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Abstract: Currently, polyurethane foam producers come across the several problems when
petroleum-based polyols are replaced with low functionality biomass, or waste-based, polyols.
In addition, the dilemma is intensified with regulations that require full or partial replacement of
blowing agents that can cause high ozone depletion with alternatives like water, which causes the
formation of CO2. Therefore, these gases diffuse out of the foam so quickly that the polymeric cell
walls cannot withstand the pressure, consequently causing huge dimensional changes at ambient
temperature and humidity. Even though the theoretical stoichiometric balance is correct, the reality
shows that it is not enough. Therefore, polyethylene terephthalate waste-based polyol was chosen as
a low functionality polyol which was modified with high functionality sucrose-based polyol in order
to obtain dimensionally stable polyurethane foams in the density range of 30–40 kg/m3. These more
stable foams are characterized by linear changes no higher than 0.5%, short-term water absorption by
partial immersion no higher than 0.35 kg/m2, and water vapor resistance factors up to 50. In order
to obtain thermally efficient polyurethane foams, conventional blowing agents and water systems
were implemented, thus, assuring thermal conductivity values in the range of 0.0198–0.0204 W/(m·K)
and obtaining products which conform to all the requirements for performance of sprayed and
factory-made polyurethane foam standards EN 14315-1 and EN 13165.

Keywords: polyurethane foam; waste-based polyol; dimensional stability; performance properties;
circular economy

1. Introduction

The desire to either maintain current or improve future living conditions has forced the public
to pay attention to ecological issues in all areas of life, especially in construction. Currently, the
main objective of the construction industry is to contribute to the development of eco-friendly
materials through the use of environmentally friendly technical and design solutions that ensure
energy conservation through the use of local renewable materials or wastes with low cost, appealing
aesthetics, and minimal environmental impact.

The quality of the interior environment of a building is a major health factor, given that people
spend most of their time indoors. In this respect, green building materials make an important
contribution to a healthy environment. Manufacturers of building materials must contribute, not
only to raw materials, resource management, and waste minimization, but also to the production of
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materials with adequate physical-mechanical properties [1]. The intensified bio-economy forces the
polyurethane industry to develop either partially or completely ecological polyurethane foam (PUR)
from renewable sources, such as liquefied soybean stalks [2], corn stalks [3,4], wheat stalks [5–7], paper
waste [8], bark and starch [9,10], avocado seeds [11], and lignin [12,13]. However, synthetic materials,
specifically plastics, are the most widely used in the construction industry because of their durability
and low weight.

The rapidly growing amount of plastic waste causes a major negative impact on living organisms.
Since 2015, 6.3 billion metric tons of plastic waste have been accumulated, but only 9% of it has been
recycled, while 79% was landfilled and 12% was incinerated [14], thus, causing extreme environmental
pollution. Polyethylene teraphthalate (PET) is the most commonly used plastic, which finds its
application in repositories for liquids and foods due to its low price, transparency, and sufficient
mechanical performance. The approximate amount of PET products consumed exceeds 24 million
per year, and the amount proceeds to grow [15], contributing a significant volume of plastic waste.
Consequently, new technologies to utilize PET wastes are in high demand to maximize recycling and
avoid landfilling or incineration. The problem of PET waste could be solved by physical or chemical
utilization [16,17]. One of the major advantages of chemical utilization is the production of aromatic
polyester polyols (APPs), which are used to form polyurethane foams. The use of renewable resources
in the synthesis of chemicals reduces the negative impact on the environment, arising from the use
of scarce resources and the release of greenhouse gases. These resources open up the possibility
of either partially or completely replacing polymers from petroleum products, which may compete
with, or even surpass, conventional materials in terms of price, quality, and environmental impact.
Due to its relatively low cost, diethylene glycol (DEG) is commonly used for the synthesis of APPs
from PET waste. However, the DEG/PET waste system product has some drawbacks. First, the final
product is a viscous liquid, which solidifies at room temperature. Secondly, the transesterification
product is not compatible with industrial blowing agents, so adipic acid and glycerol are also used
for APP production [18]. Whereas all the studies made on PET waste-based polyols are dedicated to
the synthesis of adhesives and coatings [19–21], there are few studies which analyze polyurethane
foams for thermal insulation purpose but there is no data on problems which are met by the producers
of closed cell rigid polyurethane foams—the obtained PET waste-based APPs, when used in the
water-blown polyurethane synthesis, cause dimensional instabilities, which are not favored in testing
laboratories and, most importantly, in construction sites. Additionally, authors [22–24] analyze
mechanical properties and thermal degradation of the obtained PET waste-based polyurethane foams,
however, apart compressive stress/strength and thermal stability it is of great importance to assure
initial dimensional stability and prevent low functionality polyols-based foams from shrinking or
post-blowing. Therefore, it is necessary to evaluate if the polyurethane foams conform the requirements
of European Normative in order to be implemented and supplied into the market.

