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Abstract: In this study, experiments were performed on the applicability of mortars and concretes
based on calcium sulfoaluminate (CSA) binders to facilitate the early strength development of
ordinary Portland cement (OPC) under low-temperature conditions. An optimum mixture of CSA
was evaluated to improve the early strength of OPC, and the effects of accelerators and retarders
on this mixture were examined to demonstrate the applicability of the resulting concrete mixture.
Furthermore, mixture applicability was validated by producing concrete at the Remicon Batcher
plant and performing numerical simulations. As observed, the optimum CSA substitution rate
for the realization of early strength was 17% of the total unit binder amount with CaO/SO3 and
SO3/Al2O3 ratios of 1.9 and 1.25, respectively. Evidently, CSA in combination with Na2SO4 as an
accelerator promoted the early strength of concrete with OPC and secured its constructability using
additional retarders to control the quick setting of concrete. Additionally, the activation of initial
hydration at low temperatures yielded a compressive strength of 5 MPa/12 h or higher for the resulting
concrete mixture.

Keywords: low-temperature condition; ordinary Portland cement; CSA; accelerator; retarder;
early strength

1. Introduction

In view of its reaction with water to produce hydrates, cement undergoes strengthening through
condensation followed by curing [1–5]. This initial hydration reaction produces ettringite and the Ca2+

ions present in the liquid phase are continuously eluted to increase the production of Ca(OH)2 [6].
Consequently, an acceleration period occurs, in which hydration is reactivated from the C–S–H
membrane surrounding the alite (C3S) and belite (C2S) particles, which undergo expansion and
destruction. Subsequently, nuclei are produced in the C–S–H phase to accelerate the growth and rapid
consumption of Ca(OH)2, which actively produces hydrated products. During the deceleration period,
the ettringite membrane surrounding the aluminate particles is destroyed to rehydrate C3A, and the
compressive strength is expressed through the transition to monosulfates, from insufficient quantities
of gypsum [2,6].

Ordinary Portland cement (OPC) is advantageous in that it exhibits favorable physical
properties and strength due to its stable chemical reactions, thereby leading to a wide applicability.
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However, its dependence on high temperatures lowers its reactivity in the low temperature region [7],
which limits its early strength development when applied to mortars or concretes.

In contrast, calcium sulfoaluminate cements (hauyne minerals, CSA) have a significantly faster
hydration rate than OPC [8–11]; they have received ongoing research attention since their early strength
can be achieved upon substitution in OPC at an optimal ratio—due to the high temperatures involved in
the initial hydration reaction [12–20]. Additionally, it is possible to secure the formation of a passivation
film of the reinforcing steel, in addition to a stable volume due to the excellent initial strength in
the early stage, thereby allowing a 28-day design standard early strength to be developed [21,22].
Thus, CSA cements have gained popularity for the early strength development of OPC.

Klein and Metha reported that various hydrates can be produced depending on the molar ratios
of Al2O3/SO3 and CaO/SO3 in the CaO-Al2O3-SO3 system [23], where a high Al2O3 component
exhibits quick-setting and early strength, a high CaO component exhibits expandability, and a high
SO3 component exhibits high strength characteristics [24]. The key factors for the hydration of CSA
cements vary according to the ingredients and composition of the hauyne clinkers, the reactivity of the
externally incorporated gypsum, the type of mixture, and the mixing and curing conditions. These CSA
compounds are applied to mortars or concretes and contribute to the expandability of the hardened
body using the growth pressure when ettringite crystals grow after the formation of hardened tissues.
However, if the expanded pressure exceeds the elastic modulus of the hardened body, it often results
in the destruction of the hardened body [23,25]. Therefore, to impart functionality to mortars or
concretes, it is desirable to design materials with the characteristics of hydrates such as ettringite,
along with developing a comprehensive understanding and sufficient review of the aggregates and
the interface, the mixing with mortar, and the concrete to be employed. Although various studies
have been conducted on the early strength development of mortars and concretes based on OPC,
the majority were conducted on mortar, and there were several limitations due to the initial high
hydration heat and quick-setting properties of the CSA cements compared to OPC [26–29].

