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Abstract: This article is devoted to the stress–strain state (SSS) study of metal and reinforced
fiber-reinforced concrete beam under static and shock loading, depending on the bimodularity
of the material, the mass of the beam, and the location of the reinforcing bars in zones under
tension and compression. It is known that many materials have different tensile and compression
properties, but in most cases, this is not taken into account. The calculations were carried out by
using load-bearing metal beams made of silumin and steel and reinforced concrete beams under the
action of a concentrated force applied in the middle of the span. The impact load is considered as the
plastic action of an absolutely rigid body on the elastic system, taking into account the hypothesis
of proportionality of the dynamic and static characteristics of the stress–strain state of the body.
The dependences of the maximum dynamic normal stresses on the number of locations of reinforcing
bars in zones under tension and compression, the bimodularity of the material, and the reduced mass
of the beam are obtained. A numerical study of SSS for metal and concrete beams has shown that
bimodularity allows the prediction of beam deflections and normal stresses more accurately.

Keywords: bimodulus; stress–strain state; reinforced beam; metal beam; numerical analysis

1. Introduction

The effect of bimodularity of materials on the stress–strain state of beams, plates, and shells
under the action of static and dynamic loads was studied in the works of Ambartsumyan and his
colleagues [1–3], as well as in the works of Jones, Bert [4–6], and others. Although these models are
often used, there are many unresolved issues related to material modeling. Several works developing
classical methods are devoted to the bimodularity of the material in the study of stress–strain state (SSS)
for various types of elements of engineering involving building structures (beams, plates, and shells)
under the influence of static and dynamic loads. New materials used in engineering and construction
also require new approaches for taking into account the heterogeneity of materials.

He et al., in [7–9], analytically solved the problem of bending thin plates and beams with different
tensile and compression modules based on the existing simplified model. Using the conditions
of the continuity for the stress components in an unknown neutral layer, we can determine the
location of the neutral layer and derive the fundamental differential equation for deflection, flexural
rigidity, and internal forces in a thin plate. The results show that the use of various modules in
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structural calculations affects the bending stiffness of a flexible thin plate and allows for a more accurate
determination of SSS.

A new method for calculating the position of the neutral surface of an orthotropic layered
bimodular beam was proposed in [10] by Kumar et al. Based on this original method, the bending
analysis of a thick bimodular layered beam is considered, using the first-order shear strain theory for
bimodular materials.

Shah et al. [11] considered the determination of deformations of a simply supported, uniformly
loaded bimodule beam and the decision of the location of the neutral axis. A theoretical model of
bimodular and unimodular beams was developed to calculate the maximum deviation, taking into
account the displacement of the neutral axis in the case of a bimodular beam. The finite element method
was used for comparison, using the concept of the Ambardzumyan bimodular model for simply
supported and cantilevered bimodular and unimodular beams with concentrated load, uniformly
distributed weight, and gradually changing load. It was found that the maximum deflection for a
bimodular beam exceeds the maximum deviation for a unimodular beam for all types of load, which is
important in the analysis of deformations of long-span structures.

The method based on the Bernoulli principle was used to calculate reinforced concrete-reinforced
beams [12–15] from bimodular material. The beam was considered as statically indeterminate.
The obtained solutions make it possible to calculate beams of arbitrary shape for various types of
statically applied loads reinforced with an arbitrary number of bars.

The consideration of bimodularity when calculating the strength of beams, plates, and shell
elements under the action of dynamic loads is critical. The following dynamic problems are considered
by Benveniste [16–18]: (a) time-dependent harmonic, axial, and circumferential shear loading of a
cylindrical cavity; (b) time-dependent normal loading of a spherical cavity. In both cases, the cavities
are immersed in an infinite medium which is incompressible and has different behavior under tension
and compression. Wave analytical solutions are obtained, the results of which are compared with the
results of classical elastic solutions.

