

Supplementary Materials Hybrid TiO₂–Polyaniline Photocatalysts and their Application in Building Gypsum Plasters

Agnieszka Sulowska ^{1,*}, Izabela Wysocka ¹, Daniel Pelczarski ², Jakub Karczewski ³ and Anna Zielińska-Jurek ^{1,*}

- ¹ Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-232 Gdansk, Poland; izabela.wysocka@pg.edu.pl
- ² Department of Physics of Electronic Phenomena, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-232 Gdansk, Poland; daniel.pelczarski@pg.edu.pl
- ³ Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-232 Gdansk, Poland; jakub.karczewski@pg.edu.pl
- * Correspondence: sulowska.as@gmail.com (A.S.); annjurek@pg.edu.pl (A.Z.-J.)

Figure S1. The Tauc plots for TiO₂, PANI and PANI-TiO₂.

Figure 2. a-d: TEM microscopic images of PANI/TiO₂ composite.

Figure S3. Photocatalytic activity of TiO₂, PANI and PANI-TiO₂ in reaction of phenol degradation under UV-Vis light irradiation.

Figure S4. Photocatalytic activity of TiO₂, PANI and PANI-TiO₂ in reaction of phenol degradation under Vis > 400 nm light irradiation.

Figure S5. Photocatalytic activity of TiO₂, PANI and PANI-TiO₂ in reaction of phenol degradation under Vis > 420 nm light irradiation.

Figure S6. Toluene degradation in time. The effect of irradiation source with maximum wavelength emission at 380 nm, 415 nm and 460 nm for **a**) TiO₂ and **b**) PANI-TiO₂ hybrid nanocomposite.

Figure 7. a-d: SEM images of gypsum surface modified with PANI-TiO2.

Figure S8. Toluene degradation in time for gypsum, gypsum + 10% TiO_2 , and gypsum + 10% PANI-TiO₂ using **a**) LEDs with a maximum wavelength emission at 380 nm, **b**) LEDs irradiation source with a maximum wavelength emission at 460 nm.