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Abstract: The cement-based grouting materials used for practical purposes in high-geothermal tunnels
are inevitably affected by humidity and high temperature, leading to the deterioration of mechanical
properties. Based on the characteristics of changing high temperatures and two typical conditions
of hot-humid and hot-dry environments in high-geothermal tunnels, many mechanical strength
tests were carried out on the grouting material cured under different environmental conditions. The
study results indicated that high temperature and low relative humidity were unfavorable to the
development of mechanical characteristics of grouting material, but the coupling effect of two factors
could improve the strength at early ages and reduce the degradation of long-term strength. As the
curing temperature exceeded 56.3 ◦C, the humidity effect on strength played a more important role in
recovering the strength of grouting material damaged by high temperature. Temperature had more
significant impact on the relative peak stress while the relative humidity had greater influence on the
relative peak strain. A calculation compressive constitutive model was prospered, which considering
both temperature and relative humidity. The study results may provide much valuable experimental
data and theoretical supporting for the design of compression constitutive of cement-based grouting
material in high-geothermal tunnel.

Keywords: high-geothermal tunnel; grouting material; varying temperature curing; mechanical
strength

1. Introduction

Grouting has been widely applied in tunnels, subways, foundation pit of buildings and many
other underground constructions [1]. The commonly used grouting materials in transportation tunnels
are cement-based silicate engineering materials. As reported in [2], the flowing slurry can transfer to
the inner cracks in surrounding rocks or artificially drill holes. After solidification and hardening of the
grouting body, the integrity of the broken surrounding rock or the bonding properties between anchor
rod and rock can be improved significantly, and thus increase the security of supporting structure. As
one of the primary means of disaster prevention and control, the reinforcement effect of grouting has
achieved good results in most tunnel constructions. However, with the development of transportation
engineering, more and more mountain tunnels worldwide are being built under high-geothermal
conditions. Especially in the Sichuan-Tibet railway project of China, dozens of transportation tunnels
are facing the challenge of high-geothermal problem during the construction [3]. The rock temperature
tested in the holes on site is almost always above 40 ◦C, which has a great influence on the reinforcement
effect of grouting material, and thus poses a potential threat to the long-term safety of bolt-supported
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structure [4]. Therefore, deeper investigations on the mechanical characteristics of cement-based
grouting material in high-geothermal tunnels are necessary.

In previous studies, scholars have conducted many experiments on the mechanical properties
of grouting material under normal temperature conditions. Some studies have discussed grouting
methods, various grouting parameters, and the properties of grouting material appropriate for tunnel
construction [5]. Generally, there are many factors that have a significant impact on the mechanical
behavior of cement-based grouting material, such as w/c ratio, curing condition, substance components,
specific surface area, viscosity and so on [6]. Li et al. [7] conducted many experiments on modified
additives for grouting material and proved that higher water to binder ratio led to good fluidity, but
the compressive strength decreased significantly. Li et al. [8] studied a new cementitious anti-washout
grouting material (CIS). The results indicated that the CIS grout had a high early compressive strength
due to the admixture of water glass. The hydration products of C-S-H cause CIS grout to be denser,
lending it a higher strength, but the increase of xanthan gum has an opposite effect. Some investigations
have indicated that the early strength of most cement-based grouting materials can be improved
by mixing lithium carbonate hardening accelerators, but the test results by Won et al. [9] suggested
that this additive may also lead to a decrease in long-term strength. However, the focus of those
investigations was mainly on the characterization of cement grouts at standard room temperature.

