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Abstract: Constitutive models for plastic deformation of metals are typically based on flow rules
determining the transition from elastic to plastic response of a material as function of the applied
mechanical load. These flow rules are commonly formulated as a yield function, based on the
equivalent stress and the yield strength of the material, and its derivatives. In this work, a novel
mathematical formulation is developed that allows the efficient use of machine learning algorithms
describing the elastic-plastic deformation of a solid under arbitrary mechanical loads and that can
replace the standard yield functions with more flexible algorithms. By exploiting basic physical
principles of elastic-plastic deformation, the dimensionality of the problem is reduced without loss
of generality. The data-oriented approach inherently offers a great flexibility to handle different
kinds of material anisotropy without the need for explicitly calculating a large number of model
parameters. The applicability of this formulation in finite element analysis is demonstrated, and the
results are compared to formulations based on Hill-like anisotropic plasticity as reference model.
In future applications, the machine learning algorithm can be trained by hybrid experimental and
numerical data, as for example obtained from fundamental micromechanical simulations based on
crystal plasticity models. In this way, data-oriented constitutive modeling will also provide a new
way to homogenize numerical results in a scale-bridging approach.

Keywords: plasticity; machine learning; constitutive modeling

1. Introduction

Finite element analysis (FEA) is a widespread numerical tool for studying the mechanical behavior
of structures. While in many applications it is sufficient to know under which conditions a part of
the structure fails plastically or suffers damage or fracture, in some cases, like in sheet forming or for
crash simulations, it is important to be able to simulate the plastic deformation during loading and
to obtain the shape of the structure after the external load is released. Such non-linear behavior is
typically described by constitutive models that relate stress and strain in a material, as described in
any textbook on non-linear finite element modeling, e.g., see [1]. Conventionally, constitutive relations
for plasticity are formulated as flow rules based on a plastic potential. In the simplest case, the latter
is the yield function of the material, determining at which local stress the material starts yielding
plastically and which plastic strain increment will result from such plastic deformation. As described
in the next section, such yield functions relate the equivalent stress and the yield strength of a material,
which needs to be determined experimentally or with the help of more fundamental models in a
scale-bridging approach.

Experimentally, the yield strength is typically determined in uniaxial tensile tests, in which
materials frequently exhibit an anisotropy in their plastic behavior, i.e., the yield strength depends on
the orientation of the loading axis with respect to the material coordinate system, defined for example
by rolling, normal, and transverse direction. In conventional approaches such anisotropic plastic
behavior is described by defining a proper equivalent stress that takes into account material anisotropy,
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such that yielding occurs at a constant scalar yield strength. This approach has been introduced by
Hill [2] and applied to orthotropic plasticity in sheet metals [3]. The concept has been generalized to
linear transformation-based anisotropic yield functions by Barlat et al. [4] and to methods describing
distortions of the yield surface caused by anisotropic work hardening [5]. In forming technology,
similar ideas have been successfully applied to predict the resulting shape of sheet metals after deep
drawing [6]. All these approaches have in common that the information about the material anisotropy
is mapped into the definition of the equivalent stress, while they differ in the amount of material
parameters that is required to describe the anisotropy in the material’s flow behavior. To determine
these parameters, a series of experiments with different mutual orientations of loading axis and
material axis is necessary. Alternatively, micromechanical models, in which discrete representations
of the material’s microstructure are used together with quite fundamental crystal plasticity models,
can be used to calculate the anisotropic flow behavior of a polycrystalline metal [7,8].

To model non-linear material behavior, in more recent approaches, the method of data-based
mechanics has been introduced by Kirchdoerfer and Ortiz [9], in which stress-strain data from
experimental tests are used directly, rather than using constitutive rules. While the first approaches
have been limited to elastic structures under static loads, recently, this concept has been extended to
dynamics [10] and to inelastic material behavior [11]. These methods are based on a fundamental
re-formulation of the basic equations of mechanics and thus require completely new mechanical solvers.
Other data-driven methods in plasticity are formulated as process models, e.g., for air-bending [12],
or focus on the application of data-oriented methods as constitutive models in computational
plasticity [13]. The latter idea allows the use of existing FEA solvers for mechanical problems, and
is also followed in this work, in which a new formulation of a data-oriented flow rule is introduced
that can replace conventional constitutive models—formulated in a mathematical closed form—by
machine learning (ML) algorithms. In this data-oriented formulation, the anisotropy of the material’s
flow behavior is considered in a directionally dependent yield strength of the material rather than by
an anisotropic transformation of the stress. Using ML algorithms as yield functions provides a great
flexibility to describe arbitrary mathematical functions, and at the same time, holds the potential to
handle large data sets and multi-dimensional feature vectors as input. Hence, using ML algorithms
as constitutive rules for plastic material behavior offers the possibility to explicitly take into account
the microstructural information of the material in constitutive modeling. Furthermore, data resulting
from experiment and micromechanical simulations can be hybridized to generate training data sets.
An overview on applications of ML and data-mining methods in continuum mechanical simulations
of material behavior has been provided by Bock et al. [14].

ML algorithms can be classified into algorithms for supervised and unsupervised learning.
The former group can be further categorized into classification algorithms, which divide
a multi-dimensional feature space into regions with similar properties, and into regressors,
which provide linear or non-linear regression functions for the given multi-dimensional data set.
Support Vector Machines (SVM) are successfully applied both as classifiers (SVC) [15] and regressors
(SVR) [16,17]; an overview on both applications is given in a technical report by Gunn [18]. Since yield
functions in continuum plasticity are also employed to subdivide stress space into elastic and plastic
regions, this work aims at investigating the possibility of using SVC for the purpose of constitutive
modeling in plasticity. An overview on data-mining methods and statistical learning, also covering the
SVM method, is given by Hastie et al. [19].