The flexural–vibrational behavior of bimodular layered composite cylindrical panels with various
boundary conditions is considered in [19–21]. The formulation is based on the theory of first-order
shear deformation and Bert’s constitutive model. Governing equations are obtained by using the finite
element method and the Lagrange equation of motion. An iterative approach to eigenvalues is used to
obtain positive and negative frequencies of free oscillations of the half-period and the corresponding
modes. A detailed parametric study of the influence of the thickness ratio, aspect ratio, lamination
pattern, boundary conditions, and bimodularity coefficient on the free vibration characteristics of
bimodular angular and transverse layered composite cylindrical panels was carried out. It is interesting
to note that there is a significant difference between the frequencies of positive and negative half-cycles,
depending on the panel parameters. The distribution of modal stresses in thickness for the positive
half-cycle is significantly different from that for the negative half-period, in contrast to the unimodular
case when the stresses at a certain place in the negative half-period would be of the same magnitude
but of opposite sign corresponding to the positive half-period. Finally, for a typical case, the effect
of bimodularity on the stationary characteristic is studied in comparison with the frequency ratio
of forcing. Stresses under dynamic loading are different for the positive and negative half of the
vibration cycle.

Many graded materials have different tensile and compression moduli. One-dimensional and
two-dimensional mechanical models of a functionally graded beam with a bimodular effect were
established for the first time. A material that not only possesses a functionally graded characteristic,
but also demonstrates various tensile and compression elastic moduli, is considered in [22]. Analytical
solutions of a bimodular functionally graded beam with pure bending and bending in the transverse
direction were obtained, following the gradient function as an exponential expression. It was shown
that, due to the introduction of a dual-module functional gradient effect of materials, maximum tensile
and compressive bending stresses might not occur in the lower and upper parts of the beam.
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A lot of materials demonstrate bimodularity, which is critical in electronics, medicine, engineering,
and other industries. Pastor-Artigues et al. determined the mechanical properties of polylactic acid
(PLA) under tensile, compressive, and bending stresses [23]. The finite element model is used to verify
differences in tensile and compression characteristics, including geometric non-linearity for realistic
reproduction of conditions during physical tests. It is shown that the currently used test methods do
not guarantee a consistent set of mechanical properties useful for numerical modeling, emphasizing the
need to identify new characterization methods that are better adapted to PLA behavior. Experiments
show that PLA has double asymmetry in the behavior of tension and compression, indicating the need
to process this material by using a bimodular model of elasticity.

Thus, it can be seen that many materials, including metals, alloys, concrete, organic fabrics,
and others, have different properties of stretching and compression. However, this is not taken into
account in practical calculations. Moreover, this review shows that the bimodality of materials can
have a critical impact on strength calculations, and therefore on the size and durability of structures.
Dynamic effects and inertial forces, in combination with the bimodality, significantly change the SSS of
structure. Thus, the purpose of this work is to develop a simplified engineering method for analyzing
the stress–strain state of bimodular material structure elements under the action of shock loads.

2. Materials and Methods

Let us consider the behavior of metal beams under the action of static and dynamic loads,
both with and without bimodularity. For metals, the tensile and compression moduli do not differ
much. Therefore, for steel 40 (C 0.37%–0.45%, Si 0.17%–0.37%, Mn 0.5%–0.8%, Ni 0.25%, Cr 0.25%),
the elastic modulus of compression Ec = 216,110 MPa, tensile strength Et = 209,990 MPa, for silumin
Ec = 74,920 MPa, Et = 209,990 MPa [24]. The data are presented by Ambardzumyan, according to the
results of tests of various materials for uniaxial tension and compression.

The effect of the bimodularity of the material was confirmed by comparing the theoretical value
of the maximum deflection ( fs) with the experimental ( fse).

In this work, the values of the maximum deflection of a simply supported rectangular beam
4 × 20 mm are determined under the action of a concentrated force of 10 N, applied in the middle of
the span. The experimental study of static deflection was carried out on the device shown in Figure 1.Materials 2020, 13, x FOR PEER REVIEW 4 of 16 
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Figure 1. A device for the experimental study of static deformations and displacements of metal beams
(G.U.N.T. Gerätebau GmbH, Hamburg, Germany).
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During the experiment, a three-point bend of a 4 × 20 mm beam was loaded, and the deflection
was measured at the point of application of force (Figure 1) hour-type indicator. The results are
presented in Tables 1 and 2.