As reported in [10], the real construction environment, particularly as presented recently for
high-geothermal tunnels, has a temperature of about 40 ◦C to 90 ◦C. The impact of high temperature
on the mechanical properties of grouting material has to be fully taken into consideration. On
the one hand, several studies on the temperature effect (<40 ◦C) have indicated that the hydration
degree of the grouting material, which determines the hardening, is known to depend largely on
temperature [11]. Consequently, in [12], Mirza et al. found that the setting time of grouting material
significantly depended upon the temperature variation, and the increase of temperature can accelerate
the condensation of most kinds of grouting material. In addition, curing temperature has a remarkable
influence on the strength properties of cement grout specimens. Elkhadiri et al. [13] studied cement
pastes specimens cured under higher temperature (e.g., at 22 ◦C and 40 ◦C), finding that they had
a higher strength than those cured under lower temperature (e.g., 4 ◦C). Holt et al. [14] proved
that early strength is vital to supporting tunneling, as the cement-based grouting material used in
tunneling engineering and the lower curing temperature may obstruct the development of compressive
strength in the early stages, resulting in the invalidation of rock bolts or the failure of the supporting
system. Bohloli et al. [15] also found that the rapid increase in temperature in grouting material
had a negative effect on the strength of grout specimen. The experimental results indicated that a
high temperature of 20 ◦C led to a lower uniaxial compressive strength of the grouting body than
that found at 8 ◦C. Although those findings made great contributions to the study on the impact of
temperature on grouting material properties, more and more high-geothermal tunnel project cases
are presenting rock temperatures far beyond the previously investigated temperature range. On the
other hand, many scholars have also carried out research on grouting materials that have experienced
fires [16]. Wang et al. [17] found that under temperature conditions of 550 ◦C, the ultimate bearing
capacities of cement-based material samples cured at 14 and 28 days decreased to 41% and 60%,
respectively. Li et al. [18] studied the residual compressive strength of cement-based grouting material
by exposing the samples to the temperatures of 150 ◦C, 350 ◦C, 550 ◦C, and the testing results indicated
that being exposed to higher temperature results in lower mechanical behaviors. Similar results
were obtained in the investigation on the elastic modulus of grouting material with early age after
fire [19]. However, the cement-based grouting materials in those researches had been hardened
sufficiently before being exposed to the fire condition, and there exist essential differences between
the two kinds of high-temperature environments when compared to the grouting material used in
high-geothermal tunnels.

Additionally, on the basis of our previous study results [20,21], various cooling measures
have been taken in the engineering of high-geothermal tunnels in order to create an appropriate
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working environment. Therefore, the grouting material used in actual high-geothermal tunnels
is hydrated and solidified under variable temperature curing (VTC) conditions instead of under
constant high-temperature curing conditions [10]. In addition to the problem of high temperature, the
influence of relative humidity (RH) in high-geothermal tunnels on grouting materials should not be
underestimated. Some studies have suggested that it is easy to cause decreases in compressive strength
and bond strength in grouting material in a hot-dry environment [22,23]. There exists a significant
combined effect of temperature and relative humidity. In summary, the real environmental conditions
in high-geothermal tunnels is far complex, and current studies considering the environmental effect
(temperature and humidity) on the mechanical properties of grouting material are limited. Thus, the
major aims of this paper are:

a. Perform a series of experiments on the compressive strength of grouting material cured under
VTC conditions (all combinations of temperature and RH).

b. Study the failure characteristics and mechanism of grouting materials.
c. Discuss the impact of temperature and RH, including the coupling effect on the mechanical

properties of grouting material, and establish a compressive strength prediction formula.
d. Obtain a constitutive model of common cement-based grouting material subject to

high-geothermal environments.
The results of this investigation may provide valuable information and theoretical support

for grouting technology, numerical models of grouting materials, and the supporting design in
high-geothermal tunnel.

2. Experiment Design

2.1. Raw Materials and Specimen Preparation

The mix proportion of grouting material was determined with reference to one typical
high-geothermal tunnel in Lhasa-Nyingchi railway, China. According to the Portland cement
standard [24], ordinary type 1 Portland cement (produced by southwest cement factory of China)
was selected as the binder in the tests, whose strength grade was 42.5 MPa. The cement density
was 3.0 g/cm3. The initial setting time was 115 min and the final setting time 185 min. As a fine
aggregate of the grouting material, the diameter of the selected sand was in the range of 0.5–0.35
mm, and the fineness modulus was 2.12. The mixing ratio was 0.5:1:1 (water:cement:sand), and no
other admixtures were used in the testing samples. The particle size distribution of cement and sand
are shown in Tables 1 and 2. The kind of cement mortar used in the experiments was M35, and the
chemical compositions are shown in Table 3.

