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Abstract: Topological insulators, such as Bi2Te3, have been confirmed to exhibit plasmon radiation
over the entire visible spectral range. Herein, we fabricate bullseye nanoemitters, consisting of a
central disk and concentric gratings, on the Bi2Te3 nanoflake. Due to the existence of edge plasmon
modes, Bi2Te3 bullseye nanostructures are possible to converge light towards the central disk. Taking
advantage of the excellent spatial resolution of cathodoluminescence (CL) characterization, it has
been observed that plasmonic behaviors depend on the excitation location. A stronger plasmonic
intensity and a wider CL spectral linewidth can be obtained at the edge of the central disk. In order
to further improve the focusing ability, a cylindrical Pt nanostructure has been deposited on the
central disk. Additionally, the finite element simulation indicates that the electric-field enhancement
originates from the coupling process between the plasmonic emission from the Bi2Te3 bullseye and
the Pt nanostructure. Finally, we find that enhancement efficiency depends on the thickness of the
Pt nanostructure.
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1. Introduction

Three-dimensional topological insulators (3D TIs) have attracted dramatic interests since they
perform as insulating materials in the bulk but have metallic surface states [1]. Among all the 3D
TIs, Bi2Te3 is well investigated as a thermoelectric material [2,3]. Recently, it is reported that Bi2Te3

nanostructures have the possibility to generate plasmonic resonance [4–6]. Traditional plasmonic
materials are mainly noble metals, such as Ag and Au [7]. Although these materials have been widely
studied due to their strong electric field enhancements, they usually suffer from high resistive loss and
low tunability [8,9]. The application of Bi2Te3 in relative fields is significant to extend the choice of
plasmonic materials beyond noble metals. The negative real part of the permittivity (ε1

’) is prerequisite
for the existence of surface plasmons. Therefore, the surface plasmonic radiation is available across
the visible spectral range for Bi2Te3 because ε1

’ is negative from 240 to 798 nm [5]. Reported by
Toudert et al., results of the plasmonic quality factor indicates that Bi2Te3 is possible to have a stable
plasmonic property across the visible spectral range [10]. Moreover, the research on the figure of merit
(FOM) of 3D TIs suggests that the plasmonic property of Bi2Te3 is better than Au under 570 nm, and
better than Ag under 420 nm [11]. Consequently, Bi2Te3 plasmonic nanostructures are expected to
achieve numerous applications, including plasmonic lenses [12], biosensors [13], and nanoemitters [14].

The enhanced plasmonic emission caused by the localized charge oscillation in Bi2Te3 nanoflakes
can be excited by both laser and electron beam [4–6]. Due to the high excitation energy, multiple surface
plasmon modes of hexagonal Bi2Te3 nanoplates were investigated by electron energy loss spectroscopy
(EELS) [4]. Observed by photoemission electron microscopy (PEEM), edge plasmon modes were found
to be dominant [5]. In order to improve the optical performance of Bi2Te3 nanostructures, it is critical
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to have better utilization of these plasmon modes. Structures with periodic gratings, such as bullseye
structures, are appropriate candidates to generate enhanced electric field on the Bi2Te3 [15].

In this report, we propose a Bi2Te3 bullseye nanoemitter with an emission-enhancement unit
in the center. Due to the confinement of concentric gratings, the Bi2Te3 bullseye nanoemitter is
expected to provide an outstanding optical focusing property [12]. It is also reported that an extra
plasmonic nanostructure located at the center of the bullseye could efficiently improve the field
enhancement [16,17]. Consequently, we directly exfoliate Bi2Te3 flakes from a bulk crystal and modify
the size and geometry by focused ion beam (FIB) milling [18]. Then, a Pt nanostructure is grown by
the electron-beam assisted deposition of the gas phase precursor. Bi2Te3 nanostructures are excited
by a high energy electron beam to activate the plasmonic emission. Taking advantage of the spatial
resolution of the electron beam, we find that the plasmonic behavior of the Bi2Te3 bullseye nanoemitter
depends on the excitation position and the Pt thickness. The milling and characterization procedures
are acquired in the same chamber to avoid the optical loss due to the absorbance of carbon and
oxygen [19]. Additionally, the finite element method has been applied to reveal the electric field
distribution at the peak wavelength.

2. Materials and Methods

2.1. Materials

Bi2Te3 flakes were mechanically exfoliated onto a Si substrate from a Bi2Te3 crystal (2D
Semiconductors, 99.999% purity). The Si substrate was sequentially cleaned by hydrogen fluoride
(HF), acetone, and isopropyl alcohol (IPA) to reduce the surface contamination and oxidation. Images
of the Bi2Te3 crystal before exfoliation and Bi2Te3 flakes after exfoliation are presented in Figure 1.
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Figure 1. Image of Bi2Te3 flakes after exfoliation. The inset is showing the Bi2Te3 crystal
before exfoliation.