Table 1. The theoretical and experimental value of the maximum deflection of a steel beam.

Steel

fs, mm
fse, mm

Et = Ec = 209,990 MPa Ec = 216,110 MPa
Et = 209,990 MPa

0.953 0.940 0.900

Table 2. The theoretical and experimental value of the maximum deflection of the beam from silumin.

Silumin

fs, mm
fse, mmEt = Ec = 68,300 MPa Ec = 74,920 MPa Et = 68,300 MPa

2.93 2.80 2.78

We tested articulated beams of rectangular cross-section 4 × 20 mm, under the action of a
statically applied concentrated force in the middle of the span. Beam materials were silumin and steel.
The deflection in the middle of the beam span was determined. The conducted experiment on metal
beams showed a good agreement of the deflection value of the experimental data and the calculated
value with the bimodularity of the material. Taking into account the bimodularity allows you to more
accurately determine the deflections that coincide with the experiment in statics. The static deflection
value is included in the dynamic coefficient formula for determining the maximum normal stresses.
A more precise determination of static deflection allows us to determine the dynamic maximum normal
stresses more accurately.

In this paper, we study the SSS of a beam made of structural fiber-reinforced concrete. Polyamide
fibers are used as fibers. Fiber–concrete as structural or insulating foam concrete (GOST 25485-89)
reinforced with fiber (GOST 14613–83) was made in accordance with Russian standards. The use
of this material in construction makes it possible to several times lower the heat loss of buildings.
For example, the walls of such products prevent significant heat leakage in the winter and protect the
indoor climate from excessively high temperatures in the summer. To reduce shrinkage deformations
and improve the uniformity of the structure of porous concrete, reinforcing fibers are added to the
composition of the mixture for preparing the material. Such filling significantly improves the physical
and mechanical properties of finished products. For example, with the addition of polypropylene fiber
in an amount of 0.4% of the total cement volume, an increase in the compressive strength of the D400
foam concrete grade is increased to 26%.

The considered type of foam concrete by its functional purpose is divided into three
independent groups:

1. Heat-insulating, density 400–500 kg/m3.
2. Structurally insulating, 600–1100 kg/m3.
3. Structural, density 1100–1200 kg/m3.

For a steel beam, the theoretically obtained deflection of the beam, taking into account bimodularity,
is 4% more than the experimental one and excluding bimodularity by 5.3%. For a silumin beam,
the theoretical deflection is 0.7% more than the experimental one, taking into account bimodularity,
and 5.4% without, taking into account bimodularity. The results obtained confirm the need to take into
account the bimodularity property when calculating the strength and stiffness of structural elements.
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In the calculations of concrete structures, fiber-reinforced concrete with a tensile–compression
modulus of 5000 MPa was used, if the material is considered as isotropic. Finding the heterogeneous
properties of concrete, various elastic moduli under the tension of 5000 MPa and compression of
2550 MPa are accepted in the calculations.

3. A Heterogeneous (Bimodule) Model of a Beam

A heterogeneous (bimodule) model of a reinforced beam under the action of static loads is presented
as a beam consisting of two layers: stretched, compressed, and reinforcement bars. Considering the
beam as statically indeterminable, we obtain the equilibrium equation for a heterogeneous beam,

My = Myt + Myc + Mya (1)

and condition for compatibility of deformations of a heterogeneous beam,

1
ρ
=

1
ρt

=
1
ρc

=
1
ρa

(2)

where My, 1
ρ are the bending moment and curvature of the beam; Myt, 1

ρt
are the bending moment

and curvature of the beam of the zone under tension; Myc, 1
ρc

are the bending moment and curvature

of the beam of the zone under compression; and Mya, 1
ρa

are the bending moment and curvature of
reinforced bars.