The present paper is organized as follows: In the next section, the basic concepts of continuum
plasticity are briefly summarized, and a new mathematical formulation is introduced, which enables
a data-oriented approach to constitutive modeling. Subsequently, a consistent formulation of the
SVC method to serve as yield function in continuum plasticity is introduced, which is then trained
with artificial data resulting from a Hill-like reference material. Using such data has the advantage of
being able to judge the quality of the approximations in an objective way. In the next step, trained ML
yield function is applied as constitutive model in simple finite element simulations (Supplementary
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Materials) to demonstrate its applicability for this purpose. Finally, the results of ML and conventional
flow rules are compared and the conclusions drawn from this comparison are presented.

2. Methods

2.1. Anisotropic Continuum Plasticity

In order to describe the elastic-plastic deformation of a material, we introduce the strain tensor εεε

that describes the deformation of the material and the stress tensor σσσ that describes the forces acting
on the surface of the material. Note that tensorial quantities with rank≥ 1 are typeset in bold letters,
whereas scalar quantities are represented by standard characters. In the elastic regime, Hooke’s law is
used as constitutive relation between stress and strain, such that

σσσ = CCCεεε, (1)

where CCC is the fourth-rank elasticity tensor of the material. To describe plastic deformation, the yield
function of the material is introduced as

f (σσσ) = σeq − σy , (2)

which takes negative values if the equivalent stress σeq is smaller than the yield strength σy of the
material, i.e., in the elastic regime. When f = 0 plastic yielding sets in, and in case of work hardening,
σy should be considered as flow stress after this point. Since this work only deals with the onset of
plastic yielding, ideal plasticity will be assumed throughout, such that σy is a constant, irrespective of
the deformation history of the material. Denoting the principal stresses of the stress tensor σσσ as σj with
(j = 1, 2, 3) , the equivalent stress takes the form

σJ2
eq =

√
1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

, (3)

which—following the definition of von Mises (see, e.g., the translation of the original work by
D. H. Delphenich [20])—is based on the second invariant of the stress deviator (J2). In conjunction
with the yield function of Equation (2), it describes the onset of plastic yielding for isotropic materials.
Note that the formulation in Equation (3) is intrinsically independent of hydrostatic stress components
p = 1/3Trace(σσσ) and thus does not require to explicitly calculate the deviatoric stress

σσσ′ = σσσ− pUUU, (4)

where UUU is the unit tensor. By this definition of the equivalent stress, it is inherently assumed that
hydrostatic stress components do not affect the plastic flow behavior of the considered material,
which is typically fulfilled for metals, but not for polymers or rocks, such that the method formulated
here, will mainly apply to metallic materials or, more generally, to materials, where hydrostatic stresses
do not influence the plastic behavior.

As described in the introduction, many materials exhibit a directionally dependent yield strength,
such that anisotropic flow rules need to be introduced. A first definition of such anisotropic flow
rules was introduced by Hill [2], who used a generalized definition of the equivalent stress to achieve
a directionally dependent mapping of the equivalent stresses to maintain a constant yield strength.
Hence, in this formulation, the anisotropy is considered in the stress rather than in the yield strength.
Since the mathematical formulations in this work are purely based on principal stresses, we use a
simplified version of the Hill definition and introduce a Hill-like anisotropic definition of the equivalent
stress as

σeq =

√
1
2

[
H1 (σ1 − σ2)

2 + H2 (σ2 − σ3)
2 + H3 (σ3 − σ1)

2
]
, (5)
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with only three material parameters H1, H2 and H3, whereas in his original work, Hill introduced
three more parameters for an orthotropic material to scale also the shear stress components. Since for
orthotropic materials loaded along the main material axes there is no mutual influence of shear and
normal components of stress and strain, the formulation introduced here is restricted to loading
situations that only produce normal stresses and strains, and where consequently all off-diagonal
components of stress and strains tensors remain zero. Furthermore, it is assumed that the loading axes
and the main axes of the orthotropic material coincide. Hence, this formalism is currently only valid
for a small subset of loading conditions for materials with orthotropic flow anisotropy. The definition
of the equivalent stress following Hill can be considered as a generalization of the J2 equivalent stress,
because for isotropy, i.e., H1 = H2 = H3 = 1, both definitions are equal.

The restrictions applied in this work, allow the mathematical notation to be simplified by only
considering principal stresses. In future work, it is intended to render the formulation more general by
exploiting that for any stress state, there exists a coordinate system in which the given stress tensor
becomes a diagonal tensor composed of the principal stresses σj. This coordinate system is given by
the eigenvectors of the stress, representing the principal directions, such that the coordinate system of
the original stress tensor—and with it the material axes—can be rotated into the coordinate system of
the eigenvectors of the stress tensor. In this orientation the stress tensor becomes a diagonal tensor,
and Equation (5) can be evaluated with parameters H′i in the rotated state of the material axes.