2.2. Sample Preparation and Characterization

The Bi2Te3 flake with uniform surface quality was selected and milled by FIB with 30 KeV
Ga+ ions inside a FEI Nova Nano SEM450 system (Hillsboro, OR, USA). The angle between the ion
beam and the electron beam is 52◦. After adding the gas-phase Pt, metallic nanostructures were
deposited by scanning a 15 KeV electron beam on the selected area. The surface morphology was
determined by scanning electron microscope (SEM), and the elementary composition was confirmed
by energy-dispersive X-ray spectroscopy (EDX) in the same chamber.

2.3. Cathodoluminescence

The light emission was characterized by cathodoluminescence (CL) in the same system. Since the
signal was excited by an electron beam, the beam spot size can be as low as 5 nm. During the CL process,
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an Al parabolic mirror was inserted above the sample. As indicated in Figure 2a, the focused electron
beam passed through a hole on the parabolic mirror and interacted with the sample. The emitted light
was collected by the mirror and transmitted by a parallel waveguide to the monochromator. The CL
panchromatic images were taken by a photomultiplier tube (PMT) with a functional wavelength from
300 to 900 nm. The wavelength resolved CL spectra were acquired by a CCD camera with a band-pass
from 250 to 1000 nm.
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Figure 2. Schematics of (a) the cathodoluminescence (CL) setup and (b) basic models for the
numerical simulation.

2.4. Numerical Simulation

Finally, the electric field distribution at typical wavelengths was simulated by the finite element
method using the COMSOL Multiphysics software (version 5.3, COMSOL INC., Burlington, NJ, USA).
As indicated in Figure 2b, 2D axisymmetric models were exploited with the rotational axis on the
left side. The model used a linear polarized light source with a scattering boundary condition and
perfectly matched layers (PMLs). The complex dielectric constants of materials were adapted for the
simulation [4,20]. Typical structural parameters were obtained from the experiment, as listed in Table 1.

Table 1. Typical structural parameters used in the simulation.

Parameter Description Value

T1 Thickness of Bi2Te3 flakes 190 nm
T2 Thickness of the Pt structure 100 nm
R1 Radius of the central disk 400 nm
R2 Radius of the Pt structure 200 nm
W1 Width of grooves 125 nm
W2 Width of rings 250 nm

3. Results and Discussion

The SEM image of a clean and flat Bi2Te3 flake is presented in Figure 3a. Directly measured in the
SEM system, the average thickness of the flake is 190 nm. The EDX mapping of the flake is indicated in
Figure 3b. Though the Bi2Te3 flake has a random shape, the distribution of chemical composition is
uniform on the sample, making it a good candidate for further processes. Clear peaks of Bi and Te
can be observed in the EDX spectrum, as presented in Figure 4a. The quantified EDX result indicates
that the ratio of atomic percentage between Bi and Te is 0.679. As shown in Figure 4b, the blue curve
corresponds to the CL spectrum excited at the center of the Bi2Te3 flake, while the green curve was
excited from a spot on the bare substrate far away from the Bi2Te3 flake. Although peak positions are
observed at 510 nm for both curves, the CL intensity on the Bi2Te3 flake is two times stronger than the
substrate. We attribute this effect to the plasmonic enhancement for the semiconductor substrate [21].
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Incident electrons first strike the Bi2Te3 flake and generate surface plasmon waves, then secondary
electrons will also interact with the Bi2Te3 flake when they escape from the surface. Therefore, the
surface plasmonic field on the Bi2Te3 flake will improve the absorption efficiency of the incident beam.
Meanwhile, the enhanced electric field across the interface increases the emission efficiency.
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Figure 4. (a) EDX spectrum of the same Bi2Te3 flake; (b) CL spectra collected from the Bi2Te3 flake and
the substrate.