The equilibrium condition (1)
∑

My = 0 expressed in terms of normal stresses has the following
form:

My =

∫
A

σ z dA =

∫
At

σt z dA +

∫
Ac

σc z dA +

∫
Aa

σa z dA = Myt + Myc + Mya (3)

where σt, At—normal stress and cross-sectional area of the beam of the stretched zone; σc, Ac—normal
stress and cross-sectional area of the beam in the compression zone; and σa, Aa—normal stress and
cross-sectional area of reinforcement bars.

By substituting normal stresses σt =
Et z
ρ , σc =

Ecz
ρ , σa = Eaz

ρ into (3), we obtain the neutral line
curvature formula for a beam of bimodular material:

My =
1
ρ

(
Et Jt

y + Ec Jc
y + Ea

[
nt

(
Jt
y1
+ Ap

ac2
t

)
+ nc

(
Jc
y1
+ Ac

ac2
c

)])
(4)

For a beam, we have the general curvature formula:

1
ρ
=

My

D
=

Myp + Myc + Mya

D
, (5)

where D is the reduced stiffness of the beam of bimodular material; Et is the modulus of elasticity
of the material in the tensile zone; Ec is the modulus of elasticity of the material in the compression
zone; Ea is the modulus of elasticity of the reinforcement; Jt

y is the moment of inertia of that part of
the cross section that lies in the stretch zone relative to the neutral axis; Jc

y is the moment of inertia of
that part of the cross-section, which lies in the compression zone, relative to the neutral axis; Jt

y1
is a

moment of inertia of the cross section of the reinforcement, which lies in the tension zone, relative to its
own central axis; Jc

y1
is the moment of inertia of the cross section of the reinforcement, which lies in

the compression zone, relative to its own central axis; nt is the number of reinforcement bars in the
tension zone; nc is the number of reinforcement bars in the compression zone; At

a is the cross-sectional
area of the reinforcement in the tension zone, Ac

a is the cross-sectional area of the reinforcement in the
compression zone; ct is the distance from the reinforcement in the tension zone to the neutral axis;
and cc is the distance (coordinate) from bars in the compression zone to the neutral axis.
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From Equations (4) and (5), we obtain the reduced-stiffness expression for reinforced beams of
heterogeneous material D:

D = Et Jt
y + Ec Jc

y + Ea
[
nt

(
Jt
y1
+ Ap

ac2
t

)
+ nc

(
Jc
y1
+ Ac

ac2
c

)]
(6)

To determine the position of the neutral line, we consider another static equation—the projection
onto the axis of the bar,

∑
Fx = 0:∫

A

σdA =

∫
Ap

σtdA +

∫
Ac

σcdA +

∫
Aa

σadA = 0 (7)

By substituting σt, σc, σa in Equation (7), we obtain the following:

EtSt
y + EcSc

y + Ea(ntAt
act + ncAc

acc) = 0 (8)

where St
y is the static moment of that part of the cross-section that lies in the tension zone, relative to

the neutral axis; and Sc
y is the static moment of that part of the cross-section that lies in the compression

zone, relative to the neutral axis.
Normal stress formulas taking into account Equations (4) and (5) have the following form:

σt =
EpMy

D
z, σc =

EcMy

D
z, σa =

EaMy

D
z. (9)

For a rectangular cross-section, Equation (9) for the maximum normal tensile stress σt and the
maximum normal compressive stress σc, taking into account the bimodularity of the material for
reinforced beams during bending under static loads, has the following form [11]:

|σmaxt| =
3(1 +

√
k)
√

kh

kbh3 + 3(1 +
√

k)
2
Ea(ntIa+ + ncIa−)/E t

∣∣∣Mmaxy
∣∣∣ (10)

|σmaxc| =
3k(1 +

√
k)h

kbh3 + 3(1 +
√

k)
2
Ea(ntIa+ + ncIa−)/Et

∣∣∣Mmaxy
∣∣∣ (11)

where h is the height of the beam; b is the width of the beam; My is the bending moment relative to the
neutral line in an arbitrary cross-section of the beam; Ea is the tensile modulus of reinforcement bars;
Et is the modulus of elasticity of concrete (aggregate) in tension; Ia+ is the axial moment of inertia of
the cross-section of one reinforcement bar in the tensile zone; Ec is the modulus of elasticity of concrete
(aggregate) in compression; Ia− is the axial moment of inertia of the cross-section of one reinforcement
bar in the compression zone; nc is the number of bars in the compression zone; nt is the number of bars
in the tension zone; and k = Ec

Et
.