Table 1. Particle size distribution of cement.

Item <5 µm (%) <10 µm (%) 10~30 µm (%) <30 µm (%) Homogeneity
Coefficient

Cement 9.43 31.30 41.75 73.05 1.035

Table 2. Particle size distribution of sand.

Item <0.15 µm
(%)

<0.3 mm
(%)

<0.6 mm
(%)

<1.18 mm
(%)

<2.36 mm
(%)

<4.75 mm
(%)

Sand 3.75 27.05 49.24 70.36 96.14 100
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Table 3. Chemical composition of Portland cement.

Item Content (%)

SiO2 18.6
Al2O3 6.2
K2O 1.0

Na2O 0.2
Fe2O3 4.76
MgO 1.71
CaO 66

Material loss 1.53

The testing samples for uniaxial compressive strength were formed into cubes whose size was 70.7
mm × 70.7 mm × 70.7 mm. The mixtures were filled into the testing mold simultaneously. The vibration
of the grouting material should be done with a plate-type vibrator associated with an insertion-type
vibrator, so as to ensure that the cement mortar is filled with the test mold in a compact manner,
avoiding the stratification and segregation of the cement mortar. It was necessary to scrape the excess
cement mortar on the test mold and smooth the surface with spatula (see Figure 1). After the initial
setting of the cement mortar, the specimens were put into the appropriate apparatus for curing.
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Figure 1. Specimen preparation of cement-based grouting material.

2.2. Experimental Procedures

2.2.1. Curing Method for Samples

Based on our preliminary experimental work, the testing specimens were cured under VTC
conditions by HX/HS-010L curing apparatus (produced by Huixia instrument factory in Shanghai,
China) in Figure 2a [10,21]. The precision of temperature and relative humidity regulation reached
0.1 ◦C and 0.1%, respectively. To simulate the real environmental conditions in high-geothermal
tunnels, the curing temperature was set at a fixed value after putting the samples into the curing
box of the device. In the following curing process, the temperature declined at the same rate every
8 h, and the change of temperature occurred three times a day. As shown in Figure 2b, when the
temperature was gradually reduced to 28 ◦C over 7 days, the automatic temperature control device
remained stable until 28 days. The relative humidity in the curing box was set at a constant value
from beginning to end. All changes in environmental factors were performed by a servo control
system of the curing apparatus. According to our previous field test results and investigations on some
typical high-geothermal tunnels, the grouting material specimens were tested at different combination
of temperature (40 ◦C, 60 ◦C, 80 ◦C) and relative humidity (25%, 55%, 95%) [25–27]. Moreover, the
compressive strength of grouting specimens cured at 3 days and 28 days were selected as the main
study subjects. Meanwhile, as a comparison, another group of testing samples cured under standard
curing (SC) conditions was produced. The curing temperature and relative humidity were maintained
at 20 ◦C and 95%, respectively. To improve the test accuracy, the number of effective specimens should
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not be less than three under each test condition and the average strength was defined as the effective
results. There were 64 testing samples in total in this experiment (including four invalid specimens).
The test details are presented in Table 4.
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Table 4. Experimental conditions.