Bullseye nanoemitters are fabricated on the same flake. As shown in Figure 5a, the SEM image
indicates that a Bi2Te3 bullseye nanostructure with an 800 nm central disk diameter, a 250 nm ring
width, and a 125 nm groove width has been made. Although all patterns are milled to reach the Si
substrate, no contamination is found inside the gap or on edges, as indicated by the EDX mapping in
Figure 5b. The panchromatic CL image of the same bullseye nanostructure is presented in Figure 5c.
The CL intensity is obviously higher on the bullseye pattern. The integrated intensity at the geometric
center of the Bi2Te3 bullseye nanostructure is about 1.67 times higher than the integrated intensity on
the flake with no pattern. On the central disk, the edge is brighter than the center, indicating that the
edge plasmonic modes are dominant. Since electrons are preferred to accumulate at the boundary,
the edge behaves similar to a combination of point sources [12]. Surface waves propagate along both
positive and negative radial directions [22]. Therefore, the plasmonic resonance increases towards the
center and decays outside the pattern. Normalized CL spectra from four locations on the central disk
are shown in Figure 5d. These spectra were normalized based on the CL signal excited from the center
of the Bi2Te3 flake. The color of curves corresponds to the color of excitation positions showing as dots
in Figure 5a. From the center to the edge, fitted values of the full width at half maximum (FWHM) are
352.69, 236.83, 144.18, and 120.95, respectively. Due to the intense confinement of oscillating charges,
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stronger plasmonic modes arise at the edge. Therefore, CL emission peaks become wider towards
the edge.
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Figure 5. (a) SEM image of a bullseye nanostructure on the Bi2Te3 flake; (b,c) are the EDX mapping
and the CL panchromatic image of the same bullseye nanostructure; (d) normalized CL spectra excited
at four positions on the central disk.

In order to further improve the focusing ability of the Bi2Te3 bullseye nanoemitter, a cylindrical
Pt nanostructure is deposited on the central disk. The SEM image and the EDX mapping have been
depicted in Figure 6a,b. The Pt nanostructure has a 400 nm diameter and a 100 nm height. Moreover,
the panchromatic CL image after the Pt deposition is presented in Figure 6c. Compared with Figure 5c,
the CL emission from the center of the Bi2Te3 bullseye nanoemitter has been dramatically improved.
During the experiment, the incident electron beam first excites the Pt nanostructure. Then, excess
electrons continue interacting with the Bi2Te3 bullseye nanostructure. The emitted light has been better
converged due to the plasmonic enhancement of the Pt nanostructure. To explain the mechanism of
the field enhancement, cross-section images of the simulated electric field distributions at the peak
wavelength (510 nm) are presented in Figure 6d. The simulated mappings are combined with their
mirror images to form the whole bullseye nanostructure. For the Bi2Te3 nanoemitter without the Pt
nanostructure, enhanced electric fields are distributed above the surface of the model. Due to the
focusing effect of the bullseye structure, a hotspot can be observed above the central disk. When the
Pt nanostructure is involved, intense electric fields can be obtained above the Bi2Te3 grating as well,
however, the localized electric field at the geometric center has been dramatically improved. The
enhanced electric field on the Pt can be attributed to the coupling effect of the plasmonic emission from
the Bi2Te3 bullseye nanostructure and the localized electric field on the Pt nanodisk [16].
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increases with the thickness from 100 to 200 nm. On the other hand, due to the shrink of the electron
interaction volume inside the sample, the coupling effect attenuates at a higher Pt thickness (>300 nm).

Materials 2020, 13, x FOR PEER REVIEW 6 of 8 

 

illustrates the experimental enhancement efficiency as a function of the thickness of the Pt 
nanostructure. For the same Pt diameter (400 nm), the highest enhancement efficiency is expected to 
be found on a nanoemitter with the Pt thickness between 200 and 300 nm. The plasmonic emission of 
the Pt nanostructure increases with the thickness from 100 to 200 nm. On the other hand, due to the 
shrink of the electron interaction volume inside the sample, the coupling effect attenuates at a higher 
Pt thickness (>300 nm). 

 

Figure 6. (a) SEM image of the Bi2Te3 nanoemitter with a Pt nanostructure; (b,c) are the EDX mapping 
and the CL panchromatic image of the same nanoemitter; (d) simulated cross-section electric field 
distributions of the Bi2Te3 nanoemitter with and without the Pt nanostructure at 510 nm. 

 
Figure 7. Enhancement efficiencies for nanoemitters with different Pt thickness. Figure 7. Enhancement efficiencies for nanoemitters with different Pt thickness.



Materials 2020, 13, 1531 7 of 8

4. Conclusions

In this paper, we investigate the plasmonic behavior of Bi2Te3 bullseye nanoemitters, which are
fabricated by FIB milling onto exfoliated Bi2Te3 nanoflakes. Due to the existence of edge plasmon modes,
Bi2Te3 nanoemitters obtain an excellent focusing property. Excited by the localized electron beam, the
CL spectra evolve with the excitation position on the central disk of the bullseye nanostructure. The
strongest plasmonic emission can be observed on the edge of the central disk. We propose that the CL
intensity at the geometric center can be further improved by adding an extra Pt nanostructure. The
numerical simulation indicates that the electric-field enhancement is caused by the coupling effect of
the plasmonic emission from the Bi2Te3 bullseye and the Pt nanodisk. The actual size and geometry of
the nanoemitter will be optimized in the future.
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