The stressed state of the beam was investigated under the action of concentrated force applied in
the middle of the span of articulated metal and reinforced concrete beams. The impact is considered
as an absolutely plastic impact of an absolutely rigid body on the elastic system, taking into account
the hypothesis of proportionality of the dynamic and static characteristics of the stress–strain state of
the body. The dynamic coefficient (kd) [25] is determined to take into account and without taking into
account the bimodularity of the beam material.

The formulas determine the dynamic coefficient.
Excluding beam mass:

kd = 1 +

√
1 +

2h
fs

(12)
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Considering the mass of the beam:

kd = 1 +

√
1 +

2h
fs

(
1 +

MB

MA

)−3

(13)

where h is the height of the load; fs is the static beam deflection under load, without taking into account
the mass of the beam; MA is the mass of the falling load; MB is the reduced beam mass, according to
Cox [26].

For a simply supported beam, loaded in the middle of the span L, MB = 17
35 mB L, where mB is the

distributed mass of the beam, and L is the length of the beam.
As can be seen in Table 3, the dynamic coefficient decreases with the increasing ratio mBL/MA,

and mBL/MA > 10 kd = 2. Therefore, the initial data were taken in this study, ensuring the strength
and rigidity of the beam and allowing us to study in enough detail the effect of various parameters on
impact strength.

Table 3. The dynamic coefficient (kd), depending on the ratio of the load height (h) to the maximum
deflection ( fs).

2h/fs
mBL/MA

0 0.01 0.1 1.0 10 100

0 2 2 2 2 2 2
0.01 2.0050 2.0048 2.0037 2.0006 2 2
0.1 2.0488 2.0474 2.0369 2.0062 2 2
1.0 2.4142 2.4038 2.3234 2.0607 2.0004 2
10 4.3166 4.2720 3.9177 2.5000 2.0037 2

100 11.0499 10.9025 9.7253 4.6742 2.0369 2
200 15.1774 14.9685 13.2989 6.0990 2.0725 2.0001
300 18.3494 18.0932 16.0464 7.2048 2.1070 2.0001
400 21.0250 20.7291 18.3645 8.1414 2.1404 2.0002
500 23.3830 23.0521 20.4077 8.9687 2.1729 2.0002
1000 32.6386 32.1703 28.4284 12.2250 2.3234 2.0005

10,000 101.0050 99.5236 87.6842 36.3695 3.9177 2.0048

4. Results

4.1. Determination of Dynamic Stresses Arising in a 4 × 20 Metal Rectangular Beam under the Influence of a
Falling Load of Mass MA from a Height (h) to the Middle of the Beam

When determining the maximum stresses in metal beams, put nc = nt = 0 in Equations (10) and (11).
Table 4 shows the maximum stresses, σmaxt and σmaxc, for the mass of the falling load, MA = 1.00 kg,
and the height of the falling load, h = 10.00 mm.

Table 4. Maximum normal stresses (σmaxt, σmaxc) and dynamic coefficient (kd) of a steel beam.

Steel
Ec = Et = 209,990 MPa Et = 209,990 MPa;

Ec = 216,110 MPa

σmaxt,
MPa σmaxc, MPa kd

σmaxt,
MPa σmaxc, MPa kd

Excluding beam mass 124.8 124.8 5.688 124.6 126.4 5.720
Given the mass of the beam 107.2 107.2 4.885 107.0 108.5 4.911

Table 5 shows the maximum stresses (σmaxt and σmaxc) for the mass of the falling load, MA = 0.10 kg,
and the height of the falling load, h = 4.00 mm.