In this study, experiments are conducted on mortar and concrete to develop early strength concrete
binders using OPC and CSA binders at low temperatures. In addition, this study aims to validate the
applicability of CSA in concrete by reviewing various factors, such as the optimum binder, accelerator,
and retarder through mortar experiments for early strength development.

2. Experimental Work

2.1. Materials

Tables 1 and 2 present the physical characteristics of the materials used in this study. As a
cement, OPC (3150 kg/m3, fineness: 330 m2/kg) was used. As binders, fly ash (density: 2140 kg/m3,
fineness: 396 m2/kg), ground granulated blast-furnace Slag (density: 2860 kg/m3, fineness: 430 m2/kg),
and calcium sulfoaluminate (density: 2890 kg/m3, fineness: 466 m2/kg) were used.

Table 1. Chemical compositions of the binders employed.

Materials
Chemical Compositions (%)

CaO SiO2 Al2O3 Fe2O3 MgO K2O Na2O TiO2 SO3 LOI

OPC (1) 60.2 21.6 5.15 3.30 2.30 0.99 0.53 - 1.50 2.41

GGBS (2) 44.9 35.4 13.0 0.47 5.01 0.37 - - 1.31 0.69

FA (3) 4.00 57.9 20.5 6.80 1.38 1.18 0.89 0.13 - 4.60

CSA (4) 45.51 4.91 22.36 1.74 1.57 0.17 0.43 - 22.63 1.90

(1) OPC: ordinary Portland cement; (2) GGBS: ground granulated blast-furnace slag; (3) FA: fly ash; (4) CSA:
calcium sulphoaluminate.
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Table 2. Physical properties of the materials employed.

Material Property

OPC ASTM Type I Ordinary Portland cement
Density: 3150 kg/m3, fineness: 330 m2/kg

FA Fly Ash
Density: 2140 kg/m3, fineness: 396 m2/kg

GGBS Ground granulated blast-furnace Slag
Density: 2860 kg/m3, fineness: 430 m2/kg

CSA Calcium sulphoaluminate
Density: 2890 kg/m3, fineness: 466 m2/kg

Fine aggregate

S1 ISO Standard sand, Size: 2 mm
Fineness modulus: 2.99, density: 2620 kg/m3, SiO2: 99%

S2 Sea sand, Size: 5 mm
Fineness modulus: 2.01, density: 2600 kg/m3, absorption: 0.79%

S3 Crushed sand, Size: 5 mm
Fineness modulus: 3.29, density: 2570 kg/m3, absorption: 0.87%

Coarse aggregate Crushed granitic aggregate, Size: 25 mm
Fineness modulus: 6.94, density: 2600 kg/m3, absorption: 0.76%

Chemical admixture Polycarboxylic acid group, density: 1260 kg/m3

Accelerator material

NS Na2SO4, density: 3350 kg/m3, solubility: 13.9 g/100 mL (20 ◦C)

AS Al2(SO4)3, density: 2672 kg/m3, solubility: 36.4 g/100 mL (20 ◦C)

CH Ca(OH)2, density: 2211 kg/m3, solubility: 17.3 g/100 mL (20 ◦C)

CN Ca(NO3)2, density: 2504 kg/m3, solubility: 51.4 g/100 mL (20 ◦C)

NC NaHCO3, density: 2200 kg/m3, solubility: 9.6 g/100 mL (20 ◦C)

Retarder CA: Citric acid, SG: Sodium gluconate, BA: Boric acid, TA: Tartaric acid

Figure 1 shows the results of the sieving test of the aggregates (ASTM C136) [30] employed herein,
which was carried out to analyze the grading of the fine and course aggregates. For the fine aggregates, ISO
standard sand (size: 2 mm, fineness modulus: 2.99, density: 2620 kg/m3, SiO2: 99%, 0.08 mm, and passage
amount: 0.04%) [31] was used in the mortar experiment and sea sand (size: 5 mm, fineness modulus:
2.01, density: 2600 kg/m3, and absorption: 0.79%) and crushed sand (fineness modulus: 3.29, density:
2570 kg/m3, and absorption: 0.87%) were used to evaluate their applicability in concrete. Fine aggregates
were prepared by mixing sea sand and crushed sand in a ratio of 4:6, with a fineness modulus of 2.84.
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Figure 1. Gradation sieve analysis curves for the aggregates employed herein: (a) ISO Standard sand;
(b) fine aggregates; and (c) coarse aggregates.