Therefore, the purpose of this study is to modify unstable factory-made and sprayed rigid PET
waste-based polyurethane foams and to yield foams with improved dimensional stabilities with no
more than a 5% change in length and width and 10% change in thickness and densities of 30 to 40 kg/m3.
More importantly, the basic performance properties for thermal insulating foams, such as thermal
conductivity, water absorption, water vapor permeability, thermal stability and flammability, are tested,
and the microstructure is analyzed.

2. Experimental

2.1. Case Study

The use of APPs in polyurethane foam systems is limited only by low functionality (≤2), which is
determined by the glycol used in the production of APPs. Polyurethane foam made from such polyols
exhibits dimensional changes exceeding standard values. (Reported standards are ≤5% variation
in length and width and ≤10% in thickness [25] or ≤15% variation in length and width and ≤10%
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thickness [26]). Therefore, multifunctional, low molecular weight polyols can be used to modify
these properties.

Currently, several manufacturers come across the above-mentioned problems when
petroleum-based polyols are replaced with low functionality biomass or waste-based polyols. In
addition, the dilemma is intensified with regulation to either fully or partially replace blowing agents
that cause high ozone depletion with alternatives, e.g., water, which is basically the cause of CO2

formation. Therefore, these gases diffuse out of the foam so quickly that the polymeric cell walls cannot
withstand the pressure, consequently, causing huge dimensional changes at ambient temperature and
humidity conditions, as shown in Figure 1.
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In this study, focus is placed on the formulations, which, according to the molar ratios of
components A and B, are correctly calculated without taking the PET-based polyol’s functionality into
account (Table 1).

Table 1. Theoretically correct polyurethane foam compositions for two types of densities.

Material
Required Density, kg/m3

30 40

NEOPOLYOL 240 102.5 104
Glycerol 5.5 10.5

PETOL PZ 400-4G 36.5 34.5
Water 6.6 2.2

Solkane 365 mfc 22 25
Struksilon 8007 2 2

Polycat 9 4.2 4.2
Roflam P 44 37.5

The above presented formulations need to be improved in order to get a product with a
density between 30 and 40 kg/m3 (based on a customer’s order), dimensional stability at both
ambient and increased temperatures, and humidity conditions which conform to the requirements
for factory-made [25] and sprayed [26] polyurethane foams. In order to achieve this aim, additional
measures should be considered.

2.2. Raw Materials

For the study of dimensionally stable, rigid polyurethane foam, the polyester polyol NEOPOLYOL
240 (JSC Neo Group, Klaipėda, Lithuania), made from recycled PET waste, and the polyol PETOL PZ
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400-4G (Oltchim, Râmnicu Vâlcea, Romania), were used. The most important chemical characteristics
are given in Table 2.

Table 2. Basic chemical characteristics of polyols used in the production of rigid polyurethane foams.

Parameter
Value

NEOPOLYOL 240 PETOL PZ 400-4G

Hydroxyl value, mg KOH/g 240 425
Functionality, d. m. * 2.1 4.3

Density, g/cm3 1.23 1.10
Dynamic viscosity at 25 ◦C

temperature, mPa·s 5250 7750

Acid value, mg KOH/g <1 <1
Water content, % ≤0.1 ≤0.1

* Dimensionless.

For the formation of the rigid polyurethane foam structure, a blowing agent system was selected
from water, which emits CO2 gas during its reaction with isocyanate, and fluorinated hydrocarbon
Solkane 365 mfc (Solvay, Riga, Latvia). The amount of water used in the production of the rigid
polyurethane rigid foams ranged from 2 to 3.5 parts by weight (pbw), and Solkane 365 mfc ranged
from 15 to 29 pbw. A polyether modified dimethyl-polysiloxane surfactant, Struksilon 8006 (Brenntag,
Kędzierzyn-Koźle, Poland), was used to form the polyurethane foam. Based on the manufacturer’s
recommendations, 2.0 pbw of the surfactant were used to reduce surface tensions and to form and
stabilize the porous structure. Polycat 9 (Air Products and Chemical, Inc., Decatur, AL, USA) was used
as a catalyst for controlling the main reaction time for the rigid polyurethane foam.