Testing Item Temperature/◦C Relative Humidity/% Curing Mode Curing Age/Day

Compressive
strength

40, 60, 80 25, 55, 95 VTC 3, 28

20 95 SC 3, 28

2.2.2. Uniaxial Compression Test

The mechanical strength tests on grouting material specimens were conducted by CSS-WAW600D
electric-fluid servo compression machine (produced by the testing machine research institute in
Changchun, China). The maximum test force of the machine was 600 kN and the moving speed of
piston can be set below 100 mm/min. The accuracy of displacement and velocity were able to reach
±0.5%. Moreover, as shown in Figure 3, stiff inserters with a height-to-diameter ratio of 1.0 were
inserted between the specimens and the platens in order to make the stress distribution in the specimen
much more uniform. The specimen was preloaded to reduce the impact of the uneven surface and
the gap between the compression surface and loading surface. A hydraulic servo press system was
adopted to load continuously and evenly. In order to obtain the full stress-strain curve, the strain
controlling mode was selected to ensure a constant strain rate at all stages during the whole testing
process, and the loading speed was 400–600 micro strain/min. The oil pump and electro-hydraulic
servo valve were controlled by PC servo controller for loading and unloading, which is able to realize
multi-channel closed-loop control, and thus completely automatic control loading, and automatic
measurement and data collection during the test process. All samples were tested in accordance with
the method set out in GB50081-2002. The test results for the relationships among temperature, relative
humidity and stress-strain are shown in Table 5.
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Table 5. Test data for peak stress-strain under different curing conditions.

Relative
Humidity Testing Item T-20 ◦C T-40 ◦C T-60 ◦C T-80 ◦C

RH25%
Peak Stress (MPa) - 27.96 22.78 16.83

Strain - 2.66 × 10−3 2.87 × 10−3 3.24 × 10−3

RH55%
Peak Stress (MPa) - 30.12 26.71 21.51

Strain - 2.25 × 10−3 2.45 × 10−3 2.87 × 10−3

RH95%
Peak Stress (MPa) 37.65 35.62 33.9 27.96

Strain 1.91 × 10−3 2.05 × 10−3 2.34 × 10−3 2.66× 10−3

3. Results and Discussion

3.1. The Coupling Effect of Temperature and RH on Compressive Strength

The testing results of samples cured under different curing conditions indicated that compressive
strength was influenced significantly by temperature and relative humidity, but their effects and
mechanism of influence on the mechanical properties were quite different. As shown in Figure 4, there
was a negative correlation between the compressive strength and curing temperature. Whether the
curing age was at 3 d or 28 d, the compressive strength decreased with the increase of temperature,
and the higher the curing temperature was, the larger the decline in mechanical strength was. When
compared to curing at 40 ◦C, the compressive strength for other testing samples cured under higher
temperature conditions fell, with drops of between 10% and 40%. Of all curing temperature conditions,
80 ◦C–3 d–25% produced the lowest compressive strength and the strength decline under 80 ◦C–28
d–25% was the greatest of all conditions. The main reason was that high temperature may speed up
the hydration of cement in grouting material in an environment with sufficient free water. However,
the strength development of grouting material cured under constantly high temperature could be
inhibited by lower relative humidity, and the longer the curing time lasted, the more significant the
strength reduction would be. This means that temperature is one of the most influential factors on
compressive stress, but not the only affecting factor.

The impact of relative humidity on compressive strength can be seen in Figure 5. It indicates that
the rise in relative humidity contributed greatly to the increase in compressive strength, regardless
of curing time. When the curing age was set at 3 d, the minimum increase of compressive strength
reached by 26.1% due to the rise of RH from 25% to 95%, while it was 27.5% when the setting time was
28 days. However, the gain effect on mechanical properties by relative humidity was more significant
with the rise of temperature. When the curing temperature reached 80 ◦C, the biggest increase of
compressive strength was over 52% compared to 40 ◦C, and the growth rate obviously accelerated as
temperature rose. This can also be seen from the overlapping area of S1, S2 and S3. When the difference
of curing humidity was large (like 25% and 95%), the compressive strength of testing samples cured at
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28 d was smaller than that at 3 d, which meant that the curing age had little effect on the development
of mechanical performance when the temperature exceeded 56.3 ◦C. Similar results can be found in
the condition of RH55% and RH95% when the curing temperature was over 75 ◦C and 77.5 ◦C. It can
be concluded that the increase in relative humidity is beneficial for the development of compressive
strength, and the RH effect can further intensify under higher curing temperature.
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Generally, the curing time had a positive effect on the development of mechanical strength of
cement-based grouting material. As shown in Figure 6, the compressive stress of specimen cured
at 3 d–95% was always lower than that at 28 d–25%, which meant that curing age played a major
role in increasing the mechanical properties when the temperature was below 56.3 ◦C. Even though
there was a 70% difference in relative humidity, the 28-day compressive strength at 40 ◦C–RH25%
was 11.6% more than the 3-day compressive strength at 40 ◦C–RH95%. However, with the increase
of curing temperature, the above situation changed gradually. As the overlapping area S4 became
larger and larger, the coupling effect of temperature and humidity markedly improved the strength
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of the grouting materials at early ages. The difference of compressive strength caused by curing age
decreased gradually. For example, when the temperature was set at 80 ◦C, the compressive strength of
samples cured under 3 d–RH95% increased by as much as 18.6% and 4.9% compared to 28 d–RH25%
and 28 d–RH55%, respectively. The temperature and relative humidity began to play a main role in
improving the mechanical properties of grouting material.
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3.2. Stress-Strain Characteristics in Compression