The thus defined yield function can be used to determine whether a given stress state results in a
purely elastic or rather in an elastic-plastic deformation of a material. The condition f (σσσ) = 0 relates
stresses lying on a specific hyperplane in stress space, the so-called the yield-locus. Since a material
does not sustain any stresses larger than the yield stress (for ideal plasticity) or the flow stress (in
case of work hardening), acceptable stress states either produce a negative value of the yield function
(elasticity) or lie on the yield locus (plasticity), which should be a convex hull of the elastic stress states.
Hence, if a predictor step in finite element analysis (FEA) produces a stress outside the yield locus,
a plastic strain increment must be calculated that leads again to an accepted stress state on the yield
locus. The return mapping algorithm to calculate such strain increments has been described in many
text books on continuum plasticity and non-linear FEA, such that here only a very brief summary
based on [1] is reproduced. According to the Prandtl–Reuss flow rule, the plastic strain increment for a
given time step can be calculated as

ε̇εεp = λ̇
∂ f
∂σσσ

= λ̇nnn , (6)

where nnn is the normal vector to the yield locus, defined by the gradient of the yield function ∂ f /∂σσσ,
and λ̇ > 0 is the so-called plastic strain multiplier that can be evaluated as

λ̇ =
nnn ·CCCε̇εε̇εεε̇εεε

nnn ·CCCnnn
, (7)

where ε̇εε is the total strain increment of the FEA predictor step that leads to a stress state outside
the yield locus and which is consequently decomposed into the plastic strain increment, given by
Equation (6), and the elastic strain increment or stress increment given by

σ̇σσ = CCCtε̇εε (8)

with the tangent stiffness tensor

CCCt = CCC− CCCnnn⊗CCCnnn
nnn ·CCCnnn

(9)

where “⊗” denotes the tensorial product in the form ai ⊗ bj = aibj.
The gradient of the yield function with respect to the principal stresses can be evaluated

analytically as
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∂ f
∂σ1

=
∂σeq

∂σ1
=

(H1 + H3) σ1 − H1σ2 − H3σ3

σeq

∂ f
∂σ2

=
∂σeq

∂σ2
=

(H2 + H1) σ2 − H1σ1 − H2σ3

σeq
(10)

∂ f
∂σ3

=
∂σeq

∂σ3
=

(H3 + H2) σ3 − H3σ1 − H2σ2

σeq

Note that in the case of isotropic plasticity (H1 = H2 = H3 = 1), the gradient takes the simple form

∂ f
∂σσσ

= 3
σσσ− pUUU

σeq
= 3

σσσ′

σeq
. (11)

This section served the purpose to introduce the main physical quantities in the notation used
in this work. For further details of continuum plasticity or FEA, the reader is referred to standard
textbooks, as for example [1]. In the following, the formalism for the data-oriented constitutive model
based on a machine learning (ML) yield function is laid out.

2.2. Stress Space in Cylindrical Coordinates

Since plastic deformation in most metals does not depend on hydrostatic stress components, it is
useful to transform principal stresses from their representation as a 3-dimensional (3D) Cartesian
vector of principal stresses σσσ = (σ1, σ2, σ3) into a cylindrical coordinate system with sss = (σeq, θ, p),
where the equivalent stress σeq represents the norm of the stress deviator σσσ′, and the polar angle θ

lies in the deviatoric plane normal to the hydrostatic axis p, which has already been used by Hill [2].
This coordinate transformation improves the efficiency of the training, because only two-dimensional
data for the equivalent stress and the polar angle need to be used as training features, whereas the
hydrostatic component is disregarded. Hence, by exploiting basic physical principles, we effectively
reduce the dimensionality of the problem from 6 independent components of an arbitrary stress tensor
to 2 degrees of freedom, without loosing the generality of the formulation. As the polar angle θ can be
considered a generalized Lode angle [21], it is noted that the Lode angle, by definition, describes the
axiality of a loading state in a way that uniaxial loads in different directions result in the same Lode
angle. Since our formulation aims at describing anisotropy in the plastic deformation, uniaxial stresses
in different directions must possess different angles. To achieve this, we introduce a complex-valued
deviatoric stress

σ′c = σσσ · aaa + i σσσ · bbb =
√

2/3σeq eiθ , (12)

where i is the imaginary unit, such that the polar angle

θ = arg σ′c = −i ln
σσσ · aaa + i σσσ · bbb√

2/3σeq
. (13)

with the unit vectors aaa = (2,−1,−1)/
√

6 and bbb = (0, 1,−1)/
√

2 that span the plane normal to the
hydrostatic axis ccc = (1, 1, 1)/

√
3.

To transform the gradient of the yield function from this cylindrical stress space back to the
principle stress space, in which form it is used to calculate the direction of the plastic strain increments
in the return mapping algorithm of the plasticity model, we introduce the Jacobian matrix for this
coordinate transformation as

JJJ =
∂sss
∂σσσ

=


∂σeq
∂σ1

∂θ
∂σ1

∂p
∂σ1

∂σeq
∂σ2

∂θ
∂σ2

∂p
∂σ1

∂σeq
∂σ3

∂θ
∂σ3

∂p
∂σ1

 (14)
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where ∂σeq/∂σj is given in Equation (10), ∂p/∂σj = 1/3 and

∂θ

∂σσσ
= −i

(
aaa + i bbb

σσσ · aaa + i σσσ · bbb −
3 σσσ′

σ2
eq

)
. (15)

With this Jacobian, the gradient can be calculated as

∂ f
∂σσσ

= JJJ
∂ f
∂sss

. (16)

2.3. Data-Oriented Yield Function

While the concept of mapping the equivalent stress in describing anisotropic flow behavior has
been applied successfully in the approaches of Hill [2,3] and Barlat [4], for a data-oriented yield function,
it is impracticable to calculate the necessary parameters for this stress mapping explicitly. Hence, it is
of advantage to reformulate the flow rule in such a way that the yield strength is considered to be
directionally dependent, whereas the equivalent stress is formulated in an objective way, without prior
knowledge of the material behavior. This is achieved by using the J2 equivalent stress in the flow rule
and formally considering the flow stress to be a function of the polar angle in the deviatoric plane,
such that

fd(sss) = s1 − σy(s2) = σJ2
eq − σy(θ). (17)

A further advantage of this formulation is that the dependence of the yield function on the two degrees
of freedom of the cylindrical stress notation is separated into two independent terms. Furthermore,
for symmetry reasons, it is required that the yield strength is a periodic function of the polar angle
with periodicity 2π. The gradient of the ML yield function w.r.t. the cylindrical coordinates reads

∂ fd
∂s1

=
∂ fd

∂σJ2
eq

= 1

∂ fd
∂s2

=
∂ fd
∂θ

=
dσy

dθ

∂ fd
∂s3

=
∂ fd
∂p

= 0 .