The flame retardant ROFLAM P (PCC Rokita SA, Brzeg Dolny, Poland) was used to ensure the
flammability characteristics of the final products. 4,4’-diphenylmethane diisocyanate (referred to as
isocyanate) from Lupranat M20S (BASF, Ludwigshafen, Germany) with an average functionality of
2.7 and a reactive group (-NCO) content of 31.5% was used to cure the rigid polyurethane foam. All
formulations used an isocyanate index of 100.

2.3. Preparation of PET Waste-Based Polyurethane Foams

For the polyurethane foam formation, the polyols, catalyst, blowing agents, flame retardant,
and surfactant were agitated for 10 min in a blowing device tank at 1800 rpm (component A). The
isocyanate in the component B tank was sprayed in a 1:1 ratio with component A. The amount of
isocyanate required to react with each of the -OH groups in the polyols and water was calculated by
Equations (1)–(3):

EMDI =
4200

%NCO
(1)

EP =
56, 100

nOH
(2)

mMDI =
( IMDI

100

)
· EMDI ·

(
mP

EP
+

mH2O

EH2O

)
(3)

where EMDI is the isocyanate equivalent weight (g/mol), and %NCO is the percentage of isocyanate
reactive groups (%). The value of 56,100 describes the molecular weight of KOH (mg/mol), and 4200 is
the molecular weight of isocyanate (mg/mol). EP is the equivalent weight of the polyol system (g/mol),
nOH describes the hydroxyl value of the polyol system (mg/KOH g), mMDI is the isocyanate amount
(pbw), and IMDI is the isocyanate index (d.m.). mP describes the amount of the polyol system (pbw),
mH2O the amount of water (pbw), and EH2O the equivalent weight of water (g/mol). To evaluate the
stability and performance of the rigid polyurethane foam with an apparent density between 30 and
40 kg/m3, the compositions shown in Table 3 were investigated.
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Table 3. Compositions of rigid polyurethane foams with different apparent densities.

Material

40 kg/m3

Water/Solkane 365 mfc
30 kg/m3

Water/Solkane 365 mfc

Control
2.2/25 2.1/20 2.4/25 2.0/15 Control

6.6/22 2.5/29 3.0/25 3.5/18

Amount, pbw

Neopolyol 240 104 30 30 30 102.5 20 20 20
Glycerol 10.5 - - - 5.5 - - -

Petol 400-4G 34.5 70 70 70 36.5 80 80 80
Water a 2.2 2.1 2.4 2 6.6 2.5 3 3.5

Solkane 365 mfc 25 20 25 15 22 29 25 18
Struksilon 8007 2 2 2 2 2 2 2 2

Polycat 9 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
Roflam P 37.5 23 23 23 44 23 23 23

Isocyanate index b 100
a Different amounts of water were estimated in the isocyanate content calculations; b The isocyanate index is the
ratio of the equivalent to the theoretical isocyanate content multiplied by 100.

Each of the resulting blends was sprayed from an industrial polyurethane foam spraying device.
The mixtures were blended for 10 s and sprayed on a 500 × 500 × 100 mm3 plywood sheet, on which
they were left, blown freely, at 23 ± 5 ◦C. Before the tests, specimens were conditioned, at least 24 h
before testing but for a maximum of 8 days, in an environment with a temperature of 23 ± 5 ◦C and a
relative humidity of 50 ± 5%.

2.4. Test Methods Used for the Mixtures and Polyurethane Foam

Foaming characteristics of polyurethane foaming mixture were determined in accordance with [26]
by a cup test method with a digital thermometer TS-131 with a probe having an accuracy of 0.5 ◦C
and a digital timer. The length and width of the specimens were determined in accordance with [27]
and the density according to standards from [28]. The thermal conductivity before and after aging the
specimens for 21 days was determined in accordance with the requirements of [25,26,29] (Annex C)
with one specimen symmetric configuration horizontal flow meter FOX 304 with active specimen
edges protection in the bottom-up direction of the heat flow. The measuring range of the device
is from 0.01 to 0.50 W/(m·K), with an accuracy of 1%. The thermal conductivity of the specimens
300 × 300 × 50 mm3 was determined at an average temperature of 10 ◦C, and the difference between
the lower and upper panels was 20 ◦C during the tests. Ten specimens for each composition were
tested to ensure the results were reliable.