3.2.1. Fracture Failure Process

In actual high-geothermal tunnel constructions, the long-term strength of the composite supporting
structure that consists of grouting material is one of the most concerning problems. Therefore, the
testing samples cured at 28 days were selected as the main study object in the following stress-strain
research. As shown in Figure 7, the general graph of stress-strain curves was obtained on the basis
of multiple sets of compressive tests. The overall law of the curve change was basically the same,
and similar results can be found in existing studies [27,28]. The development of curves show that the
compression stress first rose rapidly to the peak value, then turning into a falling section and decaying
thus to the residual strength. The OA segment was the linear elasticity increasing stage. First, the
interface is contacted and the gap closes gradually. The compression stress increases linearly with the
vertical strain. The slope of the straight line remains basically invariable; the compression stress in
the AB segment grows nonlinearly with the increase of compressive strain, and the slope of the curve
begins to decrease. Before reaching peak strength, the internal micro-crack gradually expands with a
slight cracking sound, but only a few micro-fractures appear on the surface of the specimens. The
stress-strain curve begins to decline in the BC segment. More and more short, thin vertical cracks that
are not interconnected appear on the specimens’ surface. The rapid decline in the CD segment indicates
that some local structures inside the samples have been damaged. The rate of vertical deformation
increases due to the inadequate bearing capacity of samples. With the continued increase of normal
stress, the decrease of stress slows down, accompanied by an increasing number of cement mortar
spalling off, and finally the compressive stress gradually becomes equal to the residual stress.

However, the shape of the compression stress-strain curves was different due to the influence
of curing temperature and relative humidity. With the increase of temperature, all testing samples
showed a decrease in compressive stress. Compared to specimens cured under SC conditions, the
compression stress-strain curve showed a lateral expansion with increasing temperature. The vertical
change of the curve was from high to low, and the lateral change was from narrow to wide. This means
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that as the initial curing temperature increased, the drop of post-peak stress gradually slowed down,
meaning a decrease in the degree of brittleness. However, the increase of relative humidity had the
opposite effect on the development rule of compression stress- strain curves (see Figure 8).
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3.2.2. Peak Stress and Strain

To further investigate the strength degradation mechanism of grouting material under different
temperature and RH, the maximum compressive strength of samples cured under VTC conditions
divided by the peak strength of specimens cured under SC conditions was assessed as the relative
peak stress (Sr) of cement-based grouting material.

Sr =
σVTC

max

σSC
max

(1)

where σVTC
max is the peak stress of specimens cured under VTC conditions, and σSC

max is the peak stress
of samples cured under SC conditions. As shown in Figure 9, Sr was always less than 1.0 under all
VTC conditions, which means that the mechanical strength of grouting material in high-geothermal
environments decreased to different degrees compared to normal conditions. That is why some
engineering problems like failures in advanced pipe grouting or anchorage systems usually occur a
long time after construction in high-geothermal tunnels [28–30].
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According to the relative peak strength, values of Sr under the conditions of different curing
factors were obtained, and the higher the temperature, the lower the relative humidity, the more the
compressive strength of grouting material declined. The testing results indicated that Sr at RH25% fell
by as much as 39.9% when the temperature was increased from 40 ◦C to 80 ◦C, while it only fell by a
maximum of 21.6% at RH95%. This means that there was a significant positive correlation between Sr