Materials 2020, 13, 1579 8 of 14

Table 5. Maximum normal stresses (σmaxt, σmaxc) and dynamic coefficient (kd) of a silumin beam.

Silumin
Ec = Et=68,300 MPa Et = 68,300 MPa; Ec=216,110 MPa

σmaxt
MPa σmaxc, MPa kd σmaxt, MPa σmaxc, MPa kd

Excluding beam mass 13.86 13.86 6.319 13.80 14.46 6.438
Given the mass of the beam 8.849 8.849 4.034 8.783 9.199 4.096

As can be seen from the results, if the beam mass is not taken into account, then the dynamic
coefficient with bimodularity differs from the dynamic coefficient without bimodularity for steel by
0.5%, and for silumin by 1.8%. If the beam mass is taken into account, this leads to a difference in
kd with and without taking into account the bimodularity of the material for steel by 0.5%, and for
silumin by 1.5%.

The difference between the dynamic coefficients excluding bimodularity, taking into account and
excluding the mass of the beam, for steel is 16%, and for silumin is 56%. The difference between the
dynamic coefficients, taking into account bimodularity, taking into account and without taking into
account the mass of the beam, is 16% for steel and 57% for silumin.

From the results obtained, it can be concluded that, for metal beams, the dynamic coefficient has a
greater influence on taking into account the mass of the beam than considering the bimodularity of
the material.

4.2. Determination of Dynamic Stresses in a Simply Supported Reinforced Concrete Rectangular Beam under
the Influence of a Falling Load of Mass (MA) from a Height (h) to the Middle of the Span

The material of the beam is fiber-reinforced concrete with elastic moduli for compression
Ec = 2250 MPa, and tensile Et = 5000 MPa. We consider structural fiber-reinforced concrete with
polyamide fibers made by standard GOST 25485-89 [27].

4.2.1. Investigation of the Influence of the Location of the Reinforcement on the Dynamic Coefficient
and Maximum Normal Stresses Arising in the Cross-Section, Taking into Account the Beam Mass and
Bimodularity of the Material

Beam parameters: beam length L = 4.0 m; cross-sectional dimensions h = 89.0 cm, b = 28 cm,
dt = 0.012 m is the diameter of the reinforcement bar in the tension zone, and dc = 0.008 m is the
diameter of the reinforcement in the compression zone. Table 6 shows the maximum dynamic normal
stresses when the bars are located only in the stretched zone nt = 4, nc = 0. The mass of the falling load
MA = 100 kg. The reduced beam mass is MB = 338.9 kg. Drop height is h = 40 mm. mBL/MA = 3.3891,
2h/ fs = 5156.

Table 6. The maximum dynamic normal stresses when the bars are located only in the stretched zone.

Fiber Concrete
Ec = Et=5000 MPa Et = 5000 MPa; Ec=2250 MPa

σmaxt, MPa σmaxc, MPa kd σmaxt, MPa σmaxc, MPa kd

Excluding beam mass 1.647 1.647 77.652 1.608 1.270 62.276
Given the mass of the beam 0.199 0.228 9.395 0.200 0.158 7.738

Table 7 shows the maximum dynamic normal stresses at the location of the same number of bars
located in the compressed and in the stretched zone. The mass of the falling load is MA = 100 kg. Drop
height is h = 40.00 mm, nt = 4, nc = 4.



Materials 2020, 13, 1579 9 of 14

Table 7. The maximum dynamic normal stresses. The bars are located in the stretched and
compressed zone.

Fiber Concrete
Ec = Et=5000 MPa Et = 5000 MPa; Ec=2250 MPa

σmaxt, MPa σmaxc, MPa kd
σmaxt,
MPa σmaxc, MPa kd

Excluding beam mass 1.633 1.754 80.835 1.580 1.114 67.827
Given the mass of the beam 0.197 0.211 9.739 0.194 0.137 8.335

The obtained calculations (Tables 6 and 7) show that taking into account the bimodularity of the
material reduces the dynamic coefficient by 16%, and taking into account the mass of the beam reduces
kd by 723%.