In order to determine the effect of different blowing agents and polyol systems on the moisture
properties of the products, the short-term water absorption of the products after partial immersion
for 24 h was determined for specimens with a 200 × 200 × 50 mm3 volume, according to method
B [30]. Specimens with a size of 100 × 100 × 50 mm3 were used for water vapor permeability tests, in
accordance with standard [31]. The climatic conditions of the test were as follows 23-0/50: ∆p was
1400 Pa, the average air temperature was 22.8 ◦C, and the average air pressure was 745 mmHg. The
specific air permeability (δair) during the test was 0.717. The test assemblies were filled with calcium
chloride and were weighted at regular intervals of no less than 24 h. The direction of the water vapor
flow relative to the product surface was perpendicular to the surface of the test object.

Shrinkage was evaluated for 300 × 300 × 50 mm3-sized specimens, which were cut for thermal
conductivity test 2 days after production and measured both immediately and 1 h after cutting the length,
width, and thickness directions. The shrinkage was calculated according to the following equation:

∆ε =
b1 − b2

b1
× 100 (4)
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where ∆ε is the shrinkage (%), b1 is the dimension of the sample cut 2 days after production (mm), and
b2 is the respective dimension of the sample 1 h after cutting (mm).

To evaluate the durability of the products, a dimensional stability test was carried out according
to the methodology provided by [32]. Specimens were tested at 70 ± 2 ◦C and 90% ± 5% relative air
humidity for 48 h using a climatic chamber (Feutron 3522/51) with a temperature measurement range of
30–100 ◦C with an accuracy of 0.2 ◦C and a humidity measurement range of 10–100% with an accuracy
of 5%. Three 200 × 200 × 50 mm3 specimens were tested for each composition. For the evaluation of
the structural parameters, the percentage of closed cells was determined according to Method 2 from
source [33] for three specimens of each composition with dimensions of 100 × 30 × 30 mm3.

Thermogravimetry (TGA) and differential thermogravimetry (DTG) were conducted under the air
atmosphere using STA 449 F1 Jupiter Analyzer (Netzsch Group, Erlangen, Germany) at temperature
interval from 25 to 600 ◦C. Temperature raising speed was 10 ◦C/min.

The limited oxygen index (LOI) was obtained using an Oxygen Index Instrument (NETZSCH
TAURUS Co., Ltd., Weimar, Deutschland). The size of the samples was (120 × 10 × 10) mm3. A sample
tip was ignited for 5 s by means of a gas burner supplied with a propane-butane mixture. The limited
oxygen index was calculated as the percentage of oxygen and nitrogen volume in the mixture.

3. Results and Discussion

3.1. Characteristics of the Mixtures and Apparent Density of the Foams

The reaction kinetics of the polyurethane foam mixtures mainly depend on the rate of blowing
and of the gelling reactions. On the other hand, the properties of the products themselves depend on
the polyol functional groups and the number of hydroxyls [34]. These and other characteristics of the
mixtures, where a part of the traditional polyol is replaced by PET waste-based polyol, are shown in
Table 4.

Table 4. Chemical characteristics of the polyol systems.

Blowing Agent Ratio,
Water/Solkane 365 mfc

Parameter

Calculated Hydroxyl Value of
Polyols Systems, mg KOH/g

Calculated Functionality of
Polyols Systems

40 kg/m3

Control
2.2/25 394 2.68

2.1/20
370 3.642.4/25

2.0/15

30 kg/m3

Control
6.6/22 347 2.69

2.5/29
388 3.863.0/25

3.5/15

It may be observed that PUR compositions presented by the manufacturers (the control) have
lower functionality compared to those with adjusted compositions. The foaming process is determined
by measuring the characteristic processing times, cream, string-gel and tack-free times and sometimes
reaction temperatures. Therefore, the obtained results are presented in Table 5.
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Table 5. Characteristic foaming times and temperatures.