and RH. Moreover, the greater the difference in Sr, the more significant the effect on the mechanical
performance of cement-based grouting material will be for this curing factor. Based on the simple effect
results shown in Figure 10, the maximum difference values of Sr under different curing conditions can
be obtained: the curing temperature was 29% and the curing RH was 31%. Thus, the RH effect was
slightly greater than the temperature effect.

However, the conditions of high-geothermal environments have different effects on peak strain of
grouting material. Similarly, the maximum compressive strain of samples cured under VTC conditions
divided by the peak strain of specimens cured under SC conditions was defined as the relative peak
strain (Sn) of cement-based grouting material.

Sn =
εVTC

max

εSC
max

(2)
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where εVTC
max is the peak strain of grouting materials cured under VTC conditions, εSC

max is the peak strain
of grouting materials cured under SC conditions. As seen in Figure 11, Sn ranged from 1.08 to 1.72
in all VTC conditions, which meant that the peak strain of all testing samples increased in various
degrees compared to that cured under SC condition. The higher the temperature and the lower the
relative humidity were, the larger the Sn was. When the curing relative humidity was set at 25%, the
value of Sn increased by 25% due to the rise of temperature, while it was 27.9% and 31% at RH55%
and RH95%, respectively. Moreover, it was apparent that with the increase of RH from 25% to 95%, a
temperature of 40 ◦C produced larger decrease of strain (22%) than 60 ◦C (17.5%) and 80 ◦C (18%). This
indicated that Sn increased linearly with the curing temperature under different levels of RH. However,
the RH effect on the decreasing of Sn was significant only under lower temperature. The maximum
difference values of Sn under different curing conditions are shown in Figure 12, the temperature was
23.1% and the curing RH was 27.8%. Therefore, the temperature had a more significant influence on
the peak strain of grouting material in high-geothermal environments than relative humidity.
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3.2.3. Quantitative Relationship between Curing Conditions and Relative Stress-Strain

To further study the interactions between typical curing conditions (temperature and RH) in
high-geothermal environments and long-term compressive stress and strain of cement-based grouting
material, the method of multi variable nonlinear regression analysis was selected. Temperature (T) and
humidity (H) are considered as independent variables, Sr and Sn are taken as the dependent variables,
and the relationship is defined by means of the following equation:

S = a1T2 + a2H2 + a3TH + a4T + a5H + a6 (3)

where S is the peak parameter; T is the curing temperature; H is the curing relative humidity and
ai (I = 1–6) is the regression coefficient. According to the formula, the relationship between peak
parameters (Sr and Sn) and the conditions of high-geothermal environment can be obtained as shown
in Figure 13, and the mathematical expression of Sr and Sn are presented as the following formulas,
respectively:

Sr = −5.42× 10−5T2 + 1.23× 10−5H2 + 2.77× 10−5TH − 1.20× 10−3T + 5.76× 10−4H + 0.814 (4)

Sn = 1.04× 10−4T2 + 6.43× 10−5H2
− 6.76× 10−6TH − 3.70× 10−3T − 1.14× 10−2H + 1.601 (5)

As seen in the surface with projection, the fitting coefficient R-squared of the quadric multiple
regression equation of Sr is 0.997, while it is 0.995 for Sn, which means a better correspondence of
testing results. Thus, the mathematical equation is a quantitative description of the interaction between
the conditions in high-geothermal environment and mechanical strength of grouting material.