It is seen that in the cylindrical stress space ∂ fd/∂σeq = 1 and ∂ fd/∂p = 0, under the condition that
plasticity is independent of hydrostatic stress components. Hence, the only non-constant component
of the gradient is ∂ fd/∂θ, which simplifies the numerical implementation of the method. For isotropic
J2 plasticity, ∂ fd/∂θ = 0, and in this case it is particularly easy to calculate the gradient and to see that
the formulations in both coordinate systems result in the same gradient. The transformation of this
gradient into the principal stress space is achieved by multiplication with the Jacobian, according to
Equation (16).

To establish a data-oriented formulation, we introduce a yield function in the form of a machine
learning (ML) algorithm, rather than in a mathematically closed form with a number of model
parameters that need to be fitted to the data. This enables us to use the available data directly for the
training of the ML algorithm. Furthermore, ML methods allow for the use of higher dimensional feature
vectors such that in future work, information about the material properties and the microstructure of
the material can be directly used as input into one single ML yield function able to handle different
microstructures.

In this work, Support Vector Classification (SVC) is applied to categorize data sets consisting of
principal stresses into the classes “elastic” and “plastic”. During training, SVC constructs a hyperplane
in stress space, which separates the two regions from each other. Consequently, this hyperplane,
defined by the zeros of the so-called SVC decision function, is the equivalent to the yield locus,
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defined by the zeros of the yield function, and it is constructed such that it has the largest distance to
the nearest training data points of both classes. The SVC decision function is defined as [15]

fSVC(sss) =
n

∑
k=1

ykαkK(sss(k)sv , sss) + ρ , (18)

where n is the number of support vectors identified during the training process and

K(sss(k)sv , sss) = exp
(
−γ‖sss− sss(k)sv ‖2

)
(19)

is the radial basis function (RBF) kernel of the SVC, which is well suited for non-linear problems, with
the parameter γ that determines how fast the influence of one support vector decays in stress space.
The support vectors sss(k)sv , the dual coefficients ykαk, and the intercept ρ are determined during the
training. There are essentially two parameters that control the training process and thus the quality of
the obtained decision function: (i) γ > 0 is a parameter of the RBF kernel function and controls how
far-reaching the influence of each support vector is: the larger the value of γ, the more short-ranged
and local the influence; (ii) C > 0 is a parameter that is used only during the training to regularize the
decision function, but that does not directly enter the decision function (18). The larger the value of
C, the more flexible but irregular the decision function will become by approximating the shape of
the training data more accurately. The choice if these training parameters is critical for the successful
use of the decision function in a flow rule. In short, the larger both values are, the more flexible and
sensitive to local values the resulting decision function will become. Thus, too small values will result
in a smooth but not accurate approximation of the true yield function, whereas too large values will
result in a noisy yield function that cannot be used in FEA. The numerical example presented later
on will demonstrate this effect and provide examples for values producing accurate yet sufficiently
smooth results for the yield function.

For the supervised training, a set of nt feature vectors sss(j)
train has to be provided together with the

result vector y(j) with j = (1, ..., nt), which takes values only in two categories: y(j) = −1 for those
training data points sss(j)

train in the “elastic” regime and y(j) = +1 for training data in the “plastic” regime.
This training data are within the core of the method outlined here, because during the training process
they are directly used to define the support vectors that in turn determine the plastic properties of the
material. It is, therefore, essential to have sufficiently many training data points in close proximity to
the yield locus to approximate it accurately. However, the SVC training will create support vectors
only in the region covered by the training data, and outside this region the decision function drops
to zero, which could produce erroneous results if the elastic predictor step of the return mapping
algorithm falls into such a region. Hence, data points that lie deeper within the elastic and plastic
regions are required to prevent the decision function (18) from falling back to zero. Such data points,
however, can be constructed from available raw data lying close to the yield locus simply by linearly
scaling principal stresses in the elastic region towards smaller values, such that they stay within the
elastic region, and, likewise in the plastic region, scaling principal stress data towards higher values.
Thus, the raw data can be spread throughout the stress space, even without knowing the strain value
associated with each data point. Only the knowledge of its class “elastic” or “plastic” is required as
knowledge for this data extension step improving the training process. This property of the formalism
introduced in this work is of critical importance, because it enables the creation of large volumes of
training data from relatively few raw data points close to the yield locus, as demonstrated below.

As seen from Equation (18), the decision function is a continuous function constructed in a way to
reproduce this category, i.e., the sign of the training data in the respective regions in the optimal way.
To make predictions about the elastic or plastic material behavior at any given stress, the sign of the
value of the decision function fSVC(sss) at the given stress is evaluated. Furthermore, the yield locus of
the material can be obtained in the same way as for traditional yield functions, simply by finding the
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zeros of the continuous function. In this way, furthermore, the distance of any point in stress space
to the yield locus can be evaluated, which is important for making efficient predictor steps during
FEA and for calculating plastic strain increments for the return mapping algorithm. In particular,
as described in the previous section, the gradient to the yield locus needs to be known in order to
calculate plastic strain increments, that bring the stress back to the yield surface, because the plastic
material does not support any stresses outside. Due to the definition of the ML yield function as
convolution sum over the support vectors, the gradient to the SVC decision function can be calculated
analytically as

∂ fSVC

∂sss
=

n

∑
k=1

ykαk
∂K(sss(k)sv , sss)

∂sss
(20)

with
∂K(sss(k)sv , sss)

∂sss
= −2γ exp

(
−γ‖sss− sss(k)sv ‖2

)
(sss− sss(k)sv ) . (21)

The gradient of the yield function in the 3D principle stress space is obtained by multiplication
of the gradient in the cylindrical stress space with the Jacobian defined in Equation (14). Thus,
the formulation of the data-oriented yield function based on the SVC algorithm can be used directly as
ML yield function in FEA, with the same formalism for plasticity as for standard yield functions.