Blowing Agent Ratio,
Water/Solkane

365 mfc
Cream Time, s String-gel Time, s Tack-Free Time, s

The Highest
Reaction

Temperature, ◦C

40 kg/m3

Control
2.2/25 5 ± 2 15 ± 1 44 ± 1 108 ± 3

2.1/20 3 ± 1 13 ± 2 44 ± 2 110 ± 2
2.4/25 3 ± 1 13 ± 1 42 ± 1 114 ± 2
2.0/15 3 ± 1 13 ± 1 44 ± 2 115 ± 3

30 kg/m3

Control
6.6/22 4 ± 1 14 ± 1 43 ± 1 111 ± 2

2.5/29 3 ± 1 13 ± 1 43 ± 1 112 ± 2
3.0/25 3 ± 1 13 ± 1 41 ± 1 116 ± 3
3.5/15 3 ± 1 13 ± 1 41 ± 2 115 ± 2

As the results show, all compositions are characterized by a high reactivity and temperature
which are basically determined by a high amount of blowing catalysts, i.e., 4.2 pbw. However, a slight
difference occurred in control systems where glycerol is involved as a co-polyol. As it has been already
determined in [35] that glycerol acts as a start time extender. Taking into consideration the scattering
of the results, the impact of blowing agent ratio is negligible because the rate of a reaction is assured
through the balance of blowing and gelling catalysts. Furthermore, the control composition with a
density of 40 kg/m3 has a higher hydroxyl value because of the glycerol used, which has increased the
consumption of isocyanate in the system. Assumedly, glycerol was used to stabilize the PUR sample
by increasing the content of hard segments. Apparently, the amount of cross linker is low, and further
addition is not economical. As a previous study showed [36], it is necessary to replace 10% to 15% of
low-functionality polyol with glycerol to obtain dimensionally and structurally stable polyurethane
foams. The apparent density of the polyurethane foam is one of the key parameters in determining the
properties of the finished product, so it is important to evaluate the effect that each composition has on
this parameter. Since the main goal is to develop a stable, rigid polyurethane foam with an apparent
density of 30 to 40 kg/m3, the average values for this characteristic are given in Figure 2.
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(a) 40 kg/m3 and (b) 30 kg/m3.

The main raw materials that determine the density change are the blowing agents, which, in this
case, are water and Solkane 365 mfc. Table 2 shows that the compositions use different water/Solkane
365 mfc ratios for these blowing agents, i.e., 2.1/20, 2.4/25, 2.0/15, 2.5/29, 3.0/25, and 3.5/18. A review of
the literature has shown that the apparent density of the product decreases with increasing blowing
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agent content [37,38], but with 30 kg/m3 foams, the apparent density decreases with decreasing content
of the Solkane 365 mfc in water/Solkane 365 mfc compositions of 3.0/25 and 3.5/18. A similar trend
is observed in foams with an apparent density of 40 kg/m3. The difference between the results is
explained by the use of water in the polyurethane foam. Water is characterized by a better blowing
efficiency compared to Solkane 365 mfc.

Thus, compared to control polyurethane foams with densities of 30 kg/m3, polyurethane foams
have 9.0%, 21%, and 18% lower apparent densities at water contents of 2.5, 3.0, and 3.5 pbw, respectively.
Meanwhile, compared to the control foam with a density of 40 kg/m3, the parameter was reduced
by 3.3% in the 2.4/25 water/Solkane 365 mfc system. This reduction in the apparent density can be
assigned to the amount of isocyanate introduced to the polyol system. The same observation was
made during studies of petrochemical polyol (OH = 449 mg KOH/g) replacement with bio-polyol
(OH = 276 mg KOH/g) [34], which showed that the reduced hydroxyl value of the polyol system
reduced the amount of isocyanate needed.

3.2. Dimensional Stability of the Products

Due to the rapid expansion of the rigid polyurethane foam during the foaming process, the
molecular chains were quickly stretched, causing internal stress and crystallinity that was too low
to be stereotyped at room temperature. The CO2 concentration in the cells was higher than in the
atmosphere, causing the CO2 inside the foam to diffuse out and shrink the foam [39]. As rapid
diffusion of the blowing agent through the cell walls destroys polymer stability [40], the product
standard [25,26] does not specify requirements for dimensional changes after production and specimen
cutting. Therefore, there are no requirements for dimensional stability at ambient temperature for
sprayed PUR foams, either.