3.3. Establishment of Constitutive Model

It can be seen from the dimensionless processing of stress-strain that the compressive stress-strain
curve of cement-based grouting material cured under VTC conditions has similar geometric
characteristics to that under SC conditions. Through the research on the relationship between
stress-strain and two influencing factors of high-geothermal environment, a new constitutive model
of grouting material compressive strength in high-geothermal environment is obtained. Taking the
dimensionless parameter Sn as the X-axis, and Sr as the Y-axis, the basic form of the upward part of the
curve is described by the cubic polynomial, and the decline segment is presented as follows [31,32]:

y = Ax + (3− 2A)x2 + (A− 2)x3 (6)
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y =
x

B(x− 1)2 + x
(7)

where parameter A reflects the change in the deformation modulus of the specimen under compression,
which is equal to the ratio of the initial tangent modulus of the curve to the secant modulus at the
stress peak of the curve. As shown in Figure 14, the smaller the parameter A, the greater the slope of
the curve. The plastic deformation of grouting material was small with obvious characteristic of brittle
failure. Parameter B reflects the area wrapped in the descending section of the curve. The smaller the
parameter B, the larger the area under the stress-strain curve. The deformation of the specimen is large
with obvious characteristic of ductility damage.
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According to the testing results of specimens cured under SC and VTC conditions, the estimated
parameters of the fitting formula and calculation model data are presented in Table 6. It can be seen that
the smallest fitting coefficient R-square of the equation was over 0.9, which means that the two formulas
can better express the stress-strain curves of grouting material under high-geothermal environments.

However, for convenient application of the constitutive model in practical engineering, it
was necessary to further study the relationship between parameters (A, B) and curing conditions
(temperature and RH). The fitting results in Table 6 indicate that parameters A and B generally decrease
with the increase in curing temperature and increase with the rise in curing humidity. Therefore, the
relationship between temperature, RH and the fitting parameters in the ascending and descending
sections can be obtained as follows after further statistical regression analysis:

A = 0.89+ 3.69× 10−3H− 5.38× 103T− 4.83× 10−5H2 + 1.07× 10−4HT− 6.89× 10−5T2R2 = 0.977 (8)

B = 2.32 + 1.97× 10−3H − 5.60× 103T + 1.15× 10−4H2
− 1.00× 10−4HT − 5.27× 10−5T2R2 = 0.962 (9)

Based on Formulas (8) and (9), the parameters A and B under different temperatures and RH
can be obtained, thus the standardization stress-strain relationship of cement-based grouting material
under high-geothermal environment by substituting Equations (8) or (9) into Equations (6) and (7). The
full curve comparison results can be seen in Figure 15. From the comparison to the calculating results
and experimental results, it can be concluded that the formula fitting curve of the model was in good
agreement with the experimental curve, revealing that the proposed constitutive model can better reflect
the stress-strain relationship of cement-based grouting material under high-geothermal environments.
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5. Conclusions 

In this paper, mechanical strength experiments on cement-based grouting material cured under 
VTC conditions were carried out to study the compressive characteristics under high-geothermal 
environments. The coupling effect of temperature and relative humidity on the mechanical properties 
of grouting material at different ages were further studied. Based on the failure characteristics and 
comparison to the stress-strain curves of specimens cured under SC conditions, the changing rules of 
typical points (peak stress and strain) of curves under different curing conditions were investigated, 
along with the compressive constitutive model of cement-based grouting material under high-
geothermal environments. The conclusions are as follows: 

(1) The compressive strength of grouting material significantly decreases with the increase of 
temperature. When the temperature of VTC condition is over 40 °C, it may cause a decline of 10%–
40% in the mechanical properties of the grouting material, and the strength degradation is more 
serious under a hot-dry environment. 

(2) High RH level makes a great contribution to the increase in compressive strength of grouting 
material, regardless of curing time. When the temperature exceeds 56.3 °C and 75 °C, the relative 
humidity begins to play an increasingly important role in the strength of grouting material. 
Moreover, the coupling effect of temperature and humidity markedly improve the grouting materials 
strength at early ages and decrease the degradation of long-term strength. 