For the coarse aggregates, crushed granitic aggregates (size: 25 mm, fineness modulus: 6.94,
density: 2600 kg/m3, and absorption: 0.76%) were used.

The polycarboxylic acid group (density: 1260 kg/m3) was used as the chemical admixture.
As accelerator materials, NS: Na2SO4, AS: Al2(SO4)3, CH: Ca(OH)2, CN: Ca(NO3)2, and NC: NaHCO3

were used, and as retarders, CA: citric acid, SG: sodium gluconate, BA: boric acid, and TA: tartaric acid
were used.

2.2. Experimental Outline and Mixture Proportions

Table 3 shows the experimental outline for this study. To examine the optimal method for the
early strength development of concrete using ordinary cement, the reactivity of the CSA binder and
the amount of additional materials were controlled based on the stoichiometric reaction equations
according to CaO/SO3 and Al2O3/SO3, and the resulting mortar performance was reviewed [23].
Moreover, the optimal amount of CSA binder that can be substituted for OPC was deduced through
mortar performance evaluations based on the amount of CSA binder used.

The possibility of increasing the early strength of mortar by combining a CSA binder and an
accelerator was then examined; 0.5% of the total binder was employed as the accelerator. When using
CSA binders, quick setting can occur, and so a retarder that is compatible with the CSA binder was
reviewed. Five types of retarders were added at a level of 0.2% c.f., the binder. A combination of the
accelerator and the retarder was used for preparation of the concrete samples, and the early strength
performance and capability to prevent quick setting was reviewed in each case. The retarder quantity
was adjusted to 0.2% and the three types of accelerators were used in quantities of 1%, 2%, and 3%.

Finally, a concrete mixing design was formulated based on the amount of CSA, accelerator,
and retarder derived from the above experiments. The applicability of early strength concrete binders
examined herein was evaluated via mock-up experiments of production at the Remicon Batcher plant.

Tables 4 and 5 show the mixing proportions of the mortar and concrete used in this study. The flow
of mortar was <200 mm according to ASTM C1437 [32]. For the concrete, the slump was 210 ± 25 mm
and the air content was 4.5 ± 1.5%.



Materials 2020, 13, 1505 5 of 16

Table 3. Experimental outline.

Series Type Factor CSA Rate of
OPC (%)

Curing
Temperature

(◦C)

Chemical
Admixture Evaluation Item

I Mortar

Replacement
ratio of CSA

0, 13, 14, 15,
16, 17, 18 20 -

Setting time (h)
Compressive

strength
-12 h, 24 h

Accelerator 17 20
NS, AS, CH, CN,

NC
(B × 0.5%)

Setting time (h)
Compressive

strength
-12 h, 24 h, 72 hRetarder 17 20 CA, SG, BA, TA

(B × 0.2%)

Accelerator +
Retarder 17 20

NS
(B × 1%, 2%, 3%)

CA (B × 0.2%)

II Concrete

Application
(Batch plant +

Mock up
member)

17

Outdoor Air
Chamber (13)

Room
temp(20)

AD+ NS + CA
(B × 3.2)

Slump
Compressive
strength-12 h,

24 h, 72 h
7 D, 28 D-Mock

up member:
12 h, 24 h, 72 h

Table 4. Mixing proportions of basic mortar.

Series W/C (%) C:S (1) Cement (g) Water (g) AD (2) (B ×%)

I (Mortar) 50 1:3 450 225 0.7

(1) C:S = Cement: Sand, S: ISO Standard sand (S1); (2) AD: Admixture.

Table 5. Mixing proportions of concrete.