There is little information in the literature on dimensional changes of polyurethane foams, but
many researchers modify existing polyols to increase the number of functional groups in order to
avoid excessive shrinkage and negative linear changes in temperature and humidity conditions [34,41].
According to the experience of other scientists, a traditional polyether polyol having a functionality of
4.3 has been used for dimensional stabilization. As can be seen from Table 2, glycerol was eliminated
from the adjusted compositions. Additionally, the amount of functionality was increased with the
addition of a sucrose-based polyol. The results from dimensional stability tests (Figure 3) show that
the adjusted compositions are characterised by a stabilised structure and dimensions after production.
However, as can be observed from Figure 3, control compositions for PUR with densities of 40 kg/m3

(2.2/25 water/Solkane 365 mfc) and 30 kg/m3 (6.6/22 water/Solkane 365 mfc) are distinguished as
improper for the use of testing and, especially, application in building envelopes. This was because
the average changes for 40 kg/m3 PUR foam were 14.2% and 11.8% for length and width and 6.2%
for thickness, and deviations of 11.2% and 10.8% for length and width and 6.2% for thickness were
observed for 30 kg/m3 PUR foam.

Contrary results are presented for the PUR foams with adjusted compositions (Figure 4). Both 30
and 40 kg/m3 products have sufficient dimensional stability, as defined by the product standard. It can
be observed that denser polyurethane foams tend to be more deformable.
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Again, this can be explained by the fact that 40 kg/m3 polyurethane foam contains 10% more
lower-functionality polyols from PET waste compared to 30 kg/m3 polyurethane foam, resulting in a
lower number of functional groups. In any case, dimensional changes were reduced to a maximum of
0.5%. The obtained results are similar to those for polyurethane foams with filler- and liquid-based
modifications and, in some cases, even better than those at 20 ◦C [42,43], indicating that the obtained
foams could even be used in harsh conditions.

Although the possibilities of shrinkage at ambient temperature are not specified, the requirements
for dimensional changes under increased temperature and humidity conditions are clearly indicated.
Figure 4 presents the average percent values of dimensional changes after the maintenance of specimens
at 70 ◦C and 90% humidity for 2 days.

In order to reduce gas diffusion through the walls of the foam cells into the environment and the
negative effects of this diffusion, such as shrinkage of the rigid polyurethane foam at 23 ◦C and 50%
relative air humidity and linear dimensional changes at higher temperatures and humidity, the polyol
or polyol system should have more than 3 functional groups (Table 4).

3.3. Thermal Conductivity and Microstructure of the Stable Products

When rigid polyurethane foam is used for thermal insulation of building envelopes, it is important
to evaluate the thermal insulating properties. Most values of thermal conductivity, i.e., ~65–80%, include
thermal conductivity of a gas or gas mixture [44]. This basic property of thermo-insulating polyurethane
foam also depends on the type of gas used in production and its diffusion rate from the product. This
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gas in the cells is replaced by air over a short period of time, so it is very important to evaluate the
change in this parameter over time. Table 6 shows the variation of initial thermal conductivity, thermal
conductivity after aging, and structural parameters depending on the product composition.

Table 6. Average values of thermal conductivities and structural parameters of polyurethane foam.

Blowing
Agents Ratio,

Water/Solkane
365 mfc

Polyols Ratio,
Neopolyol

240/Petol PZ
400-4G

Average Thermal
Conductivity

before Ageing,
W/(m·K)

Average Thermal
Conductivity
after Ageing,

W/(m·K)

Average
Closed Cell

Content,
vol.%

Average Cell
Size, mm

40 kg/m3 apparent density

2.1/20 30/70 0.0203 ± 0.0001 0.0259 ± 0.0004 91.3 ± 1.4 0.373 ± 0.052
2.4/25 30/70 0.0203 ± 0.0002 0.0259 ± 0.0004 90.4 ± 1.6 0.382 ± 0.048
2.0/15 30/70 0.0204 ± 0.0001 0.0264 ± 0.0001 91.6 ± 1.3 0.394 ± 0.092

30 kg/m3 apparent density

2.5/29 20/80 0.0201 ± 0.0001 0.0259 ± 0.0002 95.4 ± 2.0 0.784 ± 0.075
3.0/25 20/80 0.0203 ± 0.0001 0.0251 ± 0.0002 96.1 ± 1.8 0.788 ± 0.056
3.5/15 20/80 0.0198 ± 0.0003 0.0251 ± 0.0001 94.7 ± 1.4 0.782 ± 0.038