3. Results

In the following, it will be demonstrated how the derived formulation of the ML yield function
can be trained with data obtained from a reference material and used in FEA as constitutive law for
plasticity. All numerical examples are conducted with the tools provided on the open-source platform
Sci-Kit Learn [22] and a Python library for FEA written by the author of this work. The Python code
used for generating the results presented here is provided as supplementary material in form of a
Jupyter notebook.

3.1. Training of ML Yield Function

A reference material with Hill-type anisotropy is defined with the material parameters as given in
Table 1. The yield locus of this reference material for plane-stress conditions with σ3 = 0 is plotted in
Figure 1, in which the yield locus of the reference material with Hill-like anisotropy is compared with
that of an isotropic material with the same yield strength σy.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1/ y

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2/
y

anisotropic Hill
isotropic J2

Figure 1. Yield locus for plane-stress conditions (σ3 = 0) and Hill-like anisotropy with parameters given
in Table 1 (red line) and for an isotropic material with the same yield strength, but H1 = H2 = H3 = 1
(blue line). The values of the principal stresses are normalized by the yield strength σy.
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Table 1. Elastic and plastic material parameters defining the reference material with Hill-like anisotropy
in its plastic flow behavior. For simplicity, isotropic elastic behavior and ideal plasticity without work
hardening are assumed in this work.

Quantity Symbol Value

Young’s modulus E 200 GPa
Poisson’s number ν 0.3

Yield strength σy 150 MPa
Hill parameters H1, H2, H3 0.7, 1, 1.4

The thus-defined reference material is used to produce training data—and later also test
data—for the machine learning algorithm. To accomplish this, a set of stress values in form of
principal deviatoric stresses is produced in a way to cover the complete space of polar angles and also
sufficiently many equivalent stresses in the elastic and plastic regimes. This is conveniently achieved
by creating a set of nang equally distributed polar angles θ(k) in the range of [−π, π] and a set of ns

equivalent stresses σJ2
eq
(l) in the range [0.1σy, 5σy]. Note that for the entire procedure, the yield strength

σy of the material is assumed to be known. This is not a restriction, because the yield strength of an
unknown material can be easily determined from the input data in a pre-analysis step.

The transformation into principal stresses is performed as

σσσ
(j)
train =

√
2/3 σJ2

eq
(l)
(

aaa cos θ(k) + bbb sin θ(k)
)

(22)

with
j = k + (l − 1)nang (k = 1, ..., nang; l = 1, ..., ns) (23)

and the unit angles aaa and bbb spanning the deviatoric stress plane as given above. This produces a set of
nt = nangns principal stresses with which, finally, the set of result vectors

y(j) = sgn
(

f (σσσ(j)
train)

)
with j = (1, ..., nt) , (24)

is generated by evaluating the yield function f of the reference material, as defined in Equations (2)
and (5), with the material parameters given in Table 1.

In the numerical example given here, the full training data set comprises nang = 36 values for the
polar angle and ns = 28 values for the equivalent stress for each angle, resulting in a total of nt = 1008
training data sets. Concerning the effort to create this data, it is noted here that only the number of
angles nang is relevant for the number of experiments or micromechanical simulations necessary to
generate the training data, because each angle defines a load case from which several stresses in the
elastic and plastic regime will result, and other training data points can be easily constructed from this
raw data by linear scaling, as described above. The implications of the number of load cases required
to achieve an accurate representation of the ML yield function will be further discussed in Section 4.
A graphical representation of the training data is shown in Figure 2, where also the different ways of
representing the anisotropy of the yield function with Hill-type equivalent stresses and von Mises
(J2) equivalent stresses are demonstrated. The actual training data comprise four additional sets of
polar angles associated with larger equivalent stresses scaled to values of up to σeq = 5σy to prevent
the decision function from falling back to zero in this regime, which might cause erroneous results
in FEA. To enforce the periodicity of the training ML yield function and its gradient, the training
data is periodically repeated within the training algorithm, such that the polar angle covers a range
−1.3π < θ < 1.3π.
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Figure 2. Polar plots of a subset of the training data produced from the anisotropic yield function
of the reference material: (a) Von Mises (J2) equivalent stresses according to Equation (3) are used,
such that the yield strength, rather than the equivalent stress, is a function of the polar angle θ. (b)
Equivalent stresses are calculated according to the Hill definition in Equation (5) to achieve a constant
yield strength by mapping the equivalent stresses accordingly. In both figures, the yield locus is
indicated by a solid black line, data points in the elastic regime are plotted in blue color and data in the
plastic regime in red color. Both figures represent the same stress data, only mapped in a different way;
all stresses are normalized with the reference yield strength σy.