(3) There are similarities and differences between the compressive stress-strain curve of cement-
based grouting material cured under VTC condition and SC condition. Higher temperature and 
lower relative humidity cause the lower relative peak stress of grouting material, and the RH effect 
is slightly greater than the temperature effect. As for relative peak strain, the influence of the 
environmental effect is to the contrary, and the temperature has a more significant influence than 
relative humidity on the peak strain of grouting material. 

(4) According to the relationship between mechanical properties and high-geothermal 
environmental conditions, the calculation formula of relative stress and strain of grouting material 
under different environmental conditions is established. Moreover, from numerous experimental 
data and the complete stress-strain curves of the grouting material, a new segmental constitutive 
model of compressive strength in high-geothermal environment is obtained, considering both 
temperature and relative humidity. 
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Figure 15. Comparison between the testing and fitting curves of specimens under different conditions.
(a) 20 ◦C-RH95%, (b) 40 ◦C-RH25%, (c) 40◦C-RH55%, (d) 40 ◦C-RH95%, (e) 60 ◦C-RH25%, (f) 60
◦C-RH55%, (g) 60 ◦C-RH95%, (h) 80 ◦C-RH25%, (i) 80 ◦C-RH55%, (j) 80 ◦C-RH95%.

Table 6. Data collection of models and parameter estimate under different conditions.

Curing Condition Parameter A R2 Parameter B R2

SC–20 ◦C–RH95% 0.979 0.996 3.708 0.997
VTC–40 ◦C–RH25% 0.749 0.99843 2.028 0.944
VTC–40 ◦C–RH55% 0.839 0.99584 2.19 0.9972
VTC–40 ◦C–RH95% 0.896 0.99611 2.916 0.989
VTC–60 ◦C–RH25% 0.527 0.99412 1.816 0.997
VTC–60 ◦C–RH55% 0.766 0.98942 1.958 0.999
VTC–60 ◦C–RH95% 0.831 0.999 2.358 0.980
VTC–80 ◦C–RH25% 0.305 0.99756 1.408 0.975
VTC–80 ◦C–RH55% 0.538 0.98387 1.568 0.995
VTC–80 ◦C–RH95% 0.755 0.99848 2.026 0.971

4. Conclusions

In this paper, mechanical strength experiments on cement-based grouting material cured under
VTC conditions were carried out to study the compressive characteristics under high-geothermal
environments. The coupling effect of temperature and relative humidity on the mechanical properties
of grouting material at different ages were further studied. Based on the failure characteristics
and comparison to the stress-strain curves of specimens cured under SC conditions, the changing
rules of typical points (peak stress and strain) of curves under different curing conditions were
investigated, along with the compressive constitutive model of cement-based grouting material under
high-geothermal environments. The conclusions are as follows:

(1) The compressive strength of grouting material significantly decreases with the increase of
temperature. When the temperature of VTC condition is over 40 ◦C, it may cause a decline of 10%–40%
in the mechanical properties of the grouting material, and the strength degradation is more serious
under a hot-dry environment.

(2) High RH level makes a great contribution to the increase in compressive strength of grouting
material, regardless of curing time. When the temperature exceeds 56.3 ◦C and 75 ◦C, the relative
humidity begins to play an increasingly important role in the strength of grouting material. Moreover,
the coupling effect of temperature and humidity markedly improve the grouting materials strength at
early ages and decrease the degradation of long-term strength.

(3) There are similarities and differences between the compressive stress-strain curve of
cement-based grouting material cured under VTC condition and SC condition. Higher temperature
and lower relative humidity cause the lower relative peak stress of grouting material, and the RH
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effect is slightly greater than the temperature effect. As for relative peak strain, the influence of the
environmental effect is to the contrary, and the temperature has a more significant influence than
relative humidity on the peak strain of grouting material.

(4) According to the relationship between mechanical properties and high-geothermal
environmental conditions, the calculation formula of relative stress and strain of grouting material
under different environmental conditions is established. Moreover, from numerous experimental data
and the complete stress-strain curves of the grouting material, a new segmental constitutive model of
compressive strength in high-geothermal environment is obtained, considering both temperature and
relative humidity.
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