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5. Conclusions

In this study, the compositional and structural characteristics of a SHALO were clarified under
treatment at different temperatures through compound identification and analysis. The data provided
scientific validation and technical support for molecular mechanisms related to the physicochemical
properties and degree of SHALO deterioration as a function of temperature. Twenty functional groups,
including comb-like alkanes, long-chain diesters, amines, and phenols, were identified in the SHALO.
The antioxidants induced obvious effects that hindered the formation of free radicals, and NPAN was
exhausted when the temperature was higher than 180 ◦C. Therefore, the cracking reactions were slower
compared with polycondensation at low and medium temperatures (<250 ◦C). However, at high
temperatures (>250 ◦C), the role of the antioxidants gradually weakened, which significantly promoted
the cracking reactions. The number and relative contents of small-molecule compounds in S300,
mainly composed of NAs, IPs, OFs, and AHs, were 52 and 4.600%, which were significantly higher
compared with those in S180 (15 and 2.228%). A correlation existed between the rapid degradation of
physicochemical properties (such as color, KV, PP, and AN) and the rapid increase in small-molecule
compounds under high-temperature treatment. CA, based on the RCs of compounds, was in good
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agreement with the classification based on macroscopic physicochemical properties, which revealed the
molecular mechanism of the degradation in properties at high TT temperatures. Furthermore, on this
basis, the high-temperature SHALO performance would be improved, and the service life prolonged
by developing chemical analysis.
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