Series
W/B
(%)

S/a
(%)

Unit Weight (kg/m3) AD (3)

(B ×%)
AC

(B ×%)W C (1) CSA GGBS FA S (2) G

II
(Concrete)

Plain 53.0 49.0 175 215 - 66 50 880 916 0.7 -

CA17 53.0 49.0 175 274 56 - - 899 901 - 3.1

(1) C: ordinary Portland cement, CSA: calcium sulphoaluminate, GGBS: ground granulated blast-furnace Slag, FA:
fly ash; (2) S: Sea sand (S2) + Crushed sand (S3); (3) AD: Admixture, AC: Admixture + Accelerator + Retarder.

2.3. Test Methods

Table 6 shows the test methods and their corresponding evaluation items for the mortar and
concrete samples. The various test procedures are outlined as follows.

Table 6. Test methods and their corresponding evaluation items.

Series Evaluation Item Test Method Size (mm)

I. Mortar test
Setting time (h) ASTM C403/C403M [33] -

Compressive strength (MPa) ASTM C109/C109M [34] 40 × 40 × 160

II. Concrete test

Slump (mm) ASTM C143 [35] -

Air content (%) ASTM C231 [36] -

Compressive strength (MPa)
ASTM C873 [37]

Ø100 × 200
ASTM C39 [38]
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2.3.1. Mortar Test

The mortar flow test was conducted based on ASTM C1437 [32], and the mortar setting test was
conducted based on ASTM C403/C403M [33]. The compressive strength of the mortar was calculated
by measuring the maximum load using 30 ton UTM within the planned time according to ASTM
C109/C109M [34]. The compressive strength of the concrete was calculated as an average value obtained
from three test specimens.

2.3.2. Application for Concrete

Based on the ratio of the optimum binder to the admixture derived from the mortar test,
the applicability to concrete was evaluated. Concrete was produced at the Remicon Batcher plant,
and the hydration heat and strength development were simulated by fabricating mock-up walls.
Figures 2 and 3 show the mock-up and thermocouple installation details, respectively. The mock-up
simulation was set to 200 mm × 600 mm × 1000 mm and the K-type thermocouple was embedded in
the center of the mock-up.
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To evaluate the properties of the fresh concrete, a slump test was conducted based on ASTM
C143/C143M [35] and the air content test was conducted based on ASTM C231/C231M-17a [36].
To evaluate the workability at the site, the properties of the fresh concrete were examined after
preserving in a mixer truck for 0, 60, and 90 min. To measure the compressive strength of the concrete
subjected to hydration, a double mold, as suggested by ASTM C873 [37], was installed.

The compressive strength of the concrete was calculated by first preparing a Ø100 mm × 200 mm
specimen according to ASTM C39/C39M [38] and measuring the maximum load using a 300-ton UTM
within certain time periods. The compressive strength of the concrete was calculated as the average
value obtained from three test specimens.



Materials 2020, 13, 1505 7 of 16

3. Results and Discussion

3.1. Properties of the Mortar

3.1.1. Effect of CSA Replacement

Figures 4 and 5 show the setting time and compressive strength results, respectively, for the
mortar sample with CSA replacement, whereby it is apparent that both increased with an increasing
CSA replacement ratio. Above 17% CSA replacement, slight change was observed in the compressive
strength, and so this was considered the optimal value. In addition, the compressive strength of mortar
reached a maximum at 8.3 MPa, after 12 h, when 17% of CSA was employed in the mixture, and when
the setting time was >75 min.
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Figure 6 depicts trends in the calculated CaO/SO3 and Al2O3/SO3 ratios in accordance with
changes in the replacement ratio of CSA, while Figure 7 shows the optimal chemical composition of
early strength concrete. Although previous studies confirmed that the chemical properties of CSA
contributed to the hydration of cement due to the high content of SO3, this effect was only applicable
within an appropriate range [39–41].

As indicated as a scope of this study, the optimal replacement ratio for the CSA early strength
binder equals 17% with CaO/SO3 and Al2O3/SO3 ratios of 1.9 and 1.23, respectively.