With this data set, the training of the SVC algorithm is performed. Using the training parameters
C = 10 and γ = 4 results in a very good training score of above 99%. However, to evaluate the
true quality of the training procedure and to judge whether overfitting has occurred, it is necessary
to verify the results with an independent set of test data, which has not been used for training
purposes. The error produced on such test data sets with 480 random deviatoric stresses as data
points is below 1%, and the R2-correlation coefficient between test data and training data is above
98%, which leads to the conclusion that the trained ML yield function has a very high accuracy and
robustness. A variation of the training parameters revealed that the results are rather insensitive to the
parameter C, which can be varied between 2 < C < 20 without having a pronounced influence on the
results, whereas changing the parameter γ by more then 20% causes a significant deterioration of the
training results. The resulting SVC decision function, defined in Equation (18), is plotted together with
the training data in Figure 3 in the deviatoric stress space.
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Figure 3. Field plot of the trained SVM decision function defined in Equation (18), where areas in purple
color shades represent negative values and brown shades represent positive values. The numerical
value of the decision function is not relevant because only its sign is taken into account in the flow rule.
The isoline for fSVC = 0 is represented as a black line. Training data are plotted in light blue color for
data with negative values (elastic) and in brown color for positive values (plastic).
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Finally, to demonstrate the quality of the ML yield function in the full principal stress space,
the predicted categories are plotted in three different slices corresponding to different plane-stress
conditions, together with the yield function of the reference material in Figure 4. It is seen that the
training data in the deviatoric space covers in fact only a single line in each slice, which demonstrates
the power of reducing the dimensionality of the data-oriented yield function by exploiting basic
physical principles.

Figure 4. Color map of the trained SVC prediction of the yield function in slices through the principal
stress space defined by plane-stress conditions: (a) σ3 = 0; (b) σ1 = 0; (c) σ2 = 0. Brown regions
indicate values of “+1” (plasticity) and purple regions values of “-1” (elasticity). The ML yield locus,
corresponding to the isoline for fSVC = 0, is represented as a black line; the yield locus of the Hill-like
anisotropic reference material is indicated as a red line. The training data points are plotted with the
same color code as in Figure 3.

3.2. Application of The Trained ML Yield Function in FE Analysis

The ML yield function trained and analyzed in the previous step shall now be applied in FEA
to demonstrate its usefulness for this purpose. The numerical examples provided here have been
conducted with the Python library “pyLab-FE” created by the author, which is provided in the
supplementary materials together with a Jupyter notebook following the work-flow defined in this
work. The known parameters and support vectors resulting from the training process of the ML yield
function together with the mathematical formalism laid out in Section 2 allow a rather straightforward
evaluation of the yield function as sum over the support vectors convoluted with the kernel function,
such that they can also be used for implementing a user material subroutine (UMAT) for common
commercial FEA tools in any compiler language.

As numerical examples, four different load cases are simulated with FEA: (i) uniaxial stress in
horizontal direction, (ii) uniaxial stress in vertical direction, (iii) equibiaxial strain under plane-stress
conditions, and (iv) pure shear strain under plane-stress conditions. The simple finite element model
used to study these load cases consists of four quadrilateral elements with linear shape functions
and full integration, as shown in Figure 5. For all load cases, plane stress conditions with σ3 = 0 are
enforced and the normal degrees of freedom (dof) for the boundary nodes are prescribed, while all
boundary nodes are allowed to relax to their equilibrium positions along the boundary. The bottom
and the left-hand-side nodes are always restricted to a normal displacement of zero. For the uniaxial
load cases, tensile displacements are prescribed either on the top or on the right-hand-side (rhs) nodes,
while the other boundary is force-free, resulting in a uniaxial stress. For equibiaxial strain, the top and
the rhs boundary nodes are subjected to identical displacements; whereas for pure shear, the rhs nodes
are loaded with the negative displacement applied on the top nodes. By virtue of these boundary
conditions, the deformation causes only normal stresses and strains, but no shear components. Hence,
the restrictions of the formulation of the ML flow rule are fulfilled, and the material axes remain
aligned with the directions of the principal stresses.
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Figure 5. The finite element model on which four different load cases are studied consists of four
quadrilateral elements (green) with linear shape function, and at total of nine nodes (red) situated
at the corners of the elements. The bottom and left-hand-side boundary nodes are restricted to zero
normal displacement (blue triangles), and the loading is applied on top and right-hand-side-nodes
(blue arrows), as described in the text.

These four load cases are applied to the reference material as well as to the material with the
ML yield function, and the resulting yield stresses and plastic strains at the end of each load step are
compared in Table 2. In Figure 6, the resulting global equivalent stresses and equivalent total strains

εeq =
√

εεε : εεε (25)

for each load case are plotted for both materials, where the different definitions of the equivalent stress
have been applied to the reference material.

Table 2. Yield stresses (YS) obtained for Hill-like yield function, with parameters given in Table 1,
and machine learning (ML) yield function under the specified load cases. The relative errors in yield
stress and equivalent plastic strain (PE) at maximum load are also specified.

Load Case YS-Hill (MPa) YS-ML (MPa) Rel. Error YS Rel. Error PE

uniaxial stress, horizontal 146.4 148.4 1.41% -1.95%
uniaxial stress, vertical 162.7 162.2 -0.3% -0.45%

equibiaxial strain 136.9 139.5 1.88% -1.36%
pure shear strain 161.1 159.7 -0.87% 0.24%
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Figure 6. Stress strain curves obtained for elastic-ideal plastic material behavior under the
loading conditions specified in the legend: (a) Equivalent total strain vs. equivalent Hill-stress,
(b) equivalent total strain vs. equivalent J2-stress for Hill-like yield function, and (c) equivalent total
strain vs. equivalent J2-stress for ML yield function.

To further demonstrate the correctness of the plastic behavior resulting from the ML flow rule,
the flow stresses of the material, i.e., the stresses occurring during plastic deformation, are plotted
together with the yield locus. For ideal plasticity, treated in this work, it is expected that the flow stress
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remains on the yield locus, since the material does not sustain larger stresses. In Figure 7 it is shown
that this expectation is fulfilled to a very good degree, by comparing the yield loci and the element
solutions of the flow stresses obtained for the ML yield function with those of the reference material
with a Hill-like flow rule.