The dynamic coefficient for the location of reinforcing bars in both the stretched and compressed
zones is more than the dynamic coefficient for the location of reinforcing bars only in the extended
zone by 8%.

4.2.2. Investigation of the Influence of the Number of Bars Located in the Zone under Tension on the
Stress state of the Reinforced Beam with and without Bimodularity, with and without Considering the
Beam Mass under the Impact of External Loads

Let us consider the stress–strain state of a fiber–concrete beam, without the bimodularity of the
material and without taking into account the beam mass.

Dynamic stresses without bimodularity depending on the number of bars in the zone under tension,
without considering the beam mass at nc = 0, nc = 2, nc = 4, are shown in Figure 2. Ec = 5000 MPa,
Et = 5000 MPa.
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Figure 2. Dynamic stresses excluding bimodularity depending on the number of bars in the zone under
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at nc = 2; (6) σc at nc = 4.

An increase in the number of bars (nt) in the zone under tension significantly reduces the maximum
dynamic tensile stresses. Adding one bar in the stretched zone reduces the dynamic maximum tensile
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stress by 4%, while the maximum dynamic compressive stress decreases slightly by only 1.1% (Figure 2,
graph 1 and 4).

Adding two bars in the zone under compression reduces the dynamic maximum normal
compressive stress by 11% and tensile by only 0.5%. It can be seen from Figure 2 that it is possible to
equalize the maximum dynamic normal tensile and compressive stresses by placing two reinforcing
bars in the zone under compression and one in the tensile one (Figure 2, graph 2 and 5).

An increase in the bars in the zone under compression halves the maximum dynamic normal
compressive stress by 3% and tensile by only 0.1%. The maximum dynamic normal tensile and
compressive stresses are equal in absolute value if there are four reinforcing bars in the zone under
compression and two bars in the zone under tension (Figure 2, graph 3 and 6)

Now, let us consider the stress–strain state of a fiber concrete beam, with the bimodularity of the
material and without taking into account the beam mass.

Dynamic stresses with bimodularity effect, depending on the number of bars in the zone under
tension, without taking into account the beam mass at nc = 0, are shown in Figure 3. Ec = 2250 MPa,
Et = 5000 MPa.
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Figure 3. Dynamic stresses with bimodularity depending on the number of bars in the zone under
tension, excluding the beam mass: (1) σt at nc = 0; (2) σt at nc = 2; (3) σt at nc = 4; (4) σc at nc = 0; (5) σc

at nc = 2; (6) σc at nc = 4.

Figures 2 and 3 show that the dependence of the maximum normal compressive and tensile
stresses on the number of bars in a compressed and stretched zone is almost the same, both with and
without bimodularity.

Accounting for bimodularity (Figures 2 and 3) almost does not affect the value of maximum
tensile stresses in the absence of reinforcement, but reduces the maximum tensile stress by 4%, with an
increase in the number of reinforcement bars in the tensile zone in comparison with the value of
maximum tensile stress, without considering bimodularity.
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The maximum compressive normal stresses are reduced by taking into account bimodularity by
45% at Et = 2Ec.

As can be seen from the graphs presented in Figures 2 and 3, the bimodularity of the material
qualitatively changes the dependence of the maximum dynamic normal stresses on the number and
location of reinforcing bars. At Et = 2Ec, the maximum dynamic tensile normal stresses decrease by
only 1%, while the maximum dynamic compressive normal stresses decrease by 64%.

Let us consider the stress–strain state of a fiber–concrete beam, without the bimodularity of the
material and by taking into account the beam mass. The dynamic stresses for this case are shown
in Figure 4.
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Figure 4. Dynamic stresses without bimodularity, depending on the number of bars in the zone under
tension taking into account the beam mass: (1) σt at nc = 0; (2) σt at nc = 2; (3) σt at nc = 4; (4) σc at
nc = 0; (5) σc at nc = 2; (6) σc at nc = 4.

By comparing Figures 2–4, it is seen that the inertial effects of the mass of the beam significantly
reduce stress in zones under tension and compression. The nature of the stresses is the same.