According to the product standards from [25,26], both sprayed and factory-made polyurethane
foams have a mandatory shelf life of up to 8 days for measuring the initial thermal conductivity. It can
be seen that the variation in average values of thermal conductivity for the 30 and 40 kg/m3 products
before aging are very insignificant, i.e., the maximum possible difference between the lowest and
highest values is 3.9% for 40 kg/m3 and 2.0% for 30 kg/m3 products. Because the value of thermal
conductivity for polyurethane foams depends on the type of blowing agent and its amount in the
system, these small differences in average thermal conductivity values, prior to aging, between different
apparent density products are due to small differences in the water/Solkane 365 mfc ratios. In this case,
the replacement of petroleum-based polyol with 20% and 30% PET waste-based polyol has no effect on
the thermal insulating properties.

In contrast, closed cell foams age over time; thus, an increase in their thermal conductivity can
be observed (Table 6). This has been well-demonstrated for both polyurethane and polyisocyanurate
foams with different blowing agents [45]. Therefore, the same trend can be observed when examining
the thermal conductivity of products with an apparent density of 30 and 40 kg/m3 after aging for
21 days at 70 ◦C. When comparing the thermal conductivity values of all six compositions before and
after aging, a significant difference can be observed. After the aging procedure, thermal conductivity
increased by 27.6% at the water/Solkane 365 mfc ratio of 2.1/20. Similar variations were observed in
other compositions. This can be explained by the fact that the composition uses water as an auxiliary
blowing agent. During the isocyanate and water reaction, CO2 is generated, and it has a higher
diffusion rate, while evaporation of Solkane 365 mfc from the product is a long process. Also, Table 4
shows that products with higher apparent densities exhibit cells that are almost 2 times larger (Figure 5).
Others have observed that closed cells which are 2 times smaller determine lower thermal conductivity
values [46], and based on the current results, the average thermal conductivity values for foams with a
cell size of ~0.400 mm did not significantly differ from foams with an average cell size of ~0.800 mm.
This difference can be attributed to the system of blowing agents because the aforementioned study
discusses foams blown with only the CO2 generated during the isocyanate and water reaction.
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In any given composition, the resulting products have an apparent density suitable for sprayed
and factory-made rigid polyurethane foams ranging from 26.6 to 45.8 kg/m3 and lower thermal
conductivity compared to other polymeric foams.

For example, expanded or extruded polystyrene foam and fibrous materials, such as glass or stone
wool, range from 0.0251 to 0.0264 W/(m·K). The results obtained show that the value of the thermal
conductivity is almost unchanged. However, other studies have obtained higher thermal conductivity
values for PET waste-based polyurethane foams with similar apparent densities [41], but the difference
may be explained by the implementation of different blowing agent systems and the nature of the
cellular structure because the morphology of the polymer foams plays a crucial role in determining
their thermal performance and aging [47].

3.4. Moisture Properties of the Stable Products

Although there are no studies on the moisture properties of PET waste-based polyurethane foams,
the use of thermal insulating materials in partitioning structures can result in water exposure (direct or
vapor-type), and the intensity of this exposure affects the physical and mechanical properties of the
thermal insulating layer. In this case, rigid polyurethane foam is used in well-insulated structures,
which is why standards for both sprayed and factory-made polyurethane foams indicate short-term
water absorption and vapor permeability tests (Figure 6).

From Figure 6a,b, it can be seen that as the percentage of closed cells increases (Table 6) and the
product density decreases, the water vapor resistance factor and short-term water absorption also
decrease. It can be concluded that water and water vapor more easily migrate in the structure with a
relatively lower percentage of closed cells than at higher values of said parameter.

With an increase in the product density from 30 to 40 kg/m3, the average content of closed cells is
reduced by 4.5%, while the short-term water absorption and water vapor resistance factor increase
by 38% and 118%, respectively. Additionally, the difference in the percentage of closed cell contents
may be the key factor for increased water absorption and water vapor resistance factors, as it has been
shown in a few studies [48,49]. However, the obtained results are in excellent agreement with those for
similar products existing on the market.
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3.5. Thermal Stability and Flammability Properties of the Stable Products

Generally, thermal decomposition of polyurethane foams is a complex process due to extraction of
many gaseous products [50]. Regarding the segmented structure of this type polymer degradation will
be related to hard and soft segments. Well separated peaks on DTG curve (Figure 7c,d) provide with
an additional information about phase separation of polyurethane foams with different water/Solkane
365 mfc ratios. It is seen that each polyurethane foam independently on blowing agents ratio
decomposes in three steps and it confirms the segmented structure of the obtained foams.