In addition, it was found that when a combination of the early strength binder, accelerator,
and retarder was applied to concrete, a compressive strength of 5 MPa/12 h was realized at low



Materials 2020, 13, 1505 8 of 16

temperatures. However, this also required careful control of the concrete mixing. Moreover, it should
be noted that the performances of the early strength binders must be examined under a range of
conditions to ensure reliability.
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3.1.2. Effect of the Accelerator

Figures 8 and 9 show the setting time and compressive strength results for the mortar with added
accelerators. In the absence of an accelerator, the setting time of mortar was 90 min, and this rapidly
decreased to 20–40 min in the presence of an accelerator. These results indicate that the use of an
accelerator promotes the hydration of the reactive hauyne minerals, and since the compressive strength
was also affected, it was considered that the initial production of ettringite also increased [19,20].

In particular, Na2SO4 and Al2(SO4)3 sulfate accelerators were the most effective in improving the
initial compressive strength due to their faster ionization rates compared to that of cement, and also
because the initially eluted SO4

2− ions are advantageous for the nucleation of ettringite hydrate.
However, although the early strength of mortar can be improved by accelerators, the use of a single
accelerator should be avoided since this significantly shortens the setting time.
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3.1.3. Effect of the Retarder and Accelerator

The variation in mortar setting time in the presence of different retarders is outlined in Figure 10.
As indicated, CA exhibited the greatest retardation effect, followed by BA, SC, and TA. Indeed, CA
and SG are widely used as retarders for mortar and concrete owing to their excellent economic values
and retardation performances. Both CA and SG consist of six carbon atoms although CA contains
one –OH group and three –COOH groups, whereas SG contains five –OH groups and one –COOH
group. These differences therefore account for their varied performances in the retardation of cement
hydration. It should be noted that use of an equivalent amount of CA (i.e., with a linear molecular
structure) exhibited the optimal retardation effect.

In addition, in the case of the mortar setting time, with the exception of the case of CA, setting
took place within 2 h, and so the addition of CA is necessary to secure sufficient constructability.
However, Figure 11 shows that the compressive strength of the concrete using the retarder was lowered.
It may therefore be possible to accelerate early strength development through the combined use of
different accelerators.

The variation in mortar setting time and compressive strength in the presence of both an accelerator
(A) and a retarder (R) are depicted in Figures 12 and 13. As indicated, the setting time of Plain R0A0 was
60 min, while that of R0.2A0 containing 0.2% retarder was 135 min, thereby indicating a delay in
hydration. Consequently, the early compressive strength of the mortar sample decreased significantly
to 57% of that of the Plain sample [42].
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Compared to the Plain sample (CSA17), in the NS03_R0.2 series, where Na2SO4 was used as the
accelerator, the mortar setting time decreased slightly, but the strength increased steadily within the
range of 12–24 h, giving values of 191.1–218.9%.

Figure 14 summarizes the setting time and compressive strength results for the mortar samples.
More specifically, when 17% CSA was added to the cement, it was evident that the compressive
strength of mortar was improved, while the setting time decreased. In addition, the early strength of
mortar CSA-containing was increased, but the rate of strength development decreased at 24 h, which
indicates that an accelerator is required to secure sufficient mortar strength. Furthermore, when mortar
is mixed with Na2SO4 as an accelerator, early strength development was successful, but the setting
time decreased. From this, it was considered that the use of an additional retarder is necessary to
secure a stable working time.
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Furthermore, the use of retarders in CSA-based mortars has been reported to be an effective
approach to improve the workability of a cement blend system that cures rather quickly without an
ultimate strength reduction [20,43].

3.2. Concrete Properties

Figure 15 shows the variation in slump change of the concrete sample with time, where times of
60 and 90 min were examined considering the time between production and arrival onsite. For the
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purpose of this test, the concrete was rotated at a low speed in the mixer truck, and the slump change
was measured at each time point. It was found that OPC and CSA17_NS03_R0.2 led to slightly
decreased slumps, but the obtained values remained within the slump range set in the present study,
thereby indicating no issues in terms of field workability. From this result, the use of a CSA binder can
be used to control the setting properties.Materials 2020, 13, 1505 13 of 17 
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Figure 15. Slump changes in the concrete sample with time.