The dependence of the maximum dynamic normal stresses on the number of reinforcing bars in a
compressed and stretched zone, taking into account that the mass of the beam is the same as without
the mass of the beam (Figures 2–4), but the value of the maximum dynamic normal tensile stress
decreases by 727%, and the magnitude of the maximum dynamic normal compressive stress by 767%.

Now, let us consider the stress–strain state of a fiber concrete beam, with the bimodularity of
the material and by taking into account the beam mass. Dynamic stresses with bimodularity effect
depending on the number of bars in the zone under tension, taking into account the beam mass at
nc = 0, as shown in Figure 5. Ec = 2250 MPa, Et = 5000 MPa.
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nc = 0; (5) σc at nc = 2; (6) σc at nc = 4.

The effect of bimodularity during a bending impact on a massive beam (Figure 5) increases the
value of maximum tensile normal stresses by 2.5%, and the maximum compressive normal stresses
decrease by 4.7%.

It is interesting to analyze the influence of the location of reinforcing bars with and without taking
into account bimodularity and beam mass on the values of maximum normal stresses. By examining
graphs 2 and 5, we see that, by increasing the number of reinforcing bars twice in the zone under tension,
the maximum normal tensile stresses (Figure 2, graph 5) and the maximum normal compressive
stresses (Figure 2, graph 2) decrease by 8% and 1%, respectively (excluding modularity and mass).
Under the same conditions for the location of reinforcing bars, but taking into account the bimodularity
of the material and the beam mass, the maximum normal tensile stresses (Figure 5, graph 5) and the
maximum normal compressive stresses (Figure 5, graph 2) decrease by 16% and 1.4%, respectively.

As can be seen (or by analyzing) from graphs 2–5 (Figure 5), considering the bimodularity of the
material and taking into account the mass of the beam affects the maximum normal stresses under
the action of a bending shock. The bimodularity of the material in comparison with the mass of the
beam has a smaller effect on the values of the maximum normal stresses at the specified physical and
geometric parameters.

5. Conclusions

The method proposed in this work makes it possible to consider reinforced beam structural
elements under the action of shock loads made of bimodular material. When comparing the
experimental values of the deflections with the theoretical ones, it is evident (Tables 1 and 2) that taking
into account bimodularity gives a more accurate value of the deflection.

The value of the dynamic coefficient for metal beams is practically independent of bimodularity,
since the elastic moduli under tension and compression differ little for metals. Taking into account
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the mass of the metal beam, the more the difference between the tensile and compression modules
(Tables 4 and 5), the more the dynamic coefficient and dynamic normal stresses decrease.

The obtained calculations (Tables 5 and 6) show that taking into account the bimodularity of the
material with given loads and mechanical characteristics of concrete affects the value of the dynamic
coefficient by 45 times less than taking into account the mass of the beam compared to taking into
account the bimodularity of the material.

The dynamic coefficient for the location of reinforcing bars in both the stretched and compressed
zones is greater than the dynamic coefficient for the location of reinforcing bars only in the extended
zone by 8%.

The dependence of the maximum tensile and normal compressive stresses on the number of
reinforcing bars located in the compressed and elongated ones showed a qualitative and quantitative
difference between the graphs shown in Figures 2 and 3, with and without taking into account the
bimodularity of the beam material. When taking into account the mass of the beam (Figures 4 and 5),
dynamic stresses decrease on average by 700%.

The study conducted in this work shows that, for reinforced bimodular beams’ calculation under
impact load, the stress state depends on many factors:

1. The ratio of the mass of the beam and the mass of impact load;
2. The ratio of the height with which the load falls and the magnitude of the static deflection under

the load;
3. The ratio of tensile and compression moduli;
4. The location of reinforcing bars in a compressed and stretched zone.

The method proposed in this work makes it possible to analyze in detail the influence of all the
above factors for arbitrarily supported beams, with a cross-section of various rectangular shapes,
with different mechanical characteristics of the material, and with different locations of the reinforcing
bars of the beams under impact loads.
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