At the first step at a temperature between 150 ◦C and 320 ◦C weight loss is attributed to dissociation
of urethane bonds, while during the second step at a temperature between 320 ◦C and 420 ◦C soft is
imputed to the degradation of soft polyol segments [51]. The third stage is assigned to the degradation
of the fragments obtained during second stage degradation and it appears at the temperature of 480 ◦C.
Additionally, char yield at 600 ◦C, peaks at corresponding stages and weight losses at 5 wt.% and
50 wt.% are presented in Table 7.
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Table 7. Thermal degradation parameters of the stable polyurethane foams.

Water/Solkane
365 mfc

T5 wt.%, ◦C T50 wt.%, ◦C Tmax, ◦C Char Yield at
600 ◦C, wt.%1st Stage 2nd Stage 3rd Stage

40 kg/m3

2.1/20 220 481 219 313 582 29.4
2.4/25 210 476 232 316 585 28.5
2.0/15 210 421 228 310 583 27.8

30 kg/m3

2.5/29 214 468 225 318 589 28.2
3.0/25 213 464 222 312 585 26.0
3.5/15 205 452 224 320 592 25.1

It is found that T5 wt.%, T50 wt.% and Tmax in all stages decrease as water content in blowing agents
system increases from 2.1 to 3.5 pbw. The possible reason for this is related to crosslink-density and
structure of polyurethane foams with different water/Solkane 365 mfc ratios. Water, as a chemical
blowing agent, reacts with isocyanate thus generating polyurea and polybiuret together with CO2.
Therefore, higher water content requires higher amount of isocyanate this way more polyurea and
polybiuret form. As indicated in [52], polyurea and polybiuret are more rigid than polyurethane, so
they should shift T5 wt.%, T50 wt.% and Tmax towards higher temperature. However, increasing amount
of water reduces the crosslink density of polyurethane foams thus slightly reducing corresponding
thermal degradation temperatures.
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In order to determine the impact of water/Solkane 365 mfc ration on flammability, LOI tests ared
conducted and obtained results are presented in Figure 8.
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365 mfc ratios.

Obviously, polyurethane foam without flame retardants is flammable and its LOI value may
reach only 19% [53]. The incorporation of flame retardant such as provided in Section 2.3 improves
flammability properties and the LOI value of the obtained polyurethane foams irrespective of
water/Solkane 365 mfc ratio varies from 20.6% to 21.2%. The difference is not high and varies within
the margin of error for 40 and 30 kg/m3 density products. The obtained results show that the obtained
foams are classified as slow burning materials.

4. Conclusions

The higher amounts of conventional blowing agent (15, 25, and 29 pbw) and water (2.5, 3.0, and
3.5 pbw) increase the expansion efficiency of the foam, resulting in product structures with ~2 times
larger cells and products with an apparent density of ~30 kg/m3.

Irrespective of apparent density, the thermal conductivity before aging varies from 0.0196 to
0.0204 W/(m·K), while the value of thermal conductivity after aging ranges from 0.0256 to 0.0263 W/(m·K).
The obtained values of the thermal conductivity are ensured by low diffusion of the blowing agent
system. The replacement of 70% to 80% of difunctional polyols with multifunctional polyols results
in dimensionally stable products at higher temperature and humidity conditions, showing that the
resulting products exhibit dimensional changes no greater than 0.5% and meet the requirements of EN
14315-1 (≤10% in length and width and ≤15% in thickness) and EN 13165 (≤5% in length and width
and ≤10% in thickness).

The moisture properties, short-term water absorption and the water vapor resistance factor, for the
product varies from 0.22 to 0.35 kg/m2 and 19 to 50, respectively, in the density range of 30 to 40 kg/m3.
The lower values of water absorption and the water vapor resistance factor are determined by adding
10% more of the multifunctional polyol. Therefore, the percent content of open cells decreases, thereby
providing a barrier for water and water vapor penetration.

Thermal stability and flammability tests showed that the obtained polyurethane foams with
different ratios off water/Solkane 365 mfc are characterized by almost the same properties. However, a
slight increase in water reduces crosslink density of the foams thus shifting backwards the thermal
degradation temperature. Additionally, all the obtained polyurethane foams can be considered as slow
burning materials with an average LOI value varying from 20.6% to 21.2%.
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