Figure 16 shows the variation in the compressive strength of concrete based on the curing
temperature. More specifically, in the case of OPC, measurement of the compressive strength of concrete
at 12 h was not possible due to the setting and hardening delay under the external curing conditions.
After 3 days, an early strength of≥5 MPa had developed, and upon increasing the temperature, the time
taken to develop this degree of early strength tended to decrease. However, the target strength was
developed after only 24 h, even at 20 ◦C.
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Figure 16. Variation in the compressive strength of concrete with a curing temperature.

In the case of the CSA17_NS03_R0.2 sample, a compressive strength of 5 MPa had developed
after 24 h at a low temperature <10 ◦C, and after 12 h above 13 ◦C. It should be noted here that
early-strength-type materials develop an excellent concrete early strength due to the rapid initial
reaction but tend to exhibit a delay in long-term strength development. Moreover, the combination of
early strength-type materials used in this study was found to result in an excellent strength development
for the concrete samples even after 28 days.
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The temperature history and maturity [44] of the curing method are depicted in Figures 17
and 18, respectively. In these experiments, the concrete mixture was cured by maintaining constant
temperatures of 13 and 20 ◦C using constant temperature chambers, and the experimental setup was
exposed to outdoor air. During the mock-up experiment, the external temperature was gradually
decreased from its initial value of 7.9 ◦C, and the average temperature values at 12 and 24 h were
4.3 and 9.4 ◦C, respectively.Materials 2020, 13, 1505 14 of 17 
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Figure 18. Temperature history and maturity of the concrete samples in the mock-up experiment.

Overall, the mock-up experiment revealed that the use of CSA17_NS03_R0.2 was advantageous
from the viewpoint of early strength development owing to its higher hydration heat and
maturity compared to OPC. Figure 19 shows the scanning electron micrographs of OPC and
CSA17_NS03_R0.2 captured at 12 h after curing at 13 ◦C. As can be seen from these images, in the case
of CSA17_NS03_R0.2, the hydration product ettringite was produced and activated. However, this
was not observed for the Plain OPC sample.
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4. Conclusions

In this study, the early strength development of concrete based on ordinary Portland cement
(OPC) and calcium sulfoaluminate (CSA) cement blends at low temperature curing was examined.
The setting time and initial compressive strength of mortar were evaluated by adjusting the amount
of CSA-containing OPC, and the optimal performance was observed when using 17% of CSA with
respect to the total binder, in addition to CaO/SO3 and SO3/Al2O3 ratios of 1.9 and 1.25, respectively.
Furthermore, the effect of the accelerator in the development of the mortar early compressive strength
decreased in the order of NS > AS > CH > NC > CN ≥ Plain. The setting time of the Plain mortar
without the addition of an accelerator was 90 min, whereas this time rapidly decreased to 20–40 min
in the presence of an accelerator, suggesting that the using of an accelerator alone is not desirable.
Moreover, setting experiments using CSA binders demonstrated that the most effective retardation
effect was in the order of citric acid > boric acid > sodium gluconate > tartaric acid. Setting was retarded
at a maximum of 141 min using citric acid, as compared to the Plain sample (CSA17). A combination
of accelerator and retarder was effective in achieving early strength for the mortar sample containing
Na2SO4 as an accelerator. However, the setting time was shortened, and so an additional retarder
should be used to secure sufficient working time. In addition, upon combination of the concrete
with an early strength binder (i.e., CSA, accelerator, and retarder), little slump change was observed
over 90 min, and a compressive strength >5 MPa/12 h was confirmed following the initial hydration
under low temperature conditions. Finally, although the early strength development of concrete was
observed in this study at low temperatures, the fine concrete combination adjustment and performance
of early-strength binders under different operating conditions must be examined to facilitate the
attainment of a qualitatively stable concrete mixture.
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