1.0 0.5 0.0 0.5 1.0
1/ y

1.0

0.5

0.0

0.5

1.0
2/

y
ML flow rule
anisotropic Hill

Figure 7. Stress states obtained for the four different plane-stress load cases are plotted in the σ1-σ2

plane together with the yield loci of the trained ML flow rule and the Hill-like reference material.
The flow stresses resulting from the ML yield function are plotted as small yellow circles and those
from anisotropic Hill plasticity as large blue circles.

3.3. Tresca Flow Rule

In the next example, the ML yield function is trained with data from a reference material with
a Tresca yield function, which is fundamentally different from the elliptical Hill-like yield functions.
The Tresca equivalent stress is defined as

σTresca
eq = σI − σIII , (26)

where σI is the largest principle stress and σIII is the smallest principle stress [23]. Using the Tresca
equivalent stress in the yield function (2) leads to an isotropic plastic deformation of the material,
however, with very different characteristics than for a J2 equivalent stress. Hence, it is a critical test for
the new method developed in this work to apply it to such yield functions. The training data for this
yield function has been produced in the same way as before. However, with nang = 600 data points for
the polar angle, a much larger number of training data points has been required to follow the subtle
features of the Tresca flow rule. Furthermore, the training parameters C = 50 and γ = 9 have been
applied to allow for sufficient flexibility of the ML yield function to approximate the abrupt changes of
the yield behavior in the deviatoric stress space, cf. Figure 8. The scores with test and training data are
above 99%, and the R2-value on test data is 96%. Even with this training procedure, the sharp corners
of the Tresca yield locus are slightly rounded off by the ML yield function, leading to somewhat lower
yield strengths of the material in these directions, as seen in Figure 9a, where the resulting stress-strain
curves are plotted as J2 equivalent stress vs. equivalent total strain. In Figure 9b the yield loci of the
Tresca reference material, the trained ML yield function and an isotropic J2 material are plotted in
comparison. Furthermore, the flow stresses resulting from the FEA are plotted in this graph to verify
that they lie on the ML yield locus, as expected for ideal plasticity.
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Figure 8. Field plot of the ML yield function trained with data generated from a reference material
with a Tresca yield criterion, where areas in purple color shades represent negative values and brown
shades represent positive values. The isoline, where the ML yield function is zero, is plotted as black
line. The test data points are plotted as brown circles, for stresses in the plastic regime, and a s light
blue circles for stresses in the elastic regime.
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Figure 9. Results of FEA on the material with an ML flow rule trained with data obtained from a Tresca
yield criterion: (a) Equivalent J2 stress plotted over the equivalent total strain, for the four different
load cases given in Table 2. (b) Flow stresses obtained with the ML yield function plotted as yellow
circles in the σ1-σ2 principle stress space, together with the yield loci of the ML flow rule, the Tresca
flow rule and an isotropic J2 flow rule.

With these numerical examples, the applicability of the ML yield function developed in this work
has been demonstrated for two fundamentally different kinds of flow behavior: anisotropic Hill-like
plasticity and isotropic Tresca plasticity. The new formulation has proven to be numerically stable.
The numerical effort is somewhat higher than that for mathematical closed-form yield functions,
because the calculation of the predictor step requires a higher effort in numerically evaluating
the distance of a given point in stress space to the yield locus. However, in conjunction with the
implementation of the ML yield function in a compiled computer code, FEA even for large engineering
models seems to be feasible with the new ML yield functions.

4. Discussion

In this section, the requirements on training data for the ML yield function will be more closely
examined. For the first application of the ML yield function, training data for nang = 36 load cases have
been constructed from a reference material with Hill-like anisotropy, and it has been demonstrated
that this number of load cases produces rather accurate results in this case, whereas the approximation
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of a Tresca yield function required nang = 600 load cases. Numerical studies with larger data sets
reveal that for Hill-like anisotropic yield functions the accuracy of the results increases slightly for data
sets of up to nang = 200. The accuracy as well as the numerical stability and efficiency of the method
remain stable for even larger data sets, which has been tested for up to nang = 600. It is also interesting
to see that the accuracy of the method for Hill-like anisotropic yield functions is only slightly reduced
when rather small data sets of nang = 8 load cases are used. Even producing the training data under
plane-stress conditions with σ3 = 0 does not change the quality of the results significantly, which is a
consequence of mapping all stresses onto the deviatoric plane and extending the results by assuming
that the material’s flow behavior does not depend on hydrostatic stress components, which is fulfilled
to a very good degree for metals. If it is assumed, furthermore, that the material under consideration
shows a symmetric flow behavior under tension and compression, only one half-space of the deviatoric
plane needs to be characterized, and the results can be mirrored into the other half-plane. Thus,
only the four load cases given in Table 2, have been sufficient to produce training data from which a
useful ML yield function for Hill-like anisotropic plasticity results. This example is also provided in
the supplementary material.

From these considerations, it can be concluded that for material with an anisotropic flow behavior
that can be described with a Hill-like formulation, a small number of experiments under plane-stress
conditions, as they can be performed on a bi-axial test rig, are fully sufficient to produce enough raw
data to train the ML yield function. Of course, this experimental data could also be used to calculate
the Hill parameters. However, the ML yield function offers a larger flexibility, and the training process
for machine learning methods like support vector classification (SVC) is highly efficient.

Materials with a more irregularly shaped yield function, like the Tresca yield function, pose much
higher demands on the available data and, furthermore, the parameters for the training of the SVC
algorithm need to be adapted to allow for more flexibility. The obtained yield function still rounds off
the sharp corners of the Tresca yield function such that the result resembles yield functions that can also
be obtained with the 18-parameter model of Barlat et al. [4]. Again, it would be possible to determine
these parameters directly from the available data, however, with an even higher effort than for the Hill
parameters. Yet, the training effort for the ML yield function remains the same, independent of the
volume of training data.

