
Supplementary Materials: Improvement of photoresponse in organic phototransistors through bulk effect of photoresponsive gate insulators

Hea-Lim Park 1, Min-Hoi Kim 2 and Hyeok Kim 3,*

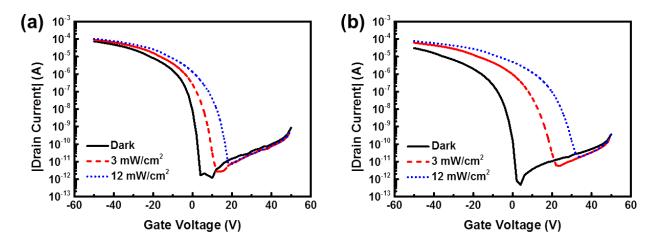

- Department of Materials Science and Engineering, Seoul National University, Kwanak-gu, Seoul 151-600, Republic of Korea; haelim1017@snu.ac.kr
- Department of Creative Convergence Engineering, Hanbat National University, Yuseong-ku, Daejeon 305-719, Republic of Korea; mhkim8@hanbat.ac.kr
- School of Electrical and Computer Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
- * Correspondence: hyeok.kim@uos.ac.kr; Tel.: +82-2-6490-2354

Figure S1. Real thickness data of the produced PVP layers (d = 60 and 260 nm). Actual thickness values indicated as d = 60 nm and 260 nm were about 55 nm and 255 nm, respectively.

Figure S2. Comparison of gate leakage current of the OPTs with two different thicknesses of PVP (*d* = 60 and 260 nm) in the dark.

Figure S3. Transfer curves of the OPTs with two different thicknesses, d, of PVP, in the dark and under different intensity light exposure (3 and 12 mW/cm²); (a) d = 60 nm and (b) d = 260 nm.

The onset voltage shift (ΔV_{on}) of the devices after light exposure was examined. It is noteworthy that the ΔV_{on} values have been widely investigated as a parameter for evaluating the photoresponse of OPTs. As shown in Fig. S3, under light illumination (3 mW/cm²), the ΔV_{on} values of the d = 60 and 260 nm cases were 7 and 20 V, respectively. In addition, under higher light intensity of 12 mW/cm², the thicker device also showed same tendency, that is, higher ΔV_{on} value of 31 V than the thinner device (ΔV_{on} = 14 V). It should be noted that, as light intensity increased, ΔV_{on} values were enhanced.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).