In general, it has been verified that only knowing the full stress tensors at the onset of plastic
yielding is sufficient to train the ML yield function, and further information, e.g., on plastic strains,
is not required. The only relevant information that needs to be known is whether for a given stress
state the material response is purely elastic or elastic-plastic. Concerning the best strategy to produce
training data, the raw data should lie in close proximity to the yield surface to cover the onset of
yielding in an accurate way. Since support vectors are only produced from training data closest to
the hyperplane separating the two categories “elastic” and “plastic”, however, using only this raw
data would cause the SVC decision function (18) to drop to zero quickly outside the region covered by
the support vectors. Hence, it is important to downscale the “elastic” raw data points and to upscale
the “plastic” raw data points to finally cover the entire relevant region of the deviatoric stress plane
and to produce sufficiently many support vectors in this domain. Comparing Figure 3 (Hill-like yield
function) and Figure 8 (Tresca yield function), the influence of the number of training points is quite
clearly seen, as in the former case 145 support vectors are created during the training process, whereas
in the latter case 1689 support vectors are necessary to describe the sharp corners of the Tresca yield
function. This example also demonstrates how the number of 36 vs. 600 raw data points is reflected in
the number of generated support vectors.

Data-oriented constitutive modeling thus requires only a rather limited amount of data,
as compared to other approaches in data-driven mechanics [9,11,13]. Large data volumes, of course,
help to increase the accuracy of the resulting ML yield function, but the results achieved even with small
amounts of data provide already a very good estimate of the material’s anisotropic flow behavior even
for load cases that have not been tested. These comparatively moderate requirements on the volume
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of training data are a consequence of exploiting physical symmetry conditions on the material’s flow
behavior in the formulation of the data-oriented yield function. For materials exhibiting a significant
influence of the hydrostatic stress component on the plastic behavior, the method is still applicable,
but the requirements on the training data will be higher.

Another aspect to be discussed here is the use of micromechanical models to produce training data.
With such models, the mechanical behavior of realistic microstructures can be simulated with crystal
plasticity methods [7], providing an accurate description of the plastic properties of polycrystaline
metals with different microstructures and crystallographic textures. One disadvantage of such
micromechanical models is their tremendously high numerical effort making them unsuited for FEA
applications of engineering structures that are much larger than the grain size of a material. However,
it is possible to employ relatively small micromechanical models, validated by experimental data,
for creating a sufficiently large data volume describing the mechanical properties of the real material
under various loading conditions with a high accuracy. By purposefully varying the microstructure or
the texture of the model material, micromechanical simulations also serve the purpose of extending
experimental data. This hybrid experimental and numerical data can then be used for the training
of the ML yield function presented in this work. In this way, material parameters like grain size,
grain morphology, and crystallographic texture can be explicitly included into the feature vector of the
ML yield functions, in addition to the purely mechanical data used currently as input for the yield
function. This microstructure-sensitive ML yield function can then be used in large-scale FEA for
the simulation of engineering structures, which holds the possibility to consider the trained ML flow
rule as a “digital twin” of the material, containing all relevant information on the material properties.
The data-oriented constitutive model developed in this work will, hence, also pave the way for new
approaches to scale-bridging materials modeling.

Critical issues that remain to be solved before the new method can be applied generally in FEA,
include (i) the augmentation of the formulation with respect to shear components of stress and strain,
(ii) regularization of the ML yield function to ensure its convexity and to the reduce noise in its gradient,
and (iii) a data-oriented formulation of work-hardening. Concerning the latter point, it is noted that the
current formulation allows the use of the standard methods of isotropic and kinematic work hardening
if the hardening parameters are known, because it already contains the gradient of the yield function
to calculate the plastic strain rate and also the tangent stiffness. However, a data-oriented formulation
of work hardening, e.g., following the ideas of Chinesta et al. [13], would be more consistent with the
idea of data-oriented constitutive modeling.

5. Conclusions

In this work, a new formulation of a data-oriented constitutive model for plasticity has been
derived and applied within finite element analysis. The central element of this new constitutive model
is a support vector characterization (SVC) algorithm serving as yield function. This SVC algorithm
is trained by using deviatoric stresses as input data and the information whether a given stress state
leads to purely elastic or rather to elastic-plastic deformation of the material as result data. In this
way, a machine learning (ML) yield function is obtained, which can determine whether a given
stress state lies inside or outside of the elastic regime of the material. Furthermore, the yield locus,
i.e., the hyperplane in stress space on which plastic deformation occurs, can be reconstructed from
the SVC, and the gradient on this yield locus can be conveniently calculated. Therefore, the standard
formulations of continuum plasticity, as the return mapping algorithm, can be applied in finite element
analysis in the usual way. Thus, it has been demonstrated that the new ML yield function can replace
conventional yield functions in finite element analysis. The main advantage of such data-oriented
constitutive models over the conventional ones is that they can be used with higher-dimensional feature
vectors combining mechanical stresses with microstructural parameters of a material. In forthcoming
work, it will thus be demonstrated how a single ML yield function can be trained to be used as a
constitutive rule for a material in different microstructural states. The production of training data by
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micromechanical models, based on crystal plasticity and a discrete representation of the material’s
microstructure, allows the ML flow rule to serve as efficient homogenization scheme, which offers new
possibilities in scale-bridging material modeling.

Supplementary Materials: Supporting material in the form of a Python library for finite element analysis
and a Jupyter notebook with the codes that have been used to produce the results presented in this work
are available online at http://www.mdpi.com/1996-1944/13/7/1600/s1 and as a public repository on https:
//github.com/AHartmaier/pyLabFEA.git under the GNU General Public License v